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Premature ovarian failure (POF) is an insidious cause of female infertility

and a devastating condition for women. POF also has a strong familial and

heterogeneous genetic background. Management of POF is complicated by the

variable etiology and presentation, which are generally characterized by abnormal

hormone levels, gene instability and ovarian dysgenesis. To date, abnormal

regulation associated with POF has been found in a small number of genes,

including autosomal and sex chromosomal genes in folliculogenesis, granulosa

cells, and oocytes. Due to the complex genomic contributions, ascertaining the

exact causative mechanisms has been challenging in POF, and many pathogenic

genomic characteristics have yet to be elucidated. However, emerging

research has provided new insights into genomic variation in POF as well as

novel etiological factors, pathogenic mechanisms and therapeutic intervention

approaches. Meanwhile, scattered studies of transcriptional regulation revealed

that ovarian cell function also depends on specific biomarker gene expression,

which can influence protein activities, thus causing POF. In this review, we

summarized the latest research and issues related to the genomic basis for POF

and focused on insights gained from their biological effects and pathogenic

mechanisms in POF. The present integrated studies of genomic variants, gene

expression and related protein abnormalities were structured to establish the role

of etiological genes associated with POF. In addition, we describe the design

of some ongoing clinical trials that may suggest safe, feasible and effective

approaches to improve the diagnosis and therapy of POF, such as Filgrastim,

goserelin, resveratrol, natural plant antitoxin, Kuntai capsule et al. Understanding

the candidate genomic characteristics in POF is beneficial for the early diagnosis

of POF and provides appropriate methods for prevention and drug treatment.

Additional efforts to clarify the POF genetic background are necessary and are

beneficial for researchers and clinicians regarding genetic counseling and clinical

practice. Taken together, recent genomic explorations have shown great potential

to elucidate POF management in women and are stepping from the bench to

the bedside.
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Introduction

Premature ovarian failure (POF), also known as premature
menopause, causes absent menstruation and infertility before
expected female menopause (1). It is characterized by the loss of
normal ovarian function, the cessation of menstruation or loss of
follicles and the cessation of follicle production (2). Approximately
1% of females are affected by sporadic POF in reproductive years
under the age of 40, 1h before 30 years old and 0.1% before
20 years old, where familial POF presented the highest incidence
frequency of nearly 12.7% (3, 4). Females with POF usually exhibit
follicular atresia, hypoestrogenism and ovarian function loss and
then present with primary or secondary amenorrhea and infertility
(5). Clinically, diagnostic criteria are usually based on follicle-
stimulating hormone (FSH) levels in the menopausal range (over
40 IU/L) and estradiol levels (less than 50 pmol/L) in females
aged before 40 (6, 7). However, ovarian biopsy and ultrasound
have minimal effects in the early diagnosis and screening of POF.
The diagnosed POF female will suffer a serious psychosocial,
economic and health burden (8). Thus, the prediagnosis of the
high-risk POF population becomes particularly important for
protection and treatment.

The etiology of POF is highly heterogeneous, with a wide
spectrum of causes, such as genetics, living habits, the environment
and infection, whereas the genetic contribution is generally
considered paramount (9). POF, as one component of genetic
disorders, has been widely recognized (10). An increasing number
of plausible causative genes have been proposed, including genomic
mutation, dysregulated gene expression and signaling cascade
functions, whereas the gene framework for interpreting the
etiology of POF has yet to be elucidated (11). However, the
precise identification of causative genes remains a challenge.
Causative genes potentially influence various aspects of the
ovary, such as gonadal development, oogenesis, folliculogenesis,
meiosis, DNA repair, hormone secretion, metabolism, and immune
response (9, 11). Defects in multiple genes cause ovarian failure
in animal models. It is reasonable to begin by searching
causative genes from different angles related to POF development.
With contemporary genetic strategy development, genome-wide
association studies (GWASs) and genome-wide sequencing of
exomes (WES) approaches provide us with more opportunities to
locate susceptible loci and more candidate genes related to POF
(12–14).

In particularly, for the early diagnosis of a disease, biomarkers
are measurable indicators of a particular disease or physiological
state of an organism. In terms of this, any epigenetic phenotype
can be attributed to DNA, RNA, or protein changes, which in turn
are biomarkers for a specific phenotype (15). The ideal biomarker
should be easily detected in blood or primary tissues and meet
regulatory approval for the test to be used to make clinically valid
decisions (16). Understanding specific POF genetic mechanisms
will provide guidance for the diagnosis and treatment of high-
risk females.

In this review, we summarized POF-related genomic variants,
transcriptome abnormalities and protein molecular functions
according to recent thought-provoking articles and projects. The
etiology and molecular basis of POF are highlighted through
different prospective cytogenetic constitutions. In addition, some

novel concepts challenging the therapeutic options for POF in
clinical reproductive trials have also aroused great interest in
the management of this issue. We describe the design of several
ongoing clinical trials that might propose safe, feasible and effective
approaches to improve the diagnosis and treatment of POF.

