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Obstructive: To develop and validate radiomics and machine learning models 
for identifying encrusted stents and compare their recognition performance with 
multiple metrics.

Methods: A total of 354 patients with ureteral stent placement were enrolled from 
two medical institutions and divided into the training cohort (n  =  189), internal 
validation cohort (n  =  81) and external validation cohort (n  =  84). Based on features 
selected by Wilcoxon test, Spearman Correlation Analysis and least absolute 
shrinkage and selection operator (LASSO) regression algorithm, six machine 
learning models based on radiomics features were established with six classifiers 
(LR, DT, SVM, RF, XGBoost, KNN). After comparison with those models, the most 
robust model was selected. Considering its feature importance as radscore, the 
combined model and a nomogram were constructed by incorporating indwelling 
time. Accuracy, sensitivity, specificity, area under the curve (AUC), decision curve 
analysis (DCA) and calibration curve were used to evaluate the recognition 
performance of models.

Results: 1,409 radiomics features were extracted from 641 volumes of interest 
(VOIs) and 20 significant radiomics features were selected. Considering the 
superior performance (AUC 0.810, 95%CI, 0.722–0.888) in the external validation 
cohort, feature importance of XGBoost was used as a radscore, constructing a 
combined model and a nomogram with indwelling time. The accuracy, sensitivity, 
specificity and AUC of the combined model were 98, 100, 97.3% and 0.999 for the 
training cohort, 83.3, 80, 84.5% and 0.867 for the internal cohort and 78.2, 76.3, 
78.8% and 0.820 for the external cohort, respectively. DCA indicates the favorable 
clinical utility of models.

Conclusion: Machine learning model based on radiomics features enables to 
identify ureteral stent encrustation with high accuracy.
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Introduction

A ureteral stent is placed commonly in most cases of 
lithotripsy and sometimes other urological operations. It plays a 
crucial role in supporting the ureter and assisting the outflow of 
urine from the kidney to the bladder (1). Now, ureteral 
stent placement is considered a standard and irreplaceable 
urological method. Even so, some potential side effects of 
placement of ureteral stent can not be ignored, such as discomfort, 
hematuria, malposition, urinary tract infection, encrustation, and 
so on (2).

Encrustation is associated chiefly with indwelling time. 
El-Faqih et  al. (3) found that in patients with ureteral stent 
placement, the risk of encrustation is 9.2, 47.5 and 76.3% for 
6 weeks, 6 to12 weeks and longer than 12 weeks before removal, 
respectively. Some side effects could happen to patients with 
ureteral stent encrustation, such as obstruction, infection, pain, 
lower urinary tract symptoms (LUTS), and especially 
removal failure.

Changes in physical properties of stents are the pivotal reason of 
removal failure. Encrustation prevention strategies such as urine pH 
modulation, novel materials and stent coatings, say, hydrophilic 
biodegradable stent and Silicone hydrophilic coating, made little 
difference in medical practice (4–9). Once stents get encrusted, they 
become calcified and brittle, losing their tensile strength (1, 2). Blind 
removal of large-volume encrustation stents raises the risk of 
fracturing the stent and avulsing the ureter (2, 10). These issues impair 
the quality of treatment and impose an additional financial burden on 
patients. Multiple extra procedures are needed to deal with stent 
encrustation, giving rise to up to 16% of lawsuits in the endourology 
field (11). However, it is still challenging to identify encrustation in a 
non-invasive way.

Severe encrustation can be recognized on CT or standard KUB 
x-ray before removal, but inconspicuous encrustation is usually 
missed in clinical practice (12). Though Acosta-Miranda and Arenas 
proposed several score systems to evaluate the severity of encrustation 
and predict the consequence of encrusted ureteral stent taking out, all 
of these depend on the premise that encrustation was confirmed. The 
emergence of radiomics provides a new direction for identifying 
ureteral stent encrustation.

Radiomics is a powerful method that assists physicians in 
making the most accurate diagnosis and predicting the prognosis 
and outcomes by further mining and analyzing massive data (13–
15). The procedures refer to the high-throughput extraction of a 
mass of data from images (CT, MR, PET-CT, etc.) to achieve 
volumes of interest (VOIs) segmentation, feature extraction and 
model establishment (16). Regarding urolithiasis, radiomics 
wonderfully differentiated kidney stones from phleboliths, 
recognizing infection stones, calcium oxalate monohydrate stones, 
etc. (17–20). Nevertheless, it has yet to be  put into identifying 
ureteral stent encrustation.

