
TYPE Original Research

PUBLISHED 23 August 2023

DOI 10.3389/fmed.2023.1218496

OPEN ACCESS

EDITED BY

Sarada Prasad Dakua,

Hamad Medical Corporation, Qatar

REVIEWED BY

Snigdha Mohanty,

KIIT University, India

Ajay Vikram Singh,

Federal Institute for Risk Assessment

(BfR), Germany

*CORRESPONDENCE

Xin Deng

ricedx@126.com

RECEIVED 18 May 2023

ACCEPTED 12 July 2023

PUBLISHED 23 August 2023

CITATION

Chen Z, Peng P, Wang M, Deng X and Chen R

(2023) Bioinformatics-based and multiscale

convolutional neural network screening of

herbal medicines for improving the prognosis

of liver cancer: a novel approach.

Front. Med. 10:1218496.

doi: 10.3389/fmed.2023.1218496

COPYRIGHT

© 2023 Chen, Peng, Wang, Deng and Chen.

This is an open-access article distributed under

the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Bioinformatics-based and
multiscale convolutional neural
network screening of herbal
medicines for improving the
prognosis of liver cancer: a novel
approach

Zeshan Chen1, Peichun Peng2, Miaodong Wang3, Xin Deng4* and

Rudi Chen3

1Department of Traditional Chinese Medicine, People’s Hospital of Guangxi Zhuang Autonomous

Region, Nanning, China, 2International Zhuang Medicine Hospital, Guangxi University of Traditional
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4Basic Medical College of Guangxi University of Traditional Chinese Medicine, Nanning, China

Background: Liver cancer is one of the major diseases threatening human life and

health, and this study aims to explore new methods for treating liver cancer.

Methods: A deep learning model for the e�cacy of clinical herbal medicines

for liver cancer was constructed based on NDCNN, combined with the natural

evolutionary rules of a genetic algorithm to obtain the herbal compound for liver

cancer treatment. We obtained di�erential genes between liver cancer tissues and

normal tissues from the analysis of TCGA database, screened the active ingredients

and corresponding targets of the herbal compound using the TCMSP database,

mapped the intersection to obtain the potential targets of the herbal compound

for liver cancer treatment in the Venny platform, constructed a PPI network, and

conducted GO analysis and KEGG analysis on the targets of the herbal compound

for liver cancer treatment. Finally, the key active ingredients and important targets

were molecularly docked.

Results: The accuracy of theNDCNN training setwas 0.92, and the accuracy of the

test set was 0.84. After combining with the genetic algorithm for 1,000 iterations,

a set of Chinese herbal compound prescriptions was finally the output. A total of

86 targets of the herbal compound for liver cancer were obtained, mainly five core

targets of IL-6, ESR1, JUN, IL1β, and MMP9. Among them, quercetin, kaempferol,

and stigmasterol may be the key active ingredients in hepatocellular carcinoma,

and the herbal compound may be participating in an inflammatory response and

the immune regulation process by mediating the IL-17 signaling pathway, the TNF

signaling pathway, and so on. The anticancer e�ects of the herbal compoundmay

be mediated by the IL-17 signaling pathway, the TNF signaling pathway, and other

signaling pathways involved in inflammatory response and immune regulation.

Molecular docking showed that the three core target proteins produced stable

binding to the two main active ingredients.

Conclusion: The screening of e�ective herbal compounds for the clinical

treatment of liver cancer based on NDCNN and genetic algorithms is a feasible

approach and will provide ideas for the development of herbal medicines for the

treatment of liver cancer and other cancers.

KEYWORDS

hepatocellular carcinoma, deep learning, convolutional neural network, traditional
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1. Introduction

Primary liver cancer, including three types of hepatocellular

carcinoma, cholangiocarcinoma, and mixed carcinoma, was the

fourth leading cause of cancer death in 2018. Its prognosis is poor,

with a 5-year survival rate of ≤5% for advanced liver cancer, which

is a serious threat to human life and health (1). The main causes

of liver cancer include metabolic disorders, chronic infection with

the hepatitis virus, excessive alcohol consumption, and excessive

aflatoxin intake (2). According to statistics (3), East Asia has the

highest number of liver cancer patients, with Australia having

the fastest-growing incidence of liver cancer. China has a high

prevalence of hepatitis B, resulting in a significant number of liver

cancer patients associated with the virus (4). Currently, there

are several drug treatments for liver cancer, such as targeted drug

therapy, immunotherapy, and chemotherapy, but these methods

have limitations, such as incomplete treatment, easy recurrence

after treatment, and bone marrow suppression. Therefore, it is

of great significance to find other effective, safe, and precise

treatment methods.

With its long-standing history in China, Chinese medicine has

been widely considered due to its potent anticancer properties and

minimal adverse effects associated with the active ingredients found

in traditional Chinese medicine. The monomer or other effective

active substances extracted from traditional Chinese medicine have

multi-target and low-toxicity anti-tumor effects (5). However, how

to screen multi-target, multi-pathway, and low-toxicity anti-tumor

drugs is a major challenge at present (6).

Screening key hepatocellular carcinoma genes as core targets

will help improve the therapeutic efficacy of hepatocellular

carcinoma (7). The development of bioinformatics technologies

has driven comprehensive cancer gene research (8, 9). The

large amount of data generated by new technologies such as

genome sequencing and microarrays makes data management

and multi-platform integration important, which will provide a

research platform for researchers worldwide. Jiang et al. (10)

found that CDNK3 was the key gene in the progression of

cirrhosis to hepatocellular carcinoma. In addition, Urh et al. (11)

bioinformatically analyzed normal mucosal, colorectal adenoma,

and colorectal cancer differential genes from GEO as well as The

Cancer Genome Atlas (TCGA) databases and found that tumor

stem cell-related genes (ANLN, CDK1, ECT2, and TNC) were

associated with colorectal carcinogenesis, while ANLN and PDGFD

genes were associated with the progression of colorectal cancer, but

the mechanism of action of these genes with the development of

colorectal cancer still needs further study and validation.

