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Background: The COVID-19 pandemic intensified the use of scarce resources, 
including extracorporeal membrane oxygenation (ECMO) and mechanical 
ventilation (MV). The combinatorial features of the immune system may 
be  considered to estimate such needs and facilitate continuous open-ended 
knowledge discovery.

Materials and methods: Computer-generated distinct data patterns derived from 
283 white blood cell counts collected within five days after hospitalization from 
97 COVID-19 patients were used to predict patient’s use of hospital resources.

Results: Alone, data on separate cell types—such as neutrophils—did not identify 
patients that required MV/ECMO. However, when structured as multicellular 
indicators, distinct data patterns displayed by such markers separated patients 
later needing or not needing MV/ECMO. Patients that eventually required MV/
ECMO also revealed increased percentages of neutrophils and decreased 
percentages of lymphocytes on admission.

Discussion/conclusion: Future use of limited hospital resources may be predicted 
when combinations of available blood leukocyte-related data are analyzed. New 
methods could also identify, upon admission, a subset of COVID-19 patients that 
reveal inflammation. Presented by individuals not previously exposed to MV/
ECMO, this inflammation differs from the well-described inflammation induced 
after exposure to such resources. If shown to be  reproducible in other clinical 
syndromes and populations, it is suggested that the analysis of immunological 
combinations may inform more and/or uncover novel information even in the 
absence of pre-established questions.
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1. Introduction

Medical decision-making is a vast and dynamic field that needs 
renewal and expansion. Hoping to improve its tools, here we explore 
the information potential of combinatorial immunology in the context 
of patient stratification, allocation of limited resources, and knowledge 
discovery related to personalized medicine.

This inquiry is grounded on the quasi-infinite combinatorial 
ability of the immune system, which allows it to do more, faster or 
better, with less (1). Immunology may resemble human language: 
while individual letters, alone, lack meaning, when combined, they 
become words that possess meaning. Similarly, individual cell types 
(e.g., neutrophils) may lack meaning. However, when combined with 
or integrated into multicellular groups they acquire meaning, i.e., the 
functions they perform may be deduced. While less than 30 letters can 
generate half a million words—as any dictionary can demonstrate—
just five immunological cell types (neutrophils, monocytes, 
lymphocytes, basophils, and eosinophils), when combined, can 
protect from thousands of pathogens.

Combinatorial analysis may potentially distinguish patient groups 
that differ both in immunological profiles and outcomes based on 
recognition of data patterns (1). When pattern recognition emanates 
from interactions involving at least three dimensions, the relevance of 
any one input variable may be minor compared to the impact of all 
interactions—which, very frequently, are not known. Because the 
number of possible interactions rapidly grows when dimensions are 
added (including time), it may be impossible to predict what any one 
set of variables may induce. However, when biological knowledge is 
combined with a diverse set of validation studies, it may be possible 
to identify some data patterns that may have clinical implications.

To that end, validation studies should, at least, assess (i) whether 
the observed data patterns express or relate to features of biomedical 
relevance (construct validity), (ii) whether findings are not due to 
spurious or accidental relationships, which may disappear when 
different variables are analyzed (internal validity), (iii) whether 
findings are robust to differences in populations, geographical 
locations, time points and/or outcomes (external validity), and (iv) 
after the previous issues are addressed, whether differences among 
patient groups reach statistical significance (statistical validity).

Studies conducted over two decades have demonstrated that 
immunological data patterns can distinguish no inflammation from 
early and late inflammation (2). Some of such patterns are robust to 
differences in the (avian vs. mammalian and human vs. non-human) 
species investigated (3, 4). They may also apply to different diseases or 
syndromes, such as those induced by human immunodeficiency virus, 
hantavirus, COVID-19 and sepsis, and may be  observed in 
populations located in several continents (5–8).

The properties of infectious disease-related data may have clinical 
applications. For example, the discovery of the inherent circularity of 
temporal observations of immunological profiles (which have no 
beginning and no end but cyclic or oscillatory patterns) means that 

numbers, alone, cannot distinguish biologically different phases (such 
as early from late inflammations). Yet, temporal data directionality 
(arrows that indicate the directionality of two consecutive 
observations) can differentiate such phases (3). A variation of the 
same concept is when complex, longitudinal and three-dimensional 
(3D) data structures reveal a single line of one data point-wide 
observations—a structure that eliminates data variability across all 
dimensions but one—the one characterized by a single line of points. 
Such structures, when arrows that indicate directionality are used, 
reveal, in real time, whether the data of a single patient moves toward 
the desirable or undesirable poles of the data and, consequently, 
facilitate earlier medical decision-making (7, 9). Real-time and 
personalized medical decision-making can also involve the evaluation 
of antibiotics: patterns of bacterial-immunological-antibiotic-
temporal interactions can provide actionable information even before 
antibiogram test-results are available (10).