Therefore, in this study, we tend to establish a model with high 
accuracy in identifying ureteral stent encrustation using machine 
learning based on CT radiomics features. Early identification and 
prevention of low or median degrees of encrustation is one of the most 
effective measures to treat the complications of encrustation. The 
ultimate combined model could facilitate clinical decision-making 
and benefit patients.

Methods

Patients population

The retrospective study was approved by the Ethics Review 
Committee of the Fifth Affiliated Hospital of Sun Yat-sen University, 
and the requirement for informed consent was waived concurrently. 
A total of 354 patients underwent endoscopic lithotripsy and 
placement of ureteral stent from the Fifth Affiliated Hospital of Sun 
Yat-sen University and Zhuhai People’s Hospital (Zhuhai Hospital 
Affiliated with Jinan University) were enrolled with the following 
criteria. Among them, 270 patients treated in the Fifth Affiliated 
Hospital of Sun Yat-sen University (SYSU5H) from June 2016 to 
January 2023 were allocated randomly to the training cohort (n = 189) 
and internal validation cohort (n = 81) in a ratio of 7:3 and 84 patients 
treated in Zhuhai People’s Hospital (ZPH) between June 2017 and 
January 2023 were assigned to the external validation cohort. The 
inclusion criteria: (1) patients underwent endoscopic lithotripsy and 
placement of ureteral stent, (2) ureteral stent was removed successfully, 
and encrustation around stent is visible to the naked eye, (3) patients 
had undergone preoperative non-contrast CT scan before ureteral 
stent removal. The exclusion criteria: (1) placement of a ureteral stent 
for other reasons except for endoscopic lithotripsy, (2) non-contrast 
CT images with severe damage or noticeable artifact, (3) the location 
of ureteral stent encrustation is hard to distinguish; (4) severe 
displacement of the ureteral stent or malformation of the 
urinary system.

Baseline data, like sex, age, surgery and indwelling time, were 
collected from the medical record. The severity of encrustation was 
evaluated by the forgotten encrusted calcified score (FECal), the 
kidney ureter bladder score (KUB), and the visual grading for ureteral 
encrusted stent classification (V-GUES) (21, 22). Each removal 
encrusted stent was collected into a sample database. 101 (37.4%) and 
32 (38.1%) patients have encrusted stents in SYSU5H and ZPH, 
respectively. Details of patients are shown in Table 1.

CT data acquisition and standardization

All patients underwent preoperative non-contrast CT scans 
ranging at least from the upper edge of the kidney to the lower edge 
of the sciatic tuberosity before removal. Patients enrolled from 
SYSU5H performed on one of the following two scanners: SOMATOM 
DEFINITION FLASH, UCT 640. Acquisition parameters for all 
SYSU5H images were as follows: real-time exposure dose auto-
adjustment, reference tube voltage, 100 kV; 0.9 beam pitch; automated 
varied milliampere-second settings; collimation width, 5 mm, layer 
thickness 2 mm. Patients enrolled from ZPH performed on one of the 
following five scanners: GE Revolution Maxima, SOMATOM 
DEFINITION FLASH, UCT 780, SOMATOM PERSPECTIVE, and 
GE Revolution. Acquisition parameters for all ZPH images were as 
follows: real-time exposure dose auto-adjustment, reference tube 
voltage, 120–140 kV; 1.0 beam pitch; automated varied milliampere-
second settings; collimation width, 5 mm, layer thickness 
1 mm/1.25 mm. All images were collected in DICOM format from the 
picture archiving and communication system (PACS).

The information on CT instruments and parameters varied 
among different hospitals, which exists potential batch differences. 
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Principal component analysis (PCA) was used to visualize the batch 
effect of radiomics features, and the ComBat algorithm was used for 
batch correction. Considering the imbalance of the data set and the 
difference in CT images, upsampling analysis was applied to improve 
the data quality. Details of standardization are shown in 
Supplementary material S1.

Feature extraction and selection

Two urologists with >10 years of diagnostic experience were 
involved in delineating the volume of interest (VOI) manually layer 
by layer. Manual segmentation and relative radiomics feature 

extraction were both achieved in the Radcloud platform.1 Any 
discrepancy was addressed by discussion. Then all contours were 
reviewed by the senior radiologists and urologists. Finally, 641 VOIs 
were segmented from 354 patients’ images which were applied to the 
subject analysis.