Genomic instability involved in POF

Chromosomal gene abnormalities have long been regarded as
a cause of POF, but the percentages vary widely among reported
series (17). Genetic heterogeneity and disease development have
been widely investigated and observed to have a close relationship
(18). With the development of sequencing technology, increasing
solid evidence suggests that genomic instability underlies the
pathogenesis of POF (13). Therefore, as an obstacle to basic ovarian
development, key gene variants are particularly harmful to ovarian
cells and promote POF (Table 1). Variants located in conserved
regions are more likely to influence the inherent gene functions
(19) 31871067. Thus, variation-induced protein and cell signaling
perturbations might yield severe functional defects in ovarian
cell development, thereby causing a negative effect on POF. In
this section, we summarize several pivotal genes (X chromosome
genes and autosomal genes) and their latest research advances
(Figures 1, 2), whose variants warrant strong consideration as
pathogenic candidates for POF.

Abnormal X chromosome genes

The premature ovarian failure 1B (POF1B)

The premature ovarian failure 1B evolutionary novel gene was
found only in vertebrates (19) and has been identified by breakpoint
mapping of X-autosome translocations (20). Generally, this gene
alludes to a specific region following the law of Online Mendelian
Inheritance in Man (OMIM) (21). It was previously detected
that POF1B (an interrupted gene) in POF patients appeared to
be mutated (20). Whole-genome sequencing of a Lebanese POF
familial genetic group revealed point mutations localized in POF1B
exon 10 characterized by a nucleotide (G > A) at position 1,123
(22). Among these, the protein sequence alteration occurred at 329
amino acid site p. Arg329Gln (c.986 G > A), similar to arginine
to glutamine, and the mutant POF1B protein showed a lower
ability to bind non-muscle F-actin (Figure 1), thus influencing
the POF patients’ germ-cell division (22, 23). Moreover, the
POF1B p.Arg329Gln variant influenced the F-actin amount and
contributed to the loss of tight junctions in polarized epithelial
cells in POF (24). More recently, Zhang et al. demonstrated
that there was a novel POF1B missense variant in Chinese POF
patients, namely, p.K311T (c. 932A > C), which was adjacent
to p.Arg329Gln and was supposed to have similar functions to
non-muscle F-actin (25). Recently, in a 21-year-old Chinese POF
woman with long-term oligomenorrhea and high sex hormone
levels, exome sequencing revealed p.K311T (c.932A > C) variant
in POF1B was closely associated with POF (25). The p.K311T was
milder than p.Arg329Gln and was more likely to lead to secondary
amenorrhea (25). Through comparative analysis with p.Arg329Gln,
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TABLE 1 Candidate genetic variants responsible for ovarian disorder and POF.

Gene Location Population Variations Protein Prominent related
effects

References

X chromosome
genes

POF1B Exon 10 Lebanese c.986G > A p.Arg329Gln Impair the ability of POF1B to
bind non-muscle F-actin, and
affected germ cells fenlie in POF

(23)

Adjacent to exon
10

Chinese c.932A > C p.K311T Impair the capacity of POF1B to
bind non-muscle actin
filaments and lead to secondary
amenorrhea

(26)

Intron 4 Turkey c.439-2A > G Unknown Change the evolutionally
conserved splicing acceptor site

(27)

BMP-15 Exon 2 Iranian c.538G > A p.A180T reduce mature peptide
generation and activity and
synergy with growth
differentiation factor 9 (GDF9)

(48)

Exon Italian c.704A > G p.Y235C Suppressed ovary granulosa cell
proliferation and was associated
with ovarian dysgenesis.

(43)

Exon 2 Caucasian c.202C > T p.R68W Influence in BMP15 biological
activity and difficult to rescue

(42)

Exon 2 Iranian c.309T > G p.N103K Shows haploinsufficiency or
negative dominance effects and
is similar with previous
mutation features

(47)

Exon 1 c.551T > C p.M184T

Promoter Indian c.-9C > G // Associate with POF and shows
the ability to strengthen the
assisted reproduction technique
response to recombinant FSH

(57, 58)

Autosomes
genes

SOHLH2 Promoter Chinese c.-210G > T // Disturb the SOHLH2 gene
expression through interfering
the upstream transcriptional
regulator recognition

(109, 110)

Intron 5 Serbian c.530 + 6T > G // Impair RNA splicing and
decrease the number of
translated proteins in POF

(109)

FOXL2 Exon New Zealand 7721009T > A p.Tyr258Asn Lead to FOXL2
haploinsufficiency

(122)

// American c.448_448delA p.K150Rfs*121 contribute to POF in the
phenotypic variability of BPES

(128)

Exon Caucasian Missense mutation p.H104R Cause BPES-induced POF (130)

In-frame duplication p.A222_A231dup10

Exon Mexican c.76G > T p.Glu26* Contribute to FH domain
deleted protein and FOXL2
haploinsufficiency

(132)

c.290delG p.Gly97Alafs*53

SALL4 Exon 2 Chinese c.541G > A p.Val181Met Influence the structure and
DNA binding of SALL4