Given this background, here it is asked whether these informative 
capabilities may apply to manage and allocate critical hospital 
resources, such as mechanical ventilation (MV) and extracorporeal 
membrane oxygenation [ECMO (11, 12)]. Calls for ECMO-related, 
personalized decision-making have recently been made (13). They are 
motivated by the poor predictability of models that explore ECMO use 
in COVID-19 patients (14–16).

Distinguishing clinical varieties and stratifying patients on 
admission is another medical challenge (17). In addition to COVID-
19, assessments of immune profiles may facilitate early patient 
partitioning and prognostics in other diseases, such as sepsis (18–20). 
Because such profiles are combinatorial—and, consequently, tens of 
thousands of immunological interactions may occur—a very large 
number of different research questions can be entertained even with 
the same data (21). The combinatorial analysis of immune profiles 
may also apply to personalized medicine (1, 20).

Pursuing deep learning—i.e., uncovering information usually 
hidden—combinatorial experimentation is closely related to continuous 
knowledge discovery and causal reasoning (22, 23). Because there is no 
consensus on its definition (23), combinatorial clinical research may 
be characterized as a partial re-analysis of the same continuous data, 
together with novel (previously untested) discrete variables 
or questions.

We followed a combinatorial approach to retrospectively analyze 
serial blood leukocyte (continuous) data to forecast the requirement 
for MV and ECMO in hospitalized COVID-19 patients. Based on 
evolutionary biology, it was hypothesized that immunological 
functions are unlikely performed by isolated units that act 
independently but could be performed by groups of two or more cell 
types (‘words’) that, through feedback processes conserved across host 
species, interact (3). The combinatorial expression of multicellular 
interactions may convey interpretable information (1, 24).

Because some multicellular interactions may perform different 
functions in different contexts and/or disease stages, a data-driven, 
combinatorial analysis may also result in unexpected knowledge 
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discovery. Hence, this study aimed to determine whether data-driven 
research may offer intentional and unintentional knowledge discovery 
when a combinatorial analysis is conducted in clinical medicine. To 
that end, we  investigated data partially explored elsewhere (9, 10) 
together with new information on COVID-19 patients.

2. Materials and methods

This study retrospectively collected serial complete blood cell 
counts (CBCs), and C-reactive Protein (CRP) data from 97 
hospitalized COVID-19 patients admitted on or before August 2020 
and evaluated them longitudinally, resulting in 283 temporal 
observations (Supplementary Table S1). While other molecules of 
potential diagnostic value were also evaluated (such as ferritin and 
lactate dehidrogenase), they are not reported here because they 
showed profiles similar to those of CRP.

According to internal institutional research board (IRB) protocol 
ID 21–002778, this retrospective study closely examined laboratory-
confirmed 97 COVID-19 patients admitted to Mayo Clinic Florida. 
Inclusion required that the patient be older than 18, have SARS CoV-2 
positive test results conducted within 72 h of admission and 
radiographic changes consistent with COVID, and be deemed at risk 
of severe illness to be enrolled. Subjects were excluded if they had a 
history of or were treated for immunosuppression, malignancy, 
pregnancy; had been exposed to MV/ECMO; and/or had been 
hospitalized for 3 or more weeks in the previous six months. At the 
end of the hospitalization (60 days or less), the use of hospital 
resources, including MV and ECMO, was determined with a scale that 
resembled the one reported by the World Health Organization’s 
Clinical Progression Scale (25). Because this study did not enroll 
ambulatory cases, the original WHO nine-point scale for infected 
individuals was reduced to a five-point scale, namely: (a) room air 
(scale #3), (b) nasal cannula (scale #4), (c) oxygen mask (scale #5), (d) 
high-flow cannula (scale #6), and (e) MV/ECMO (scale #7). For 
example, patients that required continuous positive airway pressure 
(CPAP) or bilevel positive airway pressure (BiPAP) were assigned 
scale ‘6’ (non-invasive, high-flow ventilation). Supplementary Table S2 
summarizes the clinical features of each group of patients.