Artificial intelligence (AI) is a field that encompasses

theoretical, methodological, and applied techniques to simulate,

extend, and expand human intelligence. It finds application in

various domains, including medical care, where AI is actively

applied (12). The establishment of drug prediction models based

on clinical big data is the current research innovation in the

intelligence of Chinese medicine-assisted diagnosis and treatment

Abbreviations: NDCNN,N-DimCNN;GEO,Gene ExpressionOmnibus; TCGA,

The Cancer Genome Atlas; AI, Artificial intelligence; ML, machine learning;

DL, Deep learning; PCA, Principal components analysis; HBV, Hepatitis B virus.

(13). The use of computer-aided diagnosis and treatment

technology for herbal medicine recommendation is a textual

multi-label classification problem (14), and the commonly used

methods are machine learning (ML) and deep learning (DL). A

convolutional neural network (CNN) belongs to a branch of DL

and is a common text classification model consisting of several

parts: an input layer, a convolutional layer, a pooling layer, a fully

connected layer, and an output layer, the convolutional layer of

which with local linking, weight sharing, and pooling operations

can both effectively extract features and reduce parameters in

the network, thus substantially simplifying the complexity of

the network (15). Therefore, we used the CNN models to fit the

intrinsic link between clinical efficacy and prescription to improve

drug prediction accuracy.

Cyberpharmacology integrates biology, pharmacology,

mathematics, and computer science. It generally integrates

biological networks and drug action networks with the help of

biological network databases and drug databases; establishing a

“drug-disease-target-gene” interaction network can allow one to

observe the drug action on the disease target at the overall level.

This study is based on a multi-scale convolutional neural network.

In this study, we screened Chinese herbal medicines based on a

multi-scale convolutional neural network model (N-Dim CNN and

NDCNN) and genetic algorithm to improve the prognosis of liver

cancer, used the TACG database to screen poor prognosis genes

as candidate target genes, and conducted network pharmacology

and molecular docking between the screened drugs and the

candidate target genes to demonstrate that the screened drugs

may improve the prognosis of liver cancer patients by targeting

poor prognosis genes. The prognosis of hepatocellular carcinoma

patients provides a new approach for the development of herbal

medicines for the treatment of hepatocellular carcinoma and

other cancers.

2. Screening of Chinese medicines

2.1. Data sources

In this study, we obtained a total of 745 pieces of literature

and clinical cases using TCM for primary liver cancer from four

major databases, namely, the Chinese Journal Full Text Database,

the Chinese Science and Technology Journal Full Text Database,

theWanfang Data Knowledge Platform, and the Rui Kang Hospital

affiliated to Guangxi University of Traditional Chinese Medicine,

and extracted these 745 TCM treatment protocols and clinical

efficacy data. There were four types of outcomes after treatment:

complete remission: the tumor had completely disappeared; partial

remission: the tumor size reduced by more than 50%; stable: the

tumor size reduced by <50% or increased by <25%; progressive:

the tumor size increased by more than 25% or new lesions

appeared. Among them, there were nine articles or cases with

a treatment effect of complete remission, 95 partial remissions,

513 stable cases, and 128 progressive cases. The study was

approved by the Medical Ethics Committee of Ruikang Hospital,

Guangxi University of Traditional Chinese Medicine, Nanning,

Guangxi, China.
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2.2. Data preprocessing

The 745 cases of herbal treatment protocols and treatment

effects were extracted to an Excel sheet, and the herbal terminology

was standardized according to the standard of “Traditional Chinese

Medicine” (Chinese Traditional Medicine Press, 2007 edition).

Each different Chinese medicine was recorded and represented as

a single entry within an Excel cell after normalization. Finally, 334

different TCMs were obtained for the treatment of primary liver

cancer after normalization. Using the bag-of-words vector model

coding, each herbal medicine appearing in the prescription was

then identified with 1 binary bit, and the presence of that herbal

medicine was marked as 1, and its absence was noted as 0 (see

Table 1).

Treatment outcomes of complete remission, partial remission,

and stability were classified as effective, and treatment outcomes of

progression were classified as ineffective. Effective was recorded as

1, and ineffective was recorded as 0.

2.3. Algorithm design

In this task, the model needs to implement two functions: the

first function is to predict the corresponding efficacy of any drug

combination based on it, i.e., to determine whether a remedy can

treat liver cancer; the second function is to generate multiple drug

combinations based on certain design rules, i.e., to generate herbal

combinations in a certain combination. Therefore, to achieve the

above two types of functions, the algorithmic model used in this

study should be divided into two parts: a deep learning module and

a genetic algorithm module (Figure 1).

In the deep learning module, the main purpose is to train and

obtain a deep learning model that can predict the effectiveness

of the treatment of liver cancer, i.e., to achieve the first function

discussed above. The process roughly consists of the following

steps: First, the dataset is preprocessed and vectorized into a

training set and a test set with an 8:2 ratio; second, the structure

of the deep learning model is designed, determining the network

layers, initializing several other hyperparameters such as the

number of neurons, and selecting network weights and biases.

Afterward, the deep learning model is trained using the training

set until it satisfies the iteration conditions, after which the training

is stopped, and the changing trend of some indicators is visualized

during the training. Finally, the generalization ability of the deep

learning model is verified using the test set to test the prediction

effect of the model in the untrained dataset. The deep learning

model selected for this module is NDCNN, and the structure is

shown in Figure 2.

The genetic algorithm module’s main purpose is to use natural

evolution principles to obtain remedies or combinations of herbs

that are more likely to treat liver cancer. This aims to achieve

the discussed second function and can be roughly divided into

the following steps: First, determine the population size, selection

operator, crossover operator, and variation operator for the genetic

algorithm. Second, initialize the genetic population, where each

individual represents a drug combination. Each individual’s fitness

value is calculated based on the trained deep learning model’s

prediction of its effectiveness. Subsequently, evaluate whether the

stopping condition of the genetic algorithm is met. Typically, this

involves a maximum number of iterations. If the condition is met,

the iteration is stopped. Otherwise, perform selection, crossover,

and mutation operations on the genes of the current population

to generate new individuals. Finally, obtain the combination of

Chinese herbal medicines that is most likely to cure liver cancer.