(137)

c.2449A > G p.Thr817Ala

Exon 2 Chinese c.2279C > T p.T760I Associated with SALL4 protein
level and enhanced regulatory
activity to downstream
POU5F1

(140)

c.1790A > G p.K597R

c.541G > A p.V181M

(Continued)
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TABLE 1 (Continued)

Gene Location Population Variations Protein Prominent related
effects

References

FSHR Exon 7 Finland 566C > T p.Ala189Val contribute to the defection of
targeting protein in cell surface
and serious phenotype of the
ovarian failure

(143)

Exon 6 German c.479T > C p.I160T impair the FSHR expression (144)

Exon 10 Asian Indian c.1253T > G p.Ile418Ser Lead to decreased
transmembrane signal
transduction and follicle
retardation

(147)

Exon 10 Turkish c.1222G > T p.Asp408Tyr Decrease granulosa cell-surface
transduction signal and total
second messenger cAMP
production

(149)

Exon 10 Chinese c.1789C > A p.L597I Suppress FSH-induced cAMP
production and ERK1/2
phosphorylation

(152)

Exon 10 Asians c.2039G > A p.S680N Serve as a potential genetic
biomarker for POF

(156)

Exon 2 Chinese c.175C > T p.R59X Arrest folliculogenesis, decrease
FSHR expression and abolish
the granulosa cells response to
FSH stimulation

(157)

Exon 10 Brazil/German c.919A > G p.Ala307Thr Associate with ovary
stimulation acceleration,
therefore leading to ovarian
depletion in POF patients

(144, 160)

p. K311T was suspected to damage the capacity of POF1B to
bind non-muscle F-actin and lead to secondary amenorrhea (25).
Moreover, another variant (c.439-2A > G) in intron 4 of POF1B
was observed to be associated with POF, which mainly changes the
evolutionally conserved splicing acceptor site (26).

In some keratinocytes, the POF1B expression level was
observed to be inversely associated with keratinocyte number
and correlated with defects in cell adhesion (27). Keratinocyte-
related cytokines might promote the primordial to primary follicle
transition (28). As an upstream modulator, CBX2.1 has the
ability to stimulate POF1B activation, whereas silencing CBX2.1
significantly downregulated POF1B expression and potentially
was associated with POF development (29). CBX2.1 in human
sex development has been reported to inhibit the female
pathway and is related to female hypoplasia (30). The pathogenic
variants of POF1B have been continuously studied (23), and
increasing evidence supports the importance of POF1B variants
in POF occurrence.

Bone morphogenetic protein 15 (BMP15)

Bone morphogenetic protein 15 is an X-linked coding gene
and is related to primary-stage protein generation from oocytes
(31). As a member of the TGF-ß superfamily family, BMP-15
also has significant advances in our understanding of early follicle
development and oocyte regulation in mammals (32, 33). BMP-15
was demonstrated to be expressed in oocytes and pituitary cells but
to a much lesser extent in other organs, such as the kidney and heart

(34). The importance of BMP-15 as a fertility marker in females has
attracted great attention because it influences all statuses of oocyte
development and embryonic quality, especially the regulation of
granulosa generation and ovarian functions (35, 36). Expression
of BMP15 in oocytes stimulates granulosa cell growth and inhibits
FSH action by suppressing follicle-stimulating hormone receptor
(FSHR) expression, which is related to ovulation rate and fertility
(37). Compared to other TGFß superfamily members, BMP-15
has undergone rapid evolution and subjective positive selection
in mammalian clades, and its important and particular functional
role eventually leads to its importance in female fertility (38).
Abnormal regulation of BMP-15 might be related to female POF
and infertility (39, 40). Recently, attention has been focused on
the potential biological impact of BMP15 genomic variation on
the POF population. BMP15 variation may predispose to POF
and stimulate ovarian defects in cooperation with other alteration
features (41).

Notably, Di Pasquale et al. (42) reported that the p. Y235C
in the X-linked BMP15 gene in 2 sisters, a heterozygous non-
conservative substitution in the pro region, suppressed ovary
granulosa cell proliferation and was associated with ovarian
dysgenesis. Among these, wild-type BMP15 showed the ability
to stimulate 3H-thymidine in ovary granulosa cells and was
restored at a concentration nearly five-fold higher than that of
p. Y235C BMP15 group. Granulosa cells were demonstrated to
deliver nutrients and metabolites through gap junctions to oocytes
and are involved in oocyte secretion of paracrine signals (43).
In addition, BMP15 knockdown female mice have a reduced

Frontiers in Medicine 04 frontiersin.org

https://doi.org/10.3389/fmed.2023.1194865
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-10-1194865 June 2, 2023 Time: 15:25 # 5