This study retrospectively analyzed the relationship between 
hospital resources identified at the end of the hospitalization period 
and blood leukocyte data collected in the first 5 days. The blood 
leukocyte data were structured using a proprietary software package 
(US Patent #10,429,389 B2), which generated pattern-revealing 
indices derived from leukocyte counts and/or relative percentages 
(here identified with one- to three-letter descriptors expressed in 
italics, e.g., ABC). These indices do not have any known biomedical 
meaning—they are identifiers that distinguish data combinations used 
as input variables. Because the patterns observed are outputs (i.e., the 
result of interactions that include triplets of such indices), these 
indices are only temporary guides required by the method investigated 
but no observed pattern is due to any one input variable.

2.1. Statistical analysis

This study was set to determine the ability of combinatorial 
experimentation to (i) predict the use of hospital resources according 

to an abbreviated version of the WHO Clinical Progression Scale (25) 
and (ii) extract more or new information from the same data. To that 
end, two analytical procedures were compared, which utilized 
non-structured and structured data, respectively. The first approach 
focused on primary data on counts and relative percentages of blood 
leukocytes, analyzed in isolation. The second approach investigated 
the same data after structuring performed with the algorithm 
identified above. Given that more than 95% of the tested individuals 
yielded <5% eosinophils and/or basophils, such cell types were 
not analyzed.

Findings elicited by structured and non-structured data analyses 
were compared considering several biologically interpretable 
variables. Comparisons across data subsets used the Mann–Whitney 
test for the median conducted by a commercial package Minitab 19 
(Minitab Inc., State College, PA, United  States). To determine 
robustness, findings generated on hospitalization day 1 were compared 
to all longitudinal data entries.

3. Results

When all temporal observations collected from hospitalized 
COVID-19 patients were reviewed in an unstructured data format, 
overlapping counts and overlapping relative percentages of 
lymphocytes, neutrophils, and monocytes prevented differentiations 
among patients when the ordinal scale developed by WHO to 
distinguish COVID-19-related oxygenation treatments was used 
(Figures 1A,B). Hence, neither counts nor percentages distinguished 
patients who might need MV/ECMO from those who did not. 
Discrimination among treatments did not improve when three-
dimensional relationships of the same data were assessed 
(Figures 1B,C). Data collected on hospitalization day (HD) 1 did not 
differentiate the WHO classes (Figure 1D).

In contrast, when the same data were structured by a computerized 
algorithm, three distinct data patterns helped distinguish three 
non-overlapping data subsets in the longitudinal and HD 1 datasets 
(Figures 2A–D).

To determine whether findings were dependent on any one data 
structure, the reproducibility of the findings was investigated with 
another data structure. Such analysis also considered the three (A-C) 
data subsets previously detected. A perpendicular data inflection 
revealed by the new analysis clustered patients requiring MV/ECMO 
into a separate group of observations (Figure  3A). Showing 
reproducible findings, the MV/ECMO group was again clustered 
within the ‘C’ class (Figure 3B).

When dynamics were explored with a third data structure, a 
perpendicular data inflection differentiated two groups of 
observations. In both assessments, one of such subsets did not include 
any ECMO/MV patient (Figures 3C,D).

After documenting reproducibility, the predictability and 
biological validity were further investigated. The structured overall 
temporal and the structured day-1-only assessments displayed 
non-overlapping intervals of neutrophil percentages when the three 
data subgroups previously differentiated (‘A-C’ classes) were 
considered (Figures 4A,B). The median neutrophil percentage of the 
‘C’ subset was significantly higher than the combined median of the 
‘A’ and ‘B’ groups (p < 0.01, Mann–Whitney test). Therefore, data 
partitioning was immunologically and statistically valid.
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Similarly, non-overlapping data distributions were found when 
the neutrophil/lymphocyte ratio (N/L) was considered (Figures 4C,D). 
The N/L medians also showed statistically significant differences 
between the ‘C’ subgroup (the one including MV/ECMO patients) 
and the remaining patients (p < 0.01, Mann–Whitney test, 
Figures 4C,D). In contrast, the CRP failed to display non-overlapping 
data intervals despite showing statistically significant differences at 
all-time points and when HD-1 data were analyzed (Figures 4E,F). 
Findings documented reproducibility and predictability: three 
different data structures and two temporal (day 1 and all longitudinal) 
assessments supported the view that non-overlapping discrimination 
and statistically significant differences could be  achieved when 
structured data are analyzed.

4. Discussion

4.1. Overview

Three medical applications or novel findings associated with the 
immune profile of COVID-19 patients are discussed. One refers to 
planning for using critical hospital resources, one describes both early 
patient stratification and a novel inflammatory pattern, and one 
promotes personalized medical decision-making based on a novel 
information system.