2.3.1. Deep learning module
The main purpose of the deep learning module is to determine

the effect of any herbal combination that can predict the treatment

of liver cancer. Considering that the deep learning model can

tap deeper potential features to learn the mapping relationship

between drug combination and effect, the deep learning model

is chosen as the baseline model in this research. In addition,

considering that drugs have a very strong correlation or rejection

in the local association, a convolutional neural network layer has

been chosen to extract this local feature. Moreover, considering that

convolutional kernels of different scales can extract local features of

different dimensions, we have chosen to use convolutional kernels

of multiple scales or dimensions to extract richer local features.

Therefore, NDCNN was finally chosen to be used in this study, and

its model structure is shown in Figure 2.

2.3.1.1. Network structure

Based on the basic principles of TCM treatment and the

logical combining of drug screening, and combined with the basic

network structure of the convolutional neural network, in this

study, we have designed a neural network model (NDCNN) for

TCM screening recommendation by using the TCM treatment plan

and the treatment effect prescription in the case as the input and

output of the network structure, respectively, and its structure is

shown in Figure 2. It consists of m multilayer convolutional layers

and k fully connected layers. The pre-processed TCM treatment

information is imported into the convolutional layers as input

data, and then, the multi-core convolutional layers are used to

realize feature extraction for TCM treatment information and drug

screening. Thereafter, the output function is used to perform non-

linear output to obtain non-linear expression capability to fit the

drug screening process. Figure 2 clearly shows that the NDCNN

consists of several convolutional neural network layers of different

scales, each of which uses a different size of the convolutional kernel

to extract local features of different scales. In this task, the signaling

of NDCNN consists of the following main parts:

Step 1: Feeding the model with a bag-of-words vector of

drug combinations;

Step 2: Using multiple models of convolutional kernels in

parallel to extract local features at different scales, respectively;

Step 3: Feature stitching of the local features at multiple scales to

form a two-dimensional tensor matrix;

Step 4: Use multiple convolution kernels of the same model

to perform convolution operations on the extracted two-

dimensional tensor matrix to further obtain higher-order local

features of different sizes to enrich the feature dimensionality

of the model;
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TABLE 1 Data codes.

Number Astragalus Thorowax
Root

Rhizoma
Corydalis

Nutgrass
Galingale
Rhizome

Mylabris
phalerata
Pallas

… Hedyotis
di�usa
Willd

Rhizoma
Paridis

S1 S2 S3 S4 S5 … S334 S334

1 0 1 0 1 1 . . . 0 0

2 0 1 1 1 0 . . . 0 0

3 0 1 1 0 0 . . . 0 1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

744 1 0 0 1 0 . . . 0 0

745 0 0 1 1 0 1 1

FIGURE 1

Algorithm flowchart.

Step 5: Use multiple fully connected layers to synthetically

learn the local features extracted in the previous stage,

and the last layer uses the softmax function to normalize

the output results to finally obtain the drug’s effect on

liver cancer.

The specific hyperparameters of the NDCNN model used in

this study are shown in Table 2.

Compared with traditional deep learning models,

convolutional neural networks reduce the complexity of the

network through three methods: sensory fielding, weight sharing,

and downsampling. It usually consists of several parts: the input

layer, the convolutional layer, the pooling layer, the fully connected

layer, and the output layer. A training process can be divided

into three steps: forward propagation, loss calculation, and

backward propagation.

2.3.1.2. Forward propagation

The focused process of the forward propagation algorithm for

a convolutional neural network includes forward propagation for

the input-oriented layer, forward propagation for the convolutional

layer, and forward propagation for the pooling layer, while the

propagation-oriented algorithm for the fully connected layer and

output layer mainly uses Relu and Softmax activation functions.

The forward propagation algorithms for the different networks are

treated as follows:

In this task, the input of the network can be defined considering

a total of 334 herbal medicines, so here, n= 334. The convolutional
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FIGURE 2

NDCNN model diagram.

TABLE 2 NDCNN hyperparameters.

Network structure Parameters

Number of iterations 25

Input vector dimension 334

First-class convolution kernel size, number of kernels,

and activation function

1, 128, and Relu

The second class of convolution kernel size, number of

kernels, and activation function

3, 128, and Relu

Class III convolutional kernel size, number of kernels,

and activation functions

5, 128, and Relu

Second layer convolution kernel size, number of

kernels, and activation function

3, 128, and Relu

Number of neurons (fully connected layer 1) and

activation function

1,024 and Relu

Number of neurons (fully connected layer 2) and

activation function

512 and Relu

Number of neurons (output layer) and activation

function

2 and Softmax

Loss function Cross-entropy

Optimizer Adam Optimizer

neural network operation is performed at three scales, specifically

with the scale set to 1,3,5. At each scale, convolutional kernels

for convolutional operation at all three scales are set to 128 and

converted to one-dimensional local feature vectors. Subsequently,

the output values of the neurons in the convolutional layer are

defined as the neuron values. These values are determined by

the weights, bias units, and dimensionality of the convolutional

kernels. The neuronal operations of the convolutional layer can be

described by the following equations:

a = σ (
∑m

k=0
Wkxk + b) (1)

Relu (x) = max(0, x) (2)

The non-linear activation function in Equation (1), i.e., the

ReLU function, defines the non-linear output of the neurons

in the convolutional layer after the linear transformation,

which can effectively perform gradient descent and thus

make the convolutional network have better fitting and

generalization capabilities.

Here, the input neuron dimension is set to K. Then, the output

neuron value aL+1of the L+1st fully connected layer is defined

as follows:

aL+1 = σ (
∑

k
WL

k a
L
k + bL) (3)

The correct probability value of the output Chinese medicine

name is set to P, and the formula is defined as follows:

P = sigmoid(zLk ) (4)

where the f function is then used to output the predicted probability

values and normalize the final output by the formula defined

as follows:

sigmoid (x) =
1

1+ e−x
(5)

2.3.1.3. Loss function

In the deep learning module, the main objective is to obtain a

model that can predict the effect of any combination of drugs in

the treatment of liver cancer, which is a binary classification task,

and the final output is “effective” or “ineffective.” Then, the model

will use the cross-entropy function as the loss value calculation

model, which can effectively avoid the problem that the gradient

is too small when using the squared difference loss function, which

prevents the network from further training. The cross-entropy loss

function L is provided by the formula (6):

L = −
1

H

∑H

h=1
((th log yh + (1− th)) log (1− yh)) (6)

where H represents the number of neurons in the output layer, i.e.,

the number of herbal species to be screened. On the other hand,

th ∈ {0, 1} represents the predicted value of the actual label, and

yh(0 ≤ yh ≤ 1) represents the predicted value of the model.
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FIGURE 3

Loss value change curve of the NDCNN model.