Yang and Yang 10.3389/fmed.2023.1194865

ovulation rate and therefore show lower fertility (44). BMP15
variation not only influences granulosa cells but also plays an
important biological role in the secretion and activation of TGF-
β superfamily members in oocytes (45). Moreover, there are two
missense alterations (p.R68W and p.A180T) and one insertion
(p.262insLeu) were observed in a POF cohort study (33). The
p.R68W (c.202C > T) showed a larger and significant influence
on BMP15 biological functions, and p.R68W carriers develop
POF before the age of 20 years old (41). In vitro cotransfection
experiments with wild-type cDNA indicated that p.R68W is a
deleterious mutation in POF patients, where BMP15 activity is
difficult to rescue (41). Moreover, in Iranian POF familial history
patients, the detectable p. A180T (c.538G > A) was accompanied
by a long history of oligomenorrhea, high FSH and very low anti-
Mullerian hormone (AMH) levels, whereas without sonographic
abnormal symptoms (46). The p.A180T nucleotide site alteration
in exon 2 of BMP15 (named rs104894767) has been recorded
in databases. As previously reported, the p. A180T variation was
demonstrated to be associated with non-familial POF patients
(33). By Sanger sequencing analysis, the POF family members
who carry the p.A180T variant presented premature physiological
menopause, while healthy members without p. A180T variant
presented regular menses (46). Besides, BMP15 with p. A180T
variant presented fourfold lower activity than the wild-type, which
changes the potential to reduce mature peptide generation and
activity and synergy with growth differentiation factor 9 (GDF9)
(47). BMP15 protein binds to its closely related paralog GDF9 to
form homodimers or heterodimers that regulate many aspects of
development by activating transmembrane serine/threonine kinase
receptors (42, 48, 49). The interaction between GDF9 and BMP15
mutation is regarded as an important internal factor for ovarian
hypofunction in POF patients (47, 48).

Some novel BMP15 mutations were detected in a number of
POF patients. In the BMP15 pro-domain region, p.N103K and
p.M184T were observed to prevent the protein from binding
to mature dimers, consequently leading to decreased BMP15
activity (46, 50). The pro-domain is usually uncoupled during the
maturation process and modulates the folding and dimerization
of the protein structure (51). BMP15 with p.N103K and p.M184T
variant usually showed haploinsufficiency or negative dominance
effects and is similar to previous mutation features (46), which
is potentially associated with POF symptoms (52–54). Moreover,
BMP15 with the c.-9C > G promoter polymorphism presented a
functional association with the POF phenotype (49). Although c.-
9C > G in 398 PCOS female cohort studies was not significantly
associated with disease pathogenesis, it was related to some
specific clinical features, such as anovulation and infertility (55).
Indeed, c.-9C > G is a frequent variant in BMP15 and has
been reported to be functionally associated with POF (56). Due
to the high reactivity of the G allele, c.-9C > G also showed
the ability to strengthen the assisted reproduction technique
response to recombinant FSH (57). Additionally, in silico analysis
in combination with the BMP15 promoter sequence showed that
the -14 to -8 bp region of the BMP15 promoter is the primary
regulatory target for the pituitary homebox 1 protein (PITX1) (49),
in which two of the active binding regions were validated in vitro,
namely, prom-G and prom-C constructs. PITX1 was reported to be
associated with gonadotroph cell activation and estrogenic signals

(58), and the estrus cycle-related estrogen signaling pathway was
positively involved in POF traditional Chinese medicine treatment
(59). Despite recent findings demonstrating the involvement of
BMP15 mutation in POF, further studies elucidating the roles
of modulators would lead to a better understanding of the
disease pathogenesis.

Fragile X messenger ribonucleoprotein 1
(FMR1)

Fragile X messenger ribonucleoprotein 1 is an X-linked gene
encoding RNA binding protein, and its mutation in the 5′UTR
dynamic triplet CGG repeat is related to fragile X syndrome (60–
62). The CGG trinucleotide repeat is usual but unique in the
region of FMR1 exon 1, which conducts mRNA transcription
but not translation into protein amino acids (61). The copies of
FMR1 premutation CGG can be expanded to varying degrees
and associated with different biological function performance (63).
Mutations of FMR1 are usually categorized by the number of CGG
trinucleotide repeats: the classic normal is 6-45 CGG repeats in
the 5′UTR; FMR1 premutation alleles have 50-200 CGG repeats
in the 5′UTR; FMR1 full mutation has an expansion of more than
200 CGG repeats in the 5′UTR; and the intermediate range (also
called the gray zone) has an expansion of 45–54 repeats in the
FMR1 5′UTR (64, 65). The FMR1 gene is primarily associated with
neuro/psychiatric risks, while it appeared to control the function
of follicle recruitment and ovarian reserve in recent evidences
(63, 66, 67). Moreover, the premutation CGG repeat-related
increased FMR1 mRNA transcription was potentially involved in
POF pathogenesis compared to the general population, such as
35 and 54 repeats (64). Two independent studies indicated that
FMR1 premutation carriers have an earlier average menopausal
age and are more susceptible to POF than non-carriers (68, 69).
Notably, in familial trait ovarian failure, FMR1 premutation CGG
was associated with a large number of ascertained idiopathic POF
cases (61). FMR1 premutation expansions are not merely high-
risk factors for POF occurrence but are also relevant to cytokine
levels, such as serum FSH, in ovarian aging pathological conditions
(70, 71).