The study flowchart and radiomics workflow are shown in Figures 1 
and 2. A total of 1,409 quantitative imaging features were extracted. First, 
Wilcoxon test analyzed the significance of the radiomics features, and 
590 correlation features were obtained (p < 0.05 was considered 

1 http://radcloud.cn/

TABLE 1 Baseline characteristics of the patients.

Characteristic SYSU5H p ZPH p

Non-
encrustation

Encrustation Non-
encrustation

Encrustation

Sex (%)

  Male 100 (59.2) 62 (61.4) 0.719 36 (69.2) 15 (46.9) 0.042

  Female 69 (40.8) 39 (38.6) 16 (30.8) 17 (53.1)

Age, yr 51 52 0.464 45 58 0.008

  (median [IQR]) 

encrustation 

location(%)

[40.00, 60.00] [44.00, 63.00] [39.00, 54.00] [42.00, 67.25]

  B 0 (0.0) 24 (23.8) 0 (0.0) 11 (34.4)

  K 0 (0.0) 4 (4.0) 0 (0.0) 0 (0.0)

  KB 0 (0.0) 7 (6.9) 0 (0.0) 0 (0.0)

  KUB 0 (0.0) 1 (1.0) 0 (0.0) 1 (3.1)

  U 0 (0.0) 60 (59.4) 0 (0.0) 18 (56.2)

  UB 0 (0.0) 5 (4.9) 0 (0.0) 2 (6.3)

KUB score 2.65 ± 0.99 2.25 ± 1.41

FECal grade(%)

  Grade 1 0 (0.0) 68 (67.3) 0 (0.0) 28 (87.5)

  Grade 2 0 (0.0) 21 (20.7) 0 (0.0) 1 (3.1)

  Grade 3 0 (0.0) 4 (4.0) 0 (0.0) 2 (6.3)

  Grade 4 0 (0.0) 7 (7.0) 0 (0.0) 0 (0.0)

  Grade 5 0 (0.0) 1 (1.0) 0 (0.0) 1 (3.1)

V-GUES classification(%)

  Class A 0 (0.0) 21 (20.8) 0 (0.0) 29 (90.6)

  Class B 0 (0.0) 65 (64.3) 0 (0.0) 2 (6.3)

  Class C 0 (0.0) 14 (13.9) 0 (0.0) 0 (0.0)

  Class D 0 (0.0) 1 (1.0) 0 (0.0) 1 (3.1)

Surgery (%)

  PCNL 36 (21.3) 20 (19.8) 0.446 17 (32.7) 3 (9.4) 0.044

  RIRS 59 (34.9) 29 (28.7) 17 (32.7) 16 (50.0)

  URL 74 (43.8) 52 (51.5) 18 (34.6) 13 (40.6)

Indwelling time, d 28 35 <0.001 28 28 0.079

  (median [IQR]) [27.00, 32.00] [28.00, 55.00] [27.75, 31.00] [26.00, 29.00]

SYSU5H, the Fifth Affiliated Hospital of Sun Yat-sen University; ZPH, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), IQR, interquartile range.
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FIGURE 1

The study flowchart. The flowchart describes the successive study steps. LASSO, least absolute shrinkage and selection operator; KNN, 
k-NearestNeighbor; SVM, Support Vector Machine; XGBoost, Xtreme Gradient Boosting; RF, Random Forest; LR, Logistic Regression; DT, Decision tree. 

FIGURE 2

The radiomics workflow. The radiomics workflow illustrates the radiomics procedure.
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significant; Figure  3). Then, Spearman Correlation Analysis was 
performed on the above radiomics features. These features whose 
threshold exceeds 0.6 were defined as redundancy and deleted, and 25 

features remained. Eventually, least absolute shrinkage and selection 
operator (LASSO) logistic regression were applied to further 
dimensionality reduction and selection with log(λ) value of −3.022. 20 

FIGURE 3

Different visual manifestations of encrustation. A 69-year-old woman with ureteral stent placement for 322 days forgot to remove it so that typical 
encrustations surrounded on K, U, B segments, respectively. (A) (B) (C) shows CT image pattern of encrustation on different segments respectively and 
(D) shows the CT image 3D reconstruction of the whole ureteral stent. (E) The actual sample removed from the patient shows the actual shape and 
location of encrustations. K, kidney; U, ureter; B, bladder; CT, computed tomography.

TABLE 2 Performance of models.