FIGURE 4

Accuracy variation curve of the NDCNN model.

2.3.1.4. Back propagation

The backpropagation algorithm in a convolutional neural

network calculates the gradient of the loss function in the neural

network with respect to each parameter in conjunction with an

optimization method to update the parameters and reduce the loss

function. Here, the error δ is used to represent the derivative of the

loss function with respect to the current layer and the unactivated

output zL, and δL(x) represents the error δ at coordinate x in the

Lth layer of the convolutional layer. Combining the chain derivative

rule and the error δ in the Lth+1st layer, it can be assumed that the

formula of δL (x) is as follows:

δL (x) =
∑

dx
δL+1(x− dx)W(x) σ

′

(zL(x)) (7)

Then, based on the error δ in the Lth layer, the derivatives of

that layer with respect to the weights and biases can be obtained

as follows:

∂C

∂wL
= δl∗ σ

(

zL−1
)

,
∂C

∂bL
=

∑

x
δL (8)

Next, each of the networks in the parameter update method is

set to the following equation:

WL = WL − η
∑ ∂C

∂wL
(9)

where η is the learning rate of the neural network, i.e., the

magnitude of each parameter update. If the learning rate is set

too large, the parameters to be optimized will fluctuate around

the minimum value, and convergence will not be possible; if the

learning rate is set too small, the parameters to be optimized will

converge slowly, and the expected effect of the model will not be

achieved as soon as possible. For the backpropagation of the fully

connected layer, the following equation can be derived similarly:

δL = (WL+1)
T
δL+1 ⊙ σ

′

(zL) (10)

The subsequent weight update formula for the fully connected

layer is handled in the same way as the convolutional layer,

i.e., the input data are predicted using the forward propagation
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FIGURE 5

Adaptation trend of 10 individuals of the population during the iteration.

FIGURE 6

Trend of fitness of the global optimal solution in the population.

algorithm and the network’s own parameters WL and bL. The

loss between the actual output value th and the network-predicted

output value yh is then calculated using the predicted and true

labels substituted into the loss function, and finally, the loss value

is back-propagated back to the model so as to update the network

parameters and continuously improve the performance of the

network in predicting the correct Chinese herbal medicine.

2.3.2. Genetic algorithm module
The main purpose of the genetic algorithm module is to

generate a drug combination based on certain rules by selecting

several herbs from 334 drugs that have a high probability of treating

liver cancer. The specific process of the genetic algorithm to find the

best drug combination is shown below:

Step 1: Set the population parameters. The population

parameters of the genetic algorithmmainly include population

size, maximum number of evolutions, selection operator,

crossover rate, variation rate, and fitness function. In our

study, the population size was set to 10 individuals, the

maximum number of evolutions was 1,000, the roulette wheel

method was used as the selection operator, and the crossover

rate and variation rate were both 0.1. The fitness function was

particularly important here, and the fitness function cannot be

obtained directly in this task formula, which consists of two

parts; the first part is calculated from the value of the predicted

drug treatment effect by the deep learning model, and the

other part is calculated from the number of drug species,

and its specific formula is shown in Equation (11), where N

denotes the number of best drug species in the combination.

fitness = P (NULL|X) + (sum (X) − N )2 (11)

Step 2: Initialize the population and calculate the current fitness

value. Here, the population consisted of 10 individuals, each

representing a drug combination, and the adaptation value

was calculated for each individual. The smaller the value,

the better.

Step 3: Select the operation to find the best individual globally.

Here, the roulette wheel method was used to select 5 drug
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FIGURE 7

Trend of the global optimal solution for the population in the last 500 iterations.

FIGURE 8

PCA analysis graph.

combinations individual fathers from which to enter the next

step of the crossover and variation operation.

Step 4: Crossover and mutation operations for population

evolution. Here, the parent genes were crossed two by two

randomly to swap some genes. Then, the resulting offspring

genes were mutated at some points randomly, and 0 became 1

or 1 became 0, thus reproducing new offspring genes to enrich

the diversity of the species.

Step 5: Calculate the fitness value and determine whether the

stop iteration condition is satisfied. Then, calculate the fitness

value of the new population of individuals and then judge

whether the current iteration meets the stopping condition.

If it does meet the stopping condition, then it is prudent to

end the iteration and save the most effective combination of

therapeutic drugs. Otherwise, continue the iteration until the

end condition is met.

Step 6: Output is the global optimal solution, i.e., the most likely

combination of drugs to treat liver cancer.

2.4. Results

In this section, the trends in the evaluation metrics of the

NDCNN model and genetic algorithm during the training process

are described in detail.

2.4.1. NDCNN model training process
In the training process of the NDCNN model, 80% of the data

set was selected as the training set by random division, and the

remaining 20%was used as the test set. At the same time, to prevent

the phenomenon of overfitting the NDCNN model, the maximum

number of iterations was set to 25, and accuracy was selected as

the evaluation index. In each iteration of the NDCNN model,

the training set was first used to complete it. In each iteration,

the NDCNN model first uses the training set to complete the

forward propagation of the signal and the backward feedback of

the error and then uses the test set to test the current generalization

performance of the model. The change curves of the loss value

and accuracy of the training and test sets are collected throughout

the iteration.

2.4.1.1. Variation curves for loss values

As shown in Figure 3, the change curves for loss values on the

NDCNN model for the training and test sets are demonstrated.

From Figure 3, it can be observed that the loss value of the training

set (red curve) gradually decreases during 25 iterations and does

not tend to change smoothly; however, the loss value of the test set

(blue curve) shows a trend of first decreasing and then increasing,

and its value gradually decreases in the early stage as the model

parameters keep iterating. The loss value of the test set is the

smallest after five iterations, and its value starts to gradually become

larger as the model parameters are further iterated. This indicates
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FIGURE 9

Gene heat map (TOP50).

that, after five iterations, the model is in the best condition on the

test set, and when the number of iterations is increased, the model

starts to overfit. Therefore, the optimal number of iterations should

be set to 5 when the model does not converge in the training set but

achieves the best generalization ability in the test set.