4.2. Planning for the usage of critical 
hospital resources

At least two factors seem to influence specific patients’ estimated 
use of hospital resources: (i) lack of clinically interpretable information 
and (ii) analytical methods not fit for personalized medicine. While 
the planning literature on healthcare systems has considered both 
physical resources and the generation and allocation of human 
resources, biomedically explicit approaches (such as estimates based 
on patients’ immune profiles) have not yet been emphasized (26). 
While the need of personalized management has been articulated 
(13), it may be prevented by analyses that depend on relatively large 
sample sizes, i.e., data on population data where n > > 1. That is so 
because personalized clinical medicine involves n = 1 situations (8). 
Hence, assigning critical resources to specific patients requires 
personalized analysis of biomedically interpretable data.

To address such challenges, the advantages associated with 
prognostics and combinatorial immunology may be considered. The 
very high number of possible immunological combinations can 
be inferred from a simple observation: there are many more pathogens 
(~ 1,400) than the five cell types (lymphocytes, neutrophils, 
monocytes/macrophages, basophils, and eosinophils) that confer 
immunity (27). Such a few elements cannot act alone: only through 
combinations they can protect from infections, cancer and many other 
health disorders (1, 21). In addition, the immune system dynamics 

FIGURE 1

Analysis of unstructured data. Complete blood cell count (CBC) data collected from 101 COVID-19 patients over five days after hospitalization (283 
temporal observations) were classified according to WHO ordinal scale. The uni-dimensional analysis of leukocyte counts (white blood cells or WBC) 
revealed overlapping data distributions that prevented the separation of observations according to the WHO scale [rectangle, (A)]. The analysis of 
different cell types, measured as relative percentages, also exhibited overlapping intervals across WHO classes [rectangle, (B)]. A three-dimensional 
analysis of the same data displayed overlapping intervals that prevented patient partitioning, both when all temporal observations were considered and 
when day-1 data were plotted (C,D).
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(even within the same patient) matter. Because even patients with the 
same diagnosis may experience different outcomes, diagnosis is not 
sufficient—prognostics are also needed, and they must 
be individualized (18).

These issues converge when the future usage of a critical 
resource is estimated. While the precise time when MV/ECMO 
would be required by a specific patient was not determined (because 
CBC data were only available for the first 5 HDs), individualized 
needs were estimated to materialize within 5 or more days after 
testing. If reproduced in other populations and clinical entities, this 
approach could address, simultaneously, several limitations of 
earlier methods—such as the errors associated with binary 
approaches (which do not apply when three or more alternatives 
exist), approaches that do not capture personalized physiologic 
inputs, n = 1 situations, and/or lack of biomedically interpretable 
information (28).

4.3. Early patient partitioning and 
inflammation as a predictor of MV/ECMO 
usage

While not pursued originally as a research goal, this study also 
demonstrated knowledge discovery (unintentional findings): a subset 

of patients was distinguished, since HD 1, by a proinflammatory 
immune profile. Such a finding differs from earlier studies on the same 
population, which focused on mortality (8). By focusing on the usage 
of MV/ECMO, new findings were uncovered: a subset of patients who, 
since HD1, presented with a non-overlapping, higher and statistically 
significant different interval of N% than two other groups of patients 
(Figures 4A,B).

This inflammation differs from the well-reported inflammation 
that may follow patient’s exposure to MV/ECMO (29, 30). The 
inflammation reported here may be detected since HD 1.

4.4. From assigning patients to 
pre-established diseases to dynamically 
monitoring disease evolution in 
personalized cases

This preliminary study supports the notion that combinatorial 
explorations of immunologic profile—if complemented with temporal, 
clinical, and personalized information—may both answer explicit 
research questions and offer (unintentionally) new usable information. 
Such a finding facilitates a new clinical/research practice in which 
continuous knowledge discovery is pursued and personalized medical 
decision-making is promoted.

FIGURE 2

Analysis of structured data. The same data reported in Figure 1 were analyzed as structured data, i.e., hypothetical indicators that measure multicellular 
interactions and tend to reveal distinct patterns (here identified as two- or three-letter acronyms expressed in italics). Both the whole dataset and day-1 
observations, when analyzed in three-dimensional space, expressed two data inflections that distinguished three groups of observations (‘A’,'B’, and ‘C’). 
ECMO/MV-related cases were clustered within the ‘C’ group (A-D).
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While in population medicine the priority is to define data 
groups characterized by n> > 1 and then assign a specific patient to 
a previously defined disease class (an Oslerian or ‘one-size-fits-all 
approach), in personalized medicine (when n = 1) the individual is 
identified first. Because the patient may have specific co-morbidities 
and a previously unknown number of unique conditions, 
personalized characterizations precede other aspects and are 
considered when the diagnosis and prognosis are made, which 
should also evaluate, over time, whether the treatment modifies the 
course of the disease (31).