Recently, the FMR1 premutation aroused great attention to
female reproductive fertility, and women with monogenic FMR1
premutation have an equivalent risk of POF to the top 1% of
genetic susceptibility (72). Approximately 15–20% of females with
an FMR1 premutation develop POF (73). In Europe, the frequency
of premutation of FMR1 in POF was higher than that in the
general population, and FMR1 sequencing has become part of the
recommended monitoring indicators for women with POF (74).
However, the FMR1 premutation frequency is relatively lower in
Chinese women. In Guo et al. (75) indicated that 0.49% (2 to
379) FMR1 premutation was found in limited sporadic Chinese
POF samples, while none were observed in 402 controls. Recently,
another case-control study reported that only 1.6% (2 to 124) of
FMR1 permutations were observed in Chinese POF patients, and
a 0.9% (1 to 111) premutation frequency existed in the control
group (76). Studies from a Chinese cohort indicated that the
distribution of allele 1 (smaller number of CGG repeats) rather
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FIGURE 1

Summary of some X chromosome gene variants and related functions in the POF.

than allele 2 in POI was closely associated with POF occurrence,
wherein <26 and ≥29 CGG repeats potentially have a higher
risk for reproduction and POF (76, 77). The ectopic expression
of FMR1 CGG repeats leading to POF was also validated in
a mouse model (78). However, the underlying mechanism of
FMR1 CGG repeat-relevant ovarian function modulation remains
unclear, including the pathological condition of the reduced
ovarian reserve and abnormal follicular and oocyte growth.
One hypothesis is that various FMR1 CGG expansions might
contribute to transcriptional level changes and lead to ratios of
distinct RNA isoforms (61, 64, 79). The above changes potentially
decrease the fragile X messenger ribonucleoprotein 1 (FMRP)
level or intercellular localization, thereby affecting steroidogenic
enzymes and hormonal receptors and ultimately affecting the
occurrence of POF (79, 80). The increased CGG repeat in FMR1
has the ability to impede the 40S ribosomal subunit in the
process of downstream initiation codon recognition, resulting
in translational debility and consequently reducing the FMRP
level (80). Generally, during normal folliculogenesis, FMRP is
primarily expressed in granulosa cells, which is crucial for oocyte
maturation and growth. POF patients with FMR1 CGG repeats,
such as 19 < n < 90, have impaired ovarian reserve, and
abnormal FMR1 transcript levels related to FMRP influence the
process of oocyte and follicular maturation (81, 82). Moreover, in
these reproduction-related cells, the intracellular signaling cascade

is also involved in FMR1 expression and regulation. Rehnitz
et al. (67) reported that inhibition of AKT increases FMR1
expression and decreases FMRP levels, whereas recombinant FSH
(rFSH) and mTOR inhibition lead to the opposite phenomenon,
indicating that a feedback loop between FMR1/FMRP and the
mTOR/AKT signaling cascade interacts during GC proliferation
and oocyte maturation. In terms of this, FMRP phosphorylation
and activation are thought to be potentially associated with S6K,
a downstream molecule of mTOR (83). The FMR1 knockdown
mouse exhibited larger ovaries in mass and volume compared
to age-matched controls, wherein increased protein levels of
Tsc2 and mTOR were detected (84). As previously reported,
FMR1 expression influenced cholesterol and steroid hormone
generation and impaired ovary responses to hormonal stimulation
and growth (78, 82), while the mTOR pathway was involved
in ovarian development and enlarged ovaries histologically with
precocious follicular development (84, 85). On the other hand,
an in vivo experiment in mice observed that permutation
transcripts were closely associated with mitochondrial and ovarian
abnormalities (86). mTOR is closely related to the metabolic
process of mitochondria in ovarian cells (87), and inhibition
of mTOR significantly improved follicular development and
endocrine functions of the ovaries, thereby extending reproductive
aging and premature aging of POF mice (88). These observations
suggested that abnormal FMR1 transcription potentially causes
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POF, but it remains unclear which process plays a prior role in
disease initiation.

DACH2

The Dachshund (DACH) gene family is known as a
transcriptional cofactor on the basis of highly conserved protein
interaction domains, while the DACH genomic mutation was
observed to be closely associated with poor female reproductive
tract development, namely, DACH1 and DACH2 (89). The DACH
gene was first described in Drosophila, encoding nuclear proteins
involved in different organs, such as eyes, limbs, and genital
discs, which are required for the genital development of male
and female phenotypes (90, 91). In mammals, the female and
male reproductive tracts develop from the Müllerian duct (MD)
and Wolffian duct (WD), respectively, wherein the WD regresses,
retains the MD and then differentiates into the oviduct, uterus, and
cervix (92, 93). Both DACH1 and DACH2 were observed in MD,
and DACH1/DACH2 double mutation is associated with female
reproductive tract development retrogression (89). In addition,
DACH2 is expressed in human ovarian tissue and contributes to
some ovarian malignant diseases, and variants in DACH2 may be
associated with the POF phenotype (20, 94). Specifically, DACH2
has been implicated in human POF syndrome, where the genomic
alteration of DACH2 was demonstrated to hinder the correct
process of ovarian follicle differentiation (95).