2.4.1.2. Change curve of accuracy rate

As shown in Figure 4, the change curves of the training set and

the test set during the iteration of the model are demonstrated.

From Figure 4, it can be observed that the accuracy rate (yellow

curve) of the training set gradually increases with the number

of iterations and finally reaches ∼0.9, indicating that the model

gradually learns more potential features in the training set and

can better achieve the mapping of features to labels, which can

accurately predict the effect of ∼90% of drugs. However, the

accuracy change curve of the test set (the red curve) is exactly

opposite to the change curve of its loss value. When the model

iterates six times, it achieves the best generalization ability on

the test set, but as the number of iterations increases, the model

appears to overfit, and the accuracy of the test set starts to decrease

and return to oscillation. Although the accuracy of the test set

was repeatedly oscillating, it could still reach 0.84, indicating

that the model could accurately predict ∼84% of the new drug

combinations, which indicates that the NDCNN model has strong

generalization ability and can accomplish the task of predicting the

effect of new drug combinations for liver cancer, which provides

a prediction basis for the next step of using genetic algorithms to

discover new drug combinations.

2.4.2. Genetic algorithm optimization search
process

The population size set here is 10, and the maximum number

of iterations is 1,000, which means that, in each iteration,

10 individuals will be generated, corresponding to 10 drug

combinations, and then, the NDCNN model is used to predict

the efficacy of the 10 drug combinations. After obtaining the

predictions, the fitness value of each combination is determined
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FIGURE 10

Venn diagram of active compound target-disease target

intersection.

by considering the number of drug types combined with the

prediction results. A smaller fitness value indicates a higher-quality

individual, implying a greater likelihood of being selected and saved

for the next iteration. The iterative process continues until either

the maximum number of iterations is reached or a termination

condition is met.

Figure 5 demonstrates the trend of fitness values for all

individuals in the population during each iteration. In Figure 6, the

trend of fitness for the best individual in the population during each

iteration is presented. Furthermore, Figure 7 depicts the trend of

fitness for the best individual in the population, specifically over

the last 500 iterations.

Figures 5, 6 show that the fitness values for all individuals in the

population and the global optimal individuals gradually decreased

and stabilized, which shows that the population individuals

did not generate drug combinations according to the specified

number of drug classes (here set to a maximum of 12 drug

combinations) at the beginning. The number of drug classes of their

individuals was much larger than the specified number, resulting

in a very large value of fitness. To overcome this constraint, the

genetic algorithm evolves gradually for approximately the first 500

iterations to mainly satisfy this condition. When the number of

drug combinations remains at 12, the focus of the genetic algorithm

shifts to finding the most effective drug combination, i.e., finding a

certain combination of drugs that would make the NDCNNmodel

predict “effective” with the highest probability. As can be observed

from Figure 7, during approximately the last 500 iterations, the

number of combined drug species is basically controlled within

the set range, and the genetic algorithm starts to search for more

effective drug combinations. After nearly 500 iterations, the global

optimal individual was updated approximately “five” times, leading

to the identification of the optimal drug combination.

2.4.3. The most e�ective drug combinations
searched for by the model

The best drug combination found using the genetic algorithm

in this study was Strychnos nux- vomica L (Ma Qian Zi), Gleditsia

sinensis Lam (Zao Jiao Ci), Psoralea corylifolia L (Bu Gu Zhi),

Mylabris Phalerate Pallas (Ban Mao), Vaccaria segetalis (Wang Bu

Liu Xing), Agrimonia pilosa (Xian He Cao), Juglans regia L (Fen

Xin Mu), Paeonia lactiflora Pall (Bai Shao), Sargassum pallidum

(Hai Zao), Paeonia suffruticosa Andr (Mu Dan Hua), Haliotis

diversicolor Reeve (Shi Jue Ming), Roots of Paeonia suffruticosa

Andr (Dan Pi). The probability that the NDCNNmodel considered

this drug combination to be effective in treating liver cancer

was 97.6%.

3. Bioconductivity analysis, network
pharmacology analysis, and molecular
docking

3.1. Data preparation

The RNA-seq high-throughput sequencing data and survival

data of hepatocellular carcinoma patients in this study were

obtained from the TCGA-LIHC dataset in the TCGA database

(https://portal.gdc.cancer.gov), which contains 373 LIHC patients

and 50 normal tissue controls. KM survival analysis was conducted

separately for the 368 patients containing survival data and the 344

patients, including STAGE staging.

3.1.1. PCA and di�erence analysis
PCA analysis was conducted after DESeq2 normalization of

the downloaded expression profile counts data. In this study, we

conducted a differential analysis using the R package DESeq2

to obtain differential genes between LIHC patients and normal

controls, and genes with a fold change of >2, with a P-value

of < 0.05, were identified as significantly differential genes and

displayed using a volcano plot. The top 50 genes of difference were

subsequently differentially displayed.

3.1.2. Screening of active ingredients and target
prediction of Chinese medicine compounds

Based on the conditions of oral utilization (OB) of ≥

30% and drug-like properties (DL) of ≥ 0.18, the active

ingredients and targets of the Chinese medicine compound

were obtained from the TCMSP (https://tcmsp-e.com/browse.

php?qc=ingredients) and herb databases (http://herb.ac.cn/). The

drug targets were obtained by converting the UniProt database

(https://www.uniprot.org/) to Gene Symbol and screening out

duplicate values.

3.1.3. Screening of common targets of Chinese
medicine compounds for the treatment of
hepatocellular carcinoma

The differential genes obtained in Step 2 intersected with

the targets of the Chinese herbal medicine compound as the
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FIGURE 11

Compound herbal medicine - active ingredient - target - liver cancer network regulation map.

key genes for the efficacy of the Chinese herbal medicine

compound in hepatocellular carcinoma. The Venn mapping tool

(https://bioinfogp.cnb.csic.es/tools/venny/) was used to obtain the

intersection set of Chinese herbal medicine components and

disease targets.

3.1.4. Construction of the active
ingredient-target-disease network map

The software Cytoscape 3.8.2 was used to construct the

network diagram. The active ingredient, the active ingredient’s

corresponding target, and liver cancer-related genes obtained using

the above method were converted into working files, imported

into Cytoscape software, and the corresponding parameters were

adjusted appropriately to export the network target diagram.