Model AUC (95% CI) Accuracy Sensitivity Specificity

Training cohort

LR 0.888 (0.854–0.920) 0.811 0.86 0.793

DT 1.000 (1.000–1.000) 1 1 1

SVM 1.000 (1.000–1.000) 1 1 1

RF 0.994 (0.988–0.998) 0.96 0.968 0.957

XGBoost 0.999 (0.998–1.000) 0.98 1 0.973

KNN 0.962 (0.943–0.977) 0.897 0.849 0.914

Combined 0.999 (0.998–1.000) 0.98 1 0.973

Internal validation 

cohort

LR 0.816 (0.751–0.882) 0.72 0.8 0.691

DT 0.668 (0.583–0.759) 0.7 0.6 0.736

SVM 0.745 (0.645–0.844) 0.733 0 1

RF 0.874 (0.816–0.929) 0.8 0.825 0.791

XGBoost 0.853 (0.773–0.918) 0.833 0.8 0.845

KNN 0.797 (0.724–0.873) 0.773 0.65 0.818

Combined 0.867 (0.798–0.925) 0.833 0.8 0.845

External validation 

cohort

LR 0.640 (0.550–0.738) 0.62 0.553 0.644

DT 0.571 (0.481–0.657) 0.641 0.421 0.721

SVM 0.582 (0.463–0.706) 0.732 0 1

RF 0.769 (0.665–0.860) 0.768 0.632 0.817

XGBoost 0.810 (0.722–0.888) 0.768 0.711 0.788

KNN 0.647 (0.553–0.741) 0.662 0.289 0.798

Combined 0.820 (0.735–0.898) 0.782 0.763 0.788

AUC, area under the curve; LR, Logistic Regression; SVM, Support Vector Machine; DT, Decision tree; KNN, k-NearestNeighbor; XGB, eXtreme Gradient Boosting; RF, Random Forest.
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FIGURE 4

Screening and performance of radiomics features using LASSO. (A) Selection of the tuning parameter (λ). The LASSO logistic regression model was 
used with penalty parameter tuning conducted by 10-fold cross-validation. The AUC was plotted versus log(λ). The vertical dotted line is plotted at the 
optimal λ value. The optimal AUC with log(λ) value of -3.022 was selected. (B) LASSO coefficient profiles of the 25 radiomics features selected by 
Wilcoxon test and Spearman Correlation Analysis. The vertical dotted line was plotted at the log(λ) value of -3.022, resulting in 20 nonzero coefficients. 
(C) Histogram shows the coefficients of the selected features in the radiomics signature. GLCM, gray level co-occurence matrix; GLDM, gray level 
dependence matrix; GLSZM, gray level size zone matrix; NGTDM, neighboring gray tone difference matrix; GLRLM, Gray-Level Run-Length Matrix.

radiomics features were selected and divided into two groups: Group 1 
(first order statistics features) and Group 2 (texture features). Details of 
selected features and coefficients are shown in Figure 4C.

Model construction and validation

Based on the selected features, six machine learning models 
were established with six classifiers, k-NearestNeighbor (KNN), 
Support Vector Machine (SVM), eXtreme Gradient Boosting 
(XGB), Random Forest (RF), Logistic Regression (LR) and 
Decision tree (DT). After comparison with those models, 
XGBoost was selected as the most robust model. Considering its 
feature importance as radscore, the combined model was 
constructed by incorporating clinical risk factors with 
multivariate logistic regression. Beyond that, the radscore was 
chosen to construct a nomogram incorporating indwelling time. 
In order to improve those models, Hyper-parameter tuning was 
then performed using grid-search nested CV and selected based 

on its ROC-AUC. Parameter information was presented in 
Supplementary material S2.

The above models were conducted on the training cohort. Both 
were validated on the internal and external validation cohorts by 
importing relatively selected features in the R software package 
(version 4.3.1). Accuracy, sensitivity, specificity, area under the curve 
(AUC), decision curve analysis (DCA) and calibration curve were 
calculated in the software package R (version 4.3.1) and python 
(version 3.7) to evaluate the predictive performance of models. The 
procedures of model construction and validation are displayed in 
Figure 2.

Results

Baseline characteristics

The detailed characteristics of patients are collated in Table 1. The 
incidence rate of encrustation in SYSU5H and ZHP are 37.4% (101 of 
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270) and 38.1% (32 of 84), respectively, corresponding to Dyer’s 
viewpoint (2).