The DACH2 gene in Xq21 is located 700 KB distal to
POF1B (96–98). The genomic mutation analysis of the DACH2
coding region observed that missense mutations of three single
nucleotide polymorphisms (SNPs) (P36 L, G59D, and R412K), non-
conservative amino acid substitutions, were frequently present in
POF patients compared to the control group (20). These three
mutations were proven to be specific in the DACH2 subfamily
rather than DACH1, and they occur in the N-terminal region
of the DACH2 protein close to the DD1 domain (amino acids
66–162). The DD1 domain at the N-terminus was demonstrated
to be involved in DNA binding and EYA protein interaction;
thus, DACH1 genomic mutation potentially influenced its signaling
biological functions (99, 100). In an animal model, the EYA
gene plays an important role in mammalian gonad development,
whose response to estrogen-related receptors will directly influence
reproduction (101). Therefore, the interaction between DACH2
alteration and EYA protein might increase the risk of POF by
affecting the biological process of ovarian follicle differentiation
(20, 102). Moreover, another study indicated that genomic
mutation was specific to one POF patient, which occurred in the
third intron of DACH2 with a C to T transition downstream
of Exon_3 (103). On the basis of their results, this variant was
not within the splice or receptor sequences and was unlikely
to influence the DACH2 level, and there is no clear evidence
to support its direct function in POF pathology. Strengthening
the screening of more candidate disease-causing mutation sites,
including exons and introns, is helpful for the early diagnosis and
prevention of POF. Generally, the nucleotide translocation might
disrupt the transcription of itself or nearby genes by affecting the
cis/trans-acting regulatory factors from the transcription units and
consequently deleterious changes in the expression and protein

level (89, 104). Nevertheless, there is evidence indicating that
DACH2 knockout mice are viable and fertile, which is reminiscent
of null mutations of DACH2 that might independently affect the
reproductive phenotypes of POF patients (105).

Autosomal gene abnormalities

SOHLH2

The transcriptional regulator SOHLH2 was observed to be
preferentially expressed in oocytes of immature ovaries and has
been deemed a critical regulator for early germ cell development
(106). The SOHLH2-silenced mouse model showed infertility
and atrophied ovaries devoid of follicles (107). Previously, Qin
et al. (108) indicated that SOHLH2 variants were implicated in
primary POF, which exhibited several non-synonymous mutations
in POF patients compared to normal controls. For example,
p.Glu79Lys (c.235G > A) and p.Glu105Gly (c.314A > G) have
high conservation among mammalian potential to be pathogenic
for Chinese POF patients. In addition, the SOHLH2 promoter
variant c.-210G > T was observed in a Chinese POF patient and
is located in a region with transcription factor-binding sites and
CpG islands (Figure 2) (108, 109). This variation may potentially
disturb SOHLH2 gene expression by interfering with upstream
transcriptional regulator recognition (109). Notably, the loss of
SOHLH2 expression contributes to the rapid loss of oocytes, as
well as increased oocyte apoptosis (110). In this respect, SOHLH2
has been regarded as the downstream target of the BMP4/Smad
signaling pathway in the survival and apoptosis of oocytes (111).
Moreover, SOHLH2 could bind to the C-kit promoter, act as
a positive transcriptional regulator for C-kit and modulate the
C-kit/PI3K/Akt/Foxo3a cascade in oocytes, which is directly
associated with oocyte survival and follicle development in POF
(111, 112). Furthermore, there is another variant (c.530 + 6T > G)
in introns that is supposed to affect RNA splicing, thereby
decreasing the number of translated proteins in POF (108).

FOXL2

Forkhead box L2 (FOXL2) belongs to the winged
helix/forkhead transcription factor family, containing a 110
amino acid DNA-binding domain, which is associated with protein
mislocation, aggregation, and intranuclear mobility, including
ovarian development and postpartum recovery (113). FOXL2, the
earliest recognized ovarian differentiation marker in mammals,
was observed in the granulosa cells of the ovary as well as the
mesenchyme of the developing eyelids (114–117). FOXL2 might be
a pivotal modulator of ovarian development and eyelid formation.
Previous studies also concluded that the FOXL2 variant results
in a relatively mild blepharophimosis-ptosis-epicanthus inversus
syndrome (BPES) phenotype (118), which is a rare autosomal
dominant genetic developmental disorder in the eyelids and ovary
(114). BPES has emerged to have two subtypes: type I is associated
with POF, and type 2 has no systemic associations (119), wherein
the different amino acid site alterations will lead to the different
subtypes (120).
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FIGURE 2

The summary of some autosomal gene variants and related functions in the POF.