3.1.5. Construction of a PPI network map of
common targets and network topology analysis

The intersecting targets were imported into the STRING

database (https://cn.string-db.org/); the species “homo sapiens”

was selected, and the confidence level of ≥ 0.9 was set as the
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screening condition; the key targets were sorted by degree, and

the core targets were determined according to the ranking of the

degree value. The higher ranking indicates that the protein involves

a higher number of interactions and plays a more critical role in

Chinese medicine. At the same time, the “Network Analyzer” tool

was used to screen the active targets. The active targets were ranked

according to the “degree” value from largest to smallest.

3.1.6. GO enrichment analysis and KEGG
enrichment analysis

GO and KEGG pathway enrichment analysis was conducted

using the R package Clusterprofile, with a P-value of < 0.05 as the

screening condition.

3.1.7. Molecular docking validation
The top six core targets of the seven screens were molecularly

docked with the top five active ingredients of the seven screened

herbal compound degrees. The small molecule compounds in sdf

format were downloaded from the PubChem database (https://

pubchem.ncbi.nlm.nih.gov/), and then, ChemBio3D was used to

convert the compounds into mol2 format. Afterward, AutoDock

software was used to convert the mol2 format compounds into

pdbqt format compounds. The crystal structure of the protein was

downloaded from the PDB database (http://www.rcsb.org/) and

then pre-treated with AutoDockTools software for dehydration,

hydrogenation, and so on. Molecular docking was performed with

the help of AutoDock Vina, and visualization was performed using

Discovery Studio.

3.1.8. Survival analysis and single-factor cox
analysis

In this study, we used the R package SURVIVAL to analyze the

relationship between survival time, survival status, gene expression

profiles, and hepatocellular carcinoma. We utilized the Kaplan–

Meier method to plot survival curves. Additionally, we assessed

the impact of genes influenced by herbal compounds on the overall

survival of patients using the one-factor Cox method.

4. Results

4.1. Analysis of variance

The results of principal component analysis (PCA) are shown

in Figure 8. In the analysis of variance, we found 1,936 upregulated

genes and 7,053 downregulated genes in LIHC patients compared

to normal controls (fold change >2, P-value < 0.05). The heat map

of genes with significant differences TOP50 is shown in Figure 9.

4.2. Screening results of the active
compounds

The TCMSP database was searched, and 14,71 chemical

components of the Chinese medicine compound were obtained.

TABLE 3 Basic information on key compounds.

MOLID Chemical
composition

Degree Source

MOL000098 Quercetin 831 Hai Zao, Dan Pi,

Wang Bu Liu Xing,

Xian He Cao, Zao

Jiao Ci, Fen Xin Mu

MOL000422 Kaempferol 162 Dan Pi, Xian He

Cao, Zao Jiao Ci

MOL000449 Stigmasterol 109 Ma Qian Zi, Wang

Bu Liu Xing, Zao

Jiao Ci, Bu Gu Zhi

MOL000006 Luteolin 53 Xian He Cao

MOL000492 (+)-catechi 27 Ma Qian Zi, Dan Pi,

Xian He Cao

4.3. Prediction of potential targets for the
treatment of hepatocellular carcinoma by
TCMSP

There were 39 active ingredients and 232 active ingredient

targets in the TCMSP database. Based on the previous variance

analysis, we concluded that there were 8,989 differential genes

in liver cancer. By utilizing the Venny platform to take the

intersection, it showed that there were 86 drug-disease intersection

target genes between Chinese herbal compounds and liver cancer

(see Figure 10).

4.4. Constructing a
“disease-drug-active-ingredient-target”
network

The “disease-drug-active-ingredient-target” network was

constructed, as shown in Figure 11, and the topological properties

of the network were analyzed using the Network analyze function,

where the degree value is an important parameter to measure

the criticality of a node in the network. The top 5 compounds

in the network in terms of degree are quercetin, kaempferol,

stigmasterol, luteolin, and (+)-catechin, which can connect to

831,162,109,53,27 targets, respectively, and are important for the

treatment of liver cancer (Table 3).

4.5. Results of the PPI network and network
topology analysis

A total of 526 pairs of protein interactions were obtained from

STRING database analysis with a minimum required interaction

score of 0.9 as the screening parameter (Figure 12).

The article analyzed the degree values of the nodes in the

network using the Network Analyzer tool and ranked the targets

with degree values of ≥14 (mean value) from highest to lowest

(see Figure 11). The top five protein genes with degree values
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FIGURE 12

Protein interactions network of the herbal compound for liver cancer.

were Interleukin-6 (IL-6), Estrogen Receptor 1 (ESR1), Proto-

oncogene proteins (JUN), Interleukin-1 beta (IL-1β), and Matrix

metalloproteinase-9 (MMP9). These proteins play a key role in the

whole network, and the targets corresponding to the proteins play

an important role in the treatment of hepatocellular carcinoma by

herbal compounding, which is considered the key target of herbal

compounding for hepatocellular carcinoma (Figure 13).

4.6. Results of the GO enrichment analysis

The GO enrichment analysis yielded a total of 820 GO

entries (P < 0.01), including 748,12,60 entries for biological

process (BP), cellular composition (CC), and molecular function

(MF), respectively. From the analysis of the relevant entries of

biological processes, the targets of herbal compound treatment

for liver cancer were mainly involved in the cellular response

to the xenobiotic stimulus, the cellular response to chemical

stress, the response to the metal ion, the response to oxidative

stress, and other processes; from the analysis of the relevant

entries of cell composition (CC), the therapeutic targets mainly

include the plasma membrane raft, the protein kinase complex,

the membrane microdomain, and other regions. Through the

analysis of molecular function entries, we identified the therapeutic

targets primarily associated with G protein-coupled amine receptor

activity, tetrapyrrole binding, and monooxygenase activity. The

top 10 entries of each module, sorted by P-value, are shown in

Figure 14.

4.7. Results of KEGG enrichment analysis

A total of 70 pathways were obtained from the KEGG pathway

enrichment analysis, and the top 20 entries were listed according

to their P-values. Among these pathways, the prominent ones

include the IL-17 signaling pathway, the TNF signaling pathway,
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FIGURE 13

Ranking of node degree values of the protein interaction network of the herbal compound for liver cancer (degree value Top 30).

and chemical carcinogenesis. These pathways are closely related

to the inflammatory response, immune regulation, atherosclerosis,

hepatitis B virus replication, and so on (see Figure 15).