According to the grading system proposed by Javier, the 
distribution of encrustation locations are kidney (K: 4 of 101), ureter 
(U: 60 of 101), bladder (B: 24 of 101), kidney and ureter (KU: 0 of 101), 
kidney and bladder (KB: 7 of 101), ureter and bladder (UB: 5 of 101), 
kidney and ureter and bladder (KUB: 1 of 101) in SYSU5H and ureter 
(U: 18 of 32), bladder (B: 11 of 32), ureter and bladder (UB: 2 of 32), 
kidney and ureter and bladder (KUB: 1 of 32) in ZPH, respectively (23).

As we can see in Table 1, the indwelling time of ureteral stent 
placement in the encrustation cohort [median: 35 days; interquartile 
range (IQR): 28–55] is longer than in the non-encrustation cohort 
(median: 28 days; IQR: 27–32) in SYSU5H. A statistically significant 
difference was detected between the encrustation and 
non-encrustation cohorts regarding the indwelling time of ureteral 

stent placement and radiomics score (p < 0.01, p < 0.01, respectively). 
The average KUB scores are 2.65 ± 0.99 and 2.25 ± 1.41 in SYSU5H and 
ZPH, respectively. 88 and 85.1% of encrustations from SYSU5H were 
recognized as low or median degrees and divided into Grade 1 or 2 in 
the FECal grade and Grade A or B in the V-GUES classification, 
respectively. Similar outcomes were found in ZPH.

Feature selection

Least absolute shrinkage and selection operator (LASSO) 
logistic regression was chosen to reduce dimension and select high-
throughput features, characterized by variable selection and 
regularization while fitting the generalized linear model (24). The 
most beneficial 20 predictive features were selected from the overall 
1,409 extracted features, and a histogram presented their 

FIGURE 5

Performance comparison of models. (A) (B) showing the area under the curve (AUC) of six machine learning models in the internal and external 
validation cohort, respectively. Classifier RF and XGBoost constructed the most robust model in the internal and external validation cohort, 
respectively. (C) (D) presenting the performance of the selected radiomics model (XGBoost model) and combined model in the internal and external 
validation cohort, respectively.
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FIGURE 6

Feature importance of XGBoost model and the nomogram. (A) showing the importance of features in building XGBoost model. (B) The nomogram 
was developed based on the feature importance of XGBoost model (radsocre) and clinical risk factor (indwelling time).

coefficients in Figure  4C. In the study, the radiomics signature 
consists of 6 first-order features and 14 texture features. And 
textural features included five types: the gray level run-length 
matrix (GLRLM, n = 5), gray level size zone matrix (GLSZM, n = 2), 
the gray level co-occurrence matrix (GLCM, n  = 5), gray level 
dependence matrix (GLDM, n  = 1), neighboring gray tone 
difference matrix (NGTDM, n  = 1). The details of features are 
illustrated in Supplementary material S3.

Models construction and validation

The training cohort built six machine-learning models using 
different classifiers (KNN, SVM, XGB, RF, LR, DT) and its 
performance was summarized in Table 2. XGBoost model was the 
most robust radiomics model with an AUC of 0.810 (95%CI, 0.722–
0.888) in the external validation cohort. Based on the feature 
importance of radiomics model, the combined model was established 
and presented a favorable identification ability of ureteral stent 
encrustation with an AUC of 0.999 (95%CI, 0.998–1.000). in the 
training cohort. For better application in clinical practice, a user-
friendly nomogram was created (Figures 5, 6).

Validation was conducted in two independent validation cohorts to 
assess the models’ performance, and specific results were presented in 
Table 2. After comparison, the performance of the combined model was 
superior to others in internal validation and external validation, with 
ACU of 0.867 (95%CI, 0.798–0.925) and 0.820 (95%CI, 0.735–0.898), 
an overall accuracy of 78.2%, an sensitivity of 76.3%, an specificity of 
78.8%, respectively. And calibration curve and decision curve analysis 
was presented in Figure 7, demonstrating good clinical utility.

Discussion

In the present study, we developed seven radiomics models by 
analyzing non-contrast CT radiomics features extracted from an 
independent cohort of consecutive patients with ureteral stent 
placement. Furthermore, the validation of seven models performed in 
an internal and an independent external cohort presented a high 
accuracy rate in identifying ureteral stent encrustation. So far, no 
literature has been reported regarding identifying ureteral stent 
encrustation based on radiomics and machine learning methods, and 
our study is the first of its kind.

https://doi.org/10.3389/fmed.2023.1202486
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Qiu et al. 10.3389/fmed.2023.1202486

Frontiers in Medicine 09 frontiersin.org

Ureteral stent encrustation gives rise to infection, obstruction, 
removal failure, etc. (2, 25). However, identifying ureteral stent 
encrustation on non-contrast CT is challenging, which troubles 
urologists and radiologists for a long time. Once the ureteral stent has 
encrusted, it could be  challenging to remove it through only 
cystoscope with grasping forceps in the outpatient setting (26, 27). 
Because encrustations contribute to congestion in the urethral canal 
and scratch urethral mucosa, generating additional implications 
during the removal procedure. Thus, patients usually suffer physically 
and financially, including a second removal surgery in OR and extra 
medical expenditure.