Previously, the FOXL2 variants A221-A230del and
p.Tyr258Asn (7721009T > A) were observed in POF patients
from the New Zealand and Slovenia cohorts, respectively (121).
The non-conservative substitution of 7721009T > A might lead
to FOXL2 haploinsufficiency, thus promoting POF development
(121). After that, some studies indicated that FOXL2 variants
of p.Gly187Asp and c.627delT favor the implication of FOXL2
variants in POF, and more systematic genetic screening of FOXL2
variants is important in POF premature diagnosis and hormonal
replacement therapy (122, 123). Recently, several FOXL2 variants
were reported to be associated with a severe BPES phenotype,
such as p.Arg103Cys (c.307C > T), p.His104Pro (c.311A > C),
p.Ser107Asn (c.320G > A), and p.Phe112Tyr (c.335T > A) (124).
Of note, these variants potentially damage the function of STAR
and OSR2 protein by abolishing transcriptional activity (124),
and STAR is important for differentiation of granulosa cells,
where the FOXL2 variant will lose suppression for the STAR
promoter, thereby accelerating differentiation of granulosa cells
and secondary depletion of the primordial follicle pool (125,
126). In addition, the FOXL2 heterozygous deletion variant
p.K150Rfs∗121 (c.448_448delA) and its coexisting gene BMP15
act synergistically and contribute to POF in the phenotypic
variability of BPES, and this variant leads to polyalanine deletion
and truncated protein at 269 amino acids (aa) (127, 128).
Herein, the digenic inheritance of the FOXL2 variant and its
related effector potentially contribute to BPES-related ovarian
function impairment and POF 25988799. Moreover, two variants,
p.H104R and p.A222_A231dup10 in Caucasian FOXL2 leads to
mislocalization and aggregation, thus impairing transactivation,
which could cause BPES-induced POF (129). In one case, estrogen
treatment successfully improved menarche and secondary sexual
characteristics, which showed promising therapeutic potential in
the reproductive outcomes of BPES-related POF patients (130).

In a Latin American cohort, two FOXL2 variants (c.76G > T and
c.290delG) were also deemed pathogenic factors for POF patients,
wherein the former contributes to FH domain deleted protein
and FOXL2 haploinsufficiency, while the latter mechanism is still
unclear (131). Generally, the FOXL2 protein acts as a transcription
factor for some important molecules in ovarian maintenance and
function, such as binding to TESCO to suppress Sox9 expression
in ovaries, ultimately contributing to the development of ovaries
(117). The polyalanine tract deletion/expansion-related variant is
likely to abolish FOXL2 protein function and thereby abrogate the
above process in ovarian maintenance (132), where the polyalanine
tract deletion variant is more likely related to BPES type I (with
POF) (121, 133). Meanwhile, there are many variants present in
unaffected POF family members that have not been confirmed
to be pathogenic variants. Identification of FOXL2 variants is
critical for suspected BPES and/or POF evaluation as well as
prevention in due course.

SALL4

Spalt-like transcription factor 4 (SALL4), a zinc finger
transcription factor expressed in murine oocytes, binds to POU5F1
and regulates its expression (134, 135). Previously, genomic
sequencing of 100 Han Chinese POF women showed that the
SALL4 variants p.Val181Met (c.541G > A) and p.Thr817Ala
(c.2449A > G) potentially influences the structure and DNA
binding of SALL4 and is associated with POF development (136).
The pathogenesis of the SALL4 variants might be achieved by
abolishing the recognition of the downstream POU5F1 gene
and suppressing its expression (135, 137), ultimately affecting
primordial oogonia development and triggering POF (138).
Recently, another POF study in 50 Han Chinese individuals
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through whole-exome sequencing (WES) analysis discovered
several novel variants in POF patients, including p.T760I
(c.2279C > T) and p.K597R (c.1790A > G), as well as the
verified variant p.V181M (c.541G > A) (139). Intriguingly, in vitro
functional experiments showed that these variants were positively
associated with the SALL4 protein level and enhanced regulatory
activity to downstream POU5F1. According to this phenomenon,
posttranslational regulation of SALL4 protein levels might be
the molecular mechanism underlying POI (139). Taken together,
the above observations suggested that SALL4 variants are closely
associated with POF development, whereas the different variation
types of SALL4 might present different manifestations of SALL4
activity and phenotypic variability.

FSHR

Follicle-stimulating hormone receptor has a pivotal role in
recognizing FSH, thereby controlling granulosa cells of the
ovary and female reproduction (140). FSHR variants have been
identified in women with hypergonadotropic POF symptoms,
especially inactivating mutation subtypes (141). Doherty et al. (142)
reported that inactivating extracellular FSHR variants existed in
the ligand recognition region of the receptor, namely, p.Ala189Val
(566C > T), whose occurrence contributed to the defect of
targeting protein in the cell surface and a more serious phenotype
of ovarian failure. Interestingly, another transmembrane variant,
p.Ala419Thr, of FSHR reduced symptoms when it compounded
with p.Ala189Val, which was potentially due to the higher residual
activity retained by the transmembrane variant and neutralizing
p.Ala189Val variant inactivating functions (142). Notably, Ledig
et al. (143) observed that p. I160T (c.479T > C) is an inactivation
variant in FSHR and is associated with POF, which will impair
FSHR expression on the cell surface. They simultaneously indicated
that p.I160T variant-induced FSHR inhibition potentially further
enhanced the BMP15 variant (p.A180T)-related granular cells
decrease in the developing follicle (143). In addition, the interaction
between FSHR SNP rs6166 and CYP19A1 SNP rs4646/rs10046 was
demonstrated to be involved in POF development by regulating
folliculogenesis (144). Thus, synergistic effects of digenic variants
might promote POF development to a considerable extent.