4.8. Molecular docking validation

The key compounds screened in item “6.4” and the key target

proteins in item “6.5” were verified by molecular docking. The

molecular docking results showed that the molecular docking

affinities of two key active compounds of the herbal compound,

stigmasterol and luteolin, with the target proteins, were much <

−5.0 k J/mol. As a result, ESR1 and luteolin, IL6 and luteolin, and

JUN and stigmasterol showed good binding energy (Figure 16).

4.9. Survival analysis and one-way cox
analysis

We subjected 86 intersecting target genes of the herbal

compound and hepatocellular carcinoma differential genes to

survival analysis. The results suggested that 32 genes had a

significant effect on prognosis (all P < 0.05) and found that

AKR1C3, B1RC5, CCNA2, CCNB1, CDC25C, CDK1, CLDN4,

CYP19A1, E2F1, E2F2, HK2, MGAM, MMP1, MMP9, NQO1,

NUF2, SPP1, TOP2A, and 18 other genes with high expression were

associated with poorer overall survival in hepatocellular carcinoma

patients (log-rank P < 0.05), and ABAT, ADH1A, ADH1C,

ADRA1A, ADRA1B, ADRA2B, AR, CAT, CD14, CYP3A4, ESR1,

NR1L2, NR3C2, PON1, and 14 other genes with high expression

were associated with longer overall survival in patients with

hepatocellular carcinoma (log-rank P < 0.05). It showed that

the above 32 genes were closely related to the prognosis of

hepatocellular carcinoma patients (see Figures 17, 18).

5. Discussion

The attack on liver cancer has been a major challenge

that needs to be urgently addressed by the World Health

Organization. Surgical resection or liver transplantation is the most

effective treatment for hepatocellular carcinoma (16). However,

patients with hepatocellular carcinoma are often diagnosed at an

intermediate to late stage, missing the best time for surgery, and

the shortage of donors, high intraoperative risks, postoperative

immune rejection, and expensive costs make the treatment of

hepatocellular carcinoma limited. Although transhepatic artery

chemoembolization, radiotherapy, chemotherapy, and targeted

therapy for hepatocellular carcinoma are effective, the 5-year

survival rate of hepatocellular carcinoma patients after treatment

is still low (17). Therefore, there is an urgent need to find

new treatment methods. Traditional Chinese medicine, a Chinese

traditional medicine treatment method, has a long history of more

than 2,000 years, and a large number of studies have shown

that Chinese medicine has certain advantages in the treatment of

tumor diseases (18, 19). The monomer or other active ingredients

of Chinese medicine as natural drugs against tumors may form

a trend in the future (20). For example, ginsenosides (21) and

tanshinones (22) have been developed and applied in the treatment

of colon and liver cancer, respectively. Clematis hederagenin

saponin (CHS) in ginseng belongs to the triterpenoid saponins

and can significantly induce apoptosis in breast cancer cells to

exert anti-tumor effects (23). In this study, we screened an effective
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FIGURE 14

GO functional enrichment analysis (Top 10).
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FIGURE 15

KEGG signaling pathway (Top 30).

Chinese herbal compound for the clinical treatment of liver cancer

using NDCNN combined with a genetic algorithm. Additionally,

we conducted network pharmacology, molecular docking, and

bioinformatics analyses to provide further evidence. The results

demonstrated that the key chemical components of the screened

Chinese herbal compounds could bind to key target proteins and

may improve the prognosis of liver cancer patients by targeting

several prognosis-related genes, thus aiming to contribute to the

treatment of liver cancer.

Deep learning has the advantages of highly adaptive, denoising

and data representation abilities. Cheng et al. (24) constructed the

TextBLCNN model based on bidirectional long and short-term

memory neural networks and convolutional neural networks to

analyze the efficacy categories of 2,664 TCM prescriptions, and

the final TextBLCNN model accuracy was 0.858. In this study,

the NDCNN model was constructed based on TCM prescriptions

and efficacy. The NDCNNmodel predicted whether the prescribed

TCM could effectively treat liver cancer and improve the prognosis,

and the accuracy of the predicted effect of the training set reached

90%, while the accuracy of the test set reached 0.84 after six

iterations of the model test set. Although the phenomenon of

overfitting appeared next, its accuracy could still reach 0.84,

indicating that the NDCNN constructed in this study has good

performance and certain clinical use values. The final combination

of the genetic algorithm and the screened combination of Chinese

herbal medicines [Strychnos nux- vomica L (Ma Qian Zi), Gleditsia

sinensis Lam (Zao Jiao Ci), Psoralea corylifolia L (Bu Gu Zhi),

Mylabris Phalerate Pallas (Ban Mao), Vaccaria segetalis (Wang

Bu Liu Xing), Agrimonia pilosa (Xian He Cao), Juglans regia

L (Fen Xin Mu), Paeonia lactiflora Pall (Bai Shao), Sargassum

pallidum (Hai Zao), Paeonia suffruticosa Andr (Mu Dan Hua),

Haliotis diversicolor Reeve (Shi Jue Ming), Roots of Paeonia

suffruticosa Andr (Dan Pi)] implied that it could effectively

treat liver cancer.