Hence, combinatorial assessments may induce not just one but at 
least four inferences, which refer to (i) the individual, (ii) the specific 
diagnosis, (iii) the future (prognostics), and (iv) possibly, many 
(non-binary) possibilities. That is potentially achieved when the 
dynamic and combinatorial properties of the immune system are 
considered and, instead of a single (one-time based) prediction, real-
time, frequent assessments monitor disease progression at personalized 
levels (1, 32).

These considerations lead to propose tentative answers to a 
question previously asked: should the case/control model 
be replaced? (33). This question is motivated by several concepts 
ignored or erroneously assumed in the case/control approach, 
which include the fact that even patients that share the same 
diagnosis and receive the same treatment will differ over time and/
or experience different outcomes (32). Far from being internally 
homogeneous, both ‘cases’ and ‘controls’ are heterogeneous and may 
differ in their dynamics (33).

These findings also highlight the informative relevance of 
combinatorial immunology. Given the quasi-infinite number of 

potential combinations (16, 21), even the same primary data may 
uncover new findings (8). More clinically useful information (that 
remains in data previously investigated) could be uncovered if different 
questions were asked, more data patterns were explored, and/or new 
discrete variables were added.

Given the dysfunctional immune response observed in several 
diseases, such as COVID-19, it is suggested that this preliminary 
report may support additional combinatorial studies, which could 
account for personal heterogeneities and different dynamics. For 
example, different disease evolution in patients with or without 
immuno-deficiency could be  explored (34). To that end, future 
population-based and personalized studies could explore 
combinations of cellular and non-cellular immunological markers in 
relation to specific treatments at specific times and/or in relation to 
specific co-morbidities and/or outcomes.

5. Caveats and conclusions

The expanded analysis of COVID-19 patients’ blood leukocyte 
data as structured indices may predict the need for using limited 
resources, such as ECMO and MV. This inquiry also revealed several 
novel findings or applications, including early patient stratification 
and the discovery of a pro-inflammatory profile in patients that later 
would be  exposed to MV/ECMO. Provided that additional 
biologically meaningful variables are added and/or new questions 
are asked, it is suggested that combinatorial assessments may 
uncover more and/or new clinically useful information, even 
without new data.

FIGURE 3

Reproducibility. To explore whether findings depended on a single data structure and/or temporal assessment, two additional sets of structured data were 
investigated—one at day 1, the other at both day 1 and all longitudinal observations. Such analyses distinguished the three (A–C) data classes detected in 
Figure 2 of which ECMO/MV clustered in one of them (A,B). The third data structure exhibited two data subsets perpendicular to one another at day 1 and 
also when all temporal observations were considered (C,D). In both assessments, all ECMO/MV-related observations were clustered in one subset (red 
rectangle, C,D). Therefore, findings demonstrated that inferences did not depend on any one data structure or temporal test.
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to the corresponding author.

Ethics statement
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institutional research board (IRB) protocol ID 21-002778 of Mayo 
Clinic, Jacksonville, FL, USA. The studies were conducted in 

FIGURE 4

Predictability of personalized, biologically interpretable data and novel medical information. The ability of day-1 data to predict later use of MV/ECMO 
at personalized level was explored together with other considerations, including forecasting, patient stratification, personalized inferences and possible 
discovery. The similar patterns seen between the overall observations and day-1 data revealed both predictability and non-overlapping data intervals 
(A,B). On day 1, the median neutrophil percentage displayed non-overlapping data intervals, differed by 15 or more percentage points among groups, 
and reached statistically significant differences between the ‘C’ and the remaining subsets (p  <  0.01, Mann–Whitney test, B). The median neutrophil/
lymphocyte (N/L) ratio also exhibited non-overlapping, statistically significant higher values between the ‘C’ and the remaining subsets (C,D). In 
contrast, the concentration of C-reactive protein (CRP) revealed substantial data overlapping (E,F). Therefore, full discrimination (when structured data 
revealed non-overlapping data subsets) could be associated with (but did not depend on) statistical significance. This predictable, biologically 
interpretable information also revealed a novel inference of medical value: because one subset of patients (those clustered in class ‘C’ or ECMO-
related) presented with a proinflammatory profile not observed by other patient subsets, early (day-1) analysis of structured data facilitated the 
detection of or promoted (i) patient partitioning, (ii) personalized inferences (e.g., any patient classified within the ‘A’ or ‘B’ classes was not expected to 
require MV/ECMO), and (iii) a new inflammatory syndrome (presented by a subset of patients).
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