Moreover, there are still many FSHR variants that have been
demonstrated to have independent pathogenic roles in POF. FSHR
is important in human reproduction and was proven to be the first
single gene to cause POF (145). In an Asian Indian descent family,
an inactivating pathogenic variant p.Ile418Ser (c.1253T > G)
in FSHR was detected in POF patients (146). The p.Ile418Ser
(c.1253T > G) occurred in exon 10 of FSHR and impaired the
transmembrane helix of the FSHR protein, which led to decreased
transmembrane signal transduction and follicle retardation (146).
Based on characteristics in the FSHR helix transmembrane domain
(TMD) and highly conserved across species (147), inactivated
p.Ile418Ser variant in FSHR was supposed to cause POF. In the
second TMD of FSHR, another inactivating variant, p.Asp408Tyr
(c.1222G > T) has been observed in two Turkish POF patients,
which was also accompanied by decreased granulosa cell-surface
transduction signal and total second messenger cAMP production
(148). The lack of sufficient FSHR expression and function in

ovarian granulosa cells are unable to promote follicle maturation
and ovulation, despite high levels of FSH stimulation (149, 150).
Recently, a large cohort study in Han Chinese with more than 190
POF patients and normal controls detected some novel variants.
The p. M265 V (c.793A > G) and p.L597I (c.1789C > A)
variants exclusively existed in Chinese POF patients, former
located in extracellular domain (ECD) and later in TMD, wherein
the p.L597I can suppress FSH-induced cAMP production and
ERK1/2 phosphorylation, thereby stimulating the POF phenotype
(151). Generally, the FSHR variant in ECD impaired trafficking
and cell surface expression, while the variant in TMD was
characterized by abolished signal transduction (152, 153). However,
the p.L597I decreased FSHR expression in the membrane (151),
which is similar to another inactivating variant p.A575V (TMD)
manifestation in primary amenorrhea patients (154). In addition,
another POF-associated FSHR variant p.S680N (c.2039G > A) was
specifically proven in Asian people rather than other ethnicities
and is supposed to serve as a potential genetic biomarker for
POF in Asians (155). Through comparison between a Chinese
POF family and 192 control women, Liu et al. (156) demonstrated
that a novel FSHR variant p.R59X (c.175C > T) in exon 2 was
causative for POF by arresting folliculogenesis. The p.R59X is
positively related to decreased FSHR expression and deemed a
loss-of-function variant. Additionally, p.R59X variant will abolish
the granulosa cell response to FSH stimulation, mainly due to the
truncated FSHR protein-related ECD and TMD function region
absence (156). It is thus clear that inactivation of FSHR variants will
impair FSHR functions and follicular development, thereby leading
to POF (157). Further study should focus on pharmacological and
assisted reproductive treatments targeting disrupted FSHR.

Patients with specific FSHR variants, such as p.Ala307Thr
polymorphism in Brazilian patients, while it was not associated
with ovarian endocrine variables or clinical ultrasonographic
findings (158). Moreover, an expanded comparative sample
identified that p.Ala307Thr is more frequent in POF patients
than in controls (159). Among these, increased FSH levels in
p.Ala307Thr carrier might be associated with ovary stimulation
acceleration, therefore leading to ovarian depletion in POF patients
(159). Notably, in another study, the p.Ala307Thr variant has
also been identified in 3 German patients with POF (143). In
terms of this, menstrual dysfunction precedes the initiation of
amenorrhea, such as oligomenorrhea, transient amenorrhea and
short cycles, which might be a special signature for ovarian failure
and are regarded as “prodromal POF” (160). In terms of this, future
investigations are needed to explore the potential roles of other
FSHR variants in the development of POF.

Dysregulated gene expression in POF

Apart from genomic alterations, abnormal expression of the
transcriptome caused by multiple factors also has a great impact
on POF. Ovarian insufficiency is a continuum of impaired
ovarian function or ovarian aging, which is always accompanied
by signature marker gene expression abnormalities (161). In
POF, there are three consecutive but progressive stages, occult,
biochemical, and overt ovarian failure (162), and gene expression
changes with pathogenesis can provide better evidence for
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clinical diagnosis (163, 164). The monitoring of gene expression
has been widely used in the discovery of disease biomarkers
or therapeutic targets (165). However, to our knowledge, the
molecular mechanism of POF has not yet been clarified. Below,
we summarize the dysregulated expression of POF-related genes
identified by recent studies, including Ki-67, proliferating cell
nuclear antigen (PCNA), chemokine (C-X-C motif) ligand 12 gene
(