In our study, the difference analysis between liver cancer

tissues and normal tissues revealed that liver cancer tissues had

8,989 differential genes compared to normal tissues, and we

obtained 86 intersecting targets by taking the intersection with
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FIGURE 16

Molecular pair patterns of ESR1 and luteolin, IL6 and luteolin, and

JUN and stigmasterol.

the targets of the herbal compound. Further studies revealed

that quercetin, kaempferol, stigmasterol, luteolin, and (+)-catechin

could match more disease targets. The core targets include IL-

6, ESR1, JUN, IL1β, and MMP9, with complex and diverse

inter-target action relationships. It is also enriched in multiple

pathways, including the IL-17 signaling pathway, the TNF signaling

pathway, chemical carcinogenesis receptor activation, Hepatitis B

Cellular senescence, Fluid shear stress, and atherosclerosis signaling

pathways. It is predicted that the herbal compound may treat

hepatocellular carcinoma by regulating the inflammatory response,

immune response, atherosclerosis, and so on. Therefore, it can be

concluded that there is an associated synergistic effect among the

active ingredients of herbal compounds, and their pharmacological

targets play an important role in the treatment of hepatocellular

carcinoma. The mechanism of hepatocellular carcinoma may be

closely related to the inflammatory response, the immune response,

and atherosclerosis. IL-17 is the signature cytokine of Th17 cells,

and the IL-17 signaling pathway may be an important pathway

regulating tumorigenesis progression. It promotes IL6 expression,

and IL-6 promotes STAT3 phosphorylation, which activates the

IL-6/STAT3 pathway and thus enhances the proliferation of

hepatocellular carcinoma cells (25). TNF family genes play an

important role in the regulation of cellular functions and in the

proliferation and differentiation of immune cells; they can also

act on the immune system in a co-inhibitory or co-stimulatory

manner. The TNF family has been widely studied for its ability to

enhance the immune response to tumors. This enhancement can

be achieved through two mechanisms: increasing the signaling of

members of the tumor necrosis factor receptor (TNFR) superfamily

and using drugs to boost the immune response. By binding

to TNF family members, these drugs have the potential to

directly eliminate hepatocellular carcinoma cells and other types

of tumors (26, 27). The KEGG pathway is also involved in

the hepatitis B pathway, where hepatitis B virus (HBV) infection

of the host results in the integration of HBV-DNA with host

chromosomal DNA, leading to host gene rearrangement or

even mutation, which destabilizes gene expression and leads to

an imbalance in the interaction between proto-oncogenes and

oncogenes and subsequently induces hepatocellular carcinoma

(28). HBV-related proteins promote oxidative stress, leading to

increased production of reactive oxygen species, which cause

oxidative DNA damage, leading to increased genomic instability

and subsequently inducing hepatocellular carcinoma formation

(29). HBV-mediated immune response produces a large number

of immune cells and inflammatory factors that constantly attack

liver cells, leading to continuous liver inflammation and hepatocyte

repair, resulting in liver fibrosis or cirrhosis, inducing liver cancer

(30). HBV’s X protein (HBx) performs a variety of biological

functions, including transcriptional activation of various viral and

cellular promoters, interaction with p53, interference with host

DNA repair, and regulation of cell proliferation and apoptosis (31).

One study (32) confirmed that HBx binds to calcium regulatory

protein (CaM), promotes the release of Hsp90 from CaM, and

activates LIMK1, which increases the phosphorylation of cofilin,

a regulator of actin cytoskeletal reorganization, which in turn
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FIGURE 17

Examples of selected genes from survival analysis results.

promotes hepatocellular carcinoma metastasis, implying that the

inhibition of the HBV replication pathway has the potential

to improve the prognosis of hepatocellular carcinoma. As an

important anti-tumor tool, cellular senescence can prevent the

cellular replication of damaged DNA. Cellular senescence can

be stimulated by a variety of mechanisms, such as telomere

shortening, oncogene activation, DNA damage, intercellular fusion,

and stresses that activate DNA damage response pathways (33).

Together, these mechanisms limit excessive or abnormal cell

proliferation, and, thus, the senescent state prevents cancer

development. Accelerated cellular senescence is a new idea for

potential strategies to treat liver cancer (34). A strong study

confirmed (35) that accelerating tumor cell senescence can inhibit

hepatocellular carcinoma cell proliferation, which in turn plays a

role in improving the prognosis of hepatocellular carcinoma.

Quercetin is a flavonoid with antioxidant, anti-inflammatory,

and immunomodulatory effects and can inhibit hepatocellular

carcinoma growth and promote apoptosis by regulating

inflammation, fibrosis, migration, apoptosis and angiogenesis,

and oxidative stress and reducing components of the tumor

microenvironment (36). Kaempferol is a flavonol compound

mainly derived from the rhizome of the ginger plant Kaempferia.

Stigmasterol has anti-inflammatory, antioxidant, anticancer, and

other biological activities and pharmacological effects, and the

combination of kaempferol and doxorubicin can inhibit the

value-added migration and invasion of hepatocellular carcinoma
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FIGURE 18

Graph of Cox analysis results.

cells (37). In addition, kaempferol can induce autophagy in

hepatocellular carcinoma cells by regulating AMPK and AKT

signaling molecules (38), and inhibiting the NF-κB pathway,

which in turn inhibits hepatocellular carcinoma cell value

addition and migration (39). Luteolin is a natural flavonoid with

various pharmacological activities, such as anti-inflammatory,

anti-allergic, and anti-tumor effects. It induces apoptosis and value-

addition inhibition in hepatocellular carcinoma cells through the

upregulation of oxidative stress and endoplasmic reticulum stress

(40). By analyzing the key compounds, the article can suggest that

there is a close synergistic effect among the active ingredients of

the herbal compound, and the article achieves the effect of treating

hepatocellular carcinoma by regulating biological processes such as

inflammatory response, immune regulation, atherosclerosis, and

hepatitis B virus replication. The molecular docking results showed

that the binding energies obtained after the core target proteins

were docked with the key active ingredients were all much less than

the reference value of −5.0 k J/mol, indicating that the Chinese

herbal compound could stably bind to the core target receptor

protein of hepatocellular carcinoma and exert significant effects,

and the network analysis results obtained based on this were of

high credibility and reference value.

In conclusion, this study screened the herbal compound

to improve the prognosis of liver cancer with the help of

the NDCNN and a genetic algorithm and demonstrated the

mechanisms through which the screened herbal compound treated

liver cancer using network pharmacology, molecular docking, and

bioinformatics. The herbal medicines screened using the NDCNN

and the genetic algorithm in this study are not invariable; however,

they will get different compositions of herbal medicines with each

computer operation, but any herbal compound obtained may be

better for the treatment of liver cancer. However, this study has

some shortcomings and failed to further validate the network

pharmacology-related signaling pathways through experiments.

This is the focus of future research on the subject. More in-depth

animal and cellular experiments will be conducted to verify the

mechanism of action of the NDCNN-screened herbal compounds

for the treatment of liver cancer to provide a more solid theoretical

basis for the rational clinical application of herbal compounds.
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