Endourological management of ureteral stent encrustation 
remains technically and strategically challenging (28). Multimodal 
surgery is generally required. A systematic review on behalf of the EAU 
YAU Urolithiasis Group revealed that 27% of the encrusted stents 
require a combined surgery, followed by 24% of URS alone or 19% of 
SWL alone as a single surgery (29, 30). Because of the short indwelling 

time, the encrustations included in our study are principally low or 
median degrees by three evaluation tools, which are not easily 
identifiable. The combined model enables identification of suspicious 
encrustation with high accuracy, which assists urologists in taking a 
single timely surgery and prevents further aggravation (21, 31).

Urine leaves a layer of bacterial film on the surface of the 
ureteral stent, which provides the conditions to deposit mineral 
substances necessary for encrustation formation (32–34). Properties 
of materials vary between stents and encrustations, and the 
information of density or gray levels reflected on noncontract CT 
images can be absorbed precisely, but not by humans. Radiomics 
features extracted from the above two materials confirmed that 
point. That is part of why urologists and radiologists’ single visual 
identification of morphological differences often misses 
encrustations (35).

Regarding the encrusted ureteral stent we  collected, 12 
encrustations, 87 encrustations, and 51 encrustations occur at the 

FIGURE 7

High-level calibration curves and decision curve analyses of the radiomics and combined model. (A) Internal validation cohort. (B) External validation 
cohort. (C) Internal validation cohort. (D) External validation cohort.
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stent’s renal, ureteral, and vesical portions, respectively. 
Interestingly, we  found that severe encrustations tend to 
preferentially appear at the renal and vesical portions of the stent. 
A thin encrustation layer was usually attached to the 
circumference of the ureteral section, consistent with the 
deposition characteristics of encrustation reported in the 
literature (2, 10). For one more reason, we  observed that 
encrustations at the ureteral portion tend to be scratched off.

Non-invasion and reproducibility are the prominent 
superiorities of radiomics models based on a mass of radiomics 
features extracted from non-contrast CT. We only need to segment 
VOIs and the machine-learning model enables us to tell if it is 
encrusted. However, not all radiomics models are characterized by 
excellent accuracy, specificity and sensitivity in actual medical 
practice due to CT data acquired from different CT scan machines 
and diverse settings (36, 37). For this reason, our radiomics model 
was constructed with relatively large positive data and verified with 
an independent group at an external medical institution, confirming 
that our machine learning models are robust and practical in 
clinical procedures.

20 radiomics features have been selected from 1,409 radiomics 
features extracted from 641 VOIs with Wilcoxon test, Spearman 
Correlation Analysis and LASSO. Interestingly, texture features, 
describing the spatial arrangement relationship between the gray 
levels of image voxels (38), comprised most of all features, reflecting 
the difference in physical properties between stent and encrustation. 
That is potentially part of why the radiomics model performs 
efficiently with an AUC of 0.810 (95%CI, 0.722–0.888). We tried to 
work with only one clinical factor, the indwelling time, and also 
established a clinical model in Supplementary materials S4 and 5. 
Unfortunately, it can hardly possess identification ability with poor 
outcome of ACU, DCA and calibration curve.

There are some limitations in the present study. First, it is 
retrospective research, and prospective research should be carried out 
to support the conclusion. Second, although we involved a few cases 
from another medical institution as an external set, multicenter cases 
are still needed for further validation.

In conclusion, we developed and validated a robust combined 
model and a nomogram fed by many radiomics features extracted 
from noncontract CT. These offer a high recognition of ureteral 
stent encrustation. An independent external cohort proved its 
robustness and excellent identification rate. In actual clinical 
procedures, it assists urologists and radiologists in diagnosing 
ureteral stent encrustation and reduces the needless loss of 
patients financially and physically. In the machine learning and 
artificial intelligence field, we  explored uncharted territory 
outside of tumor and lithiasis (39). It is the first attempt to apply 
radiomics to identify ureteral stent encrustation, which bursts 
out much potentiality in urology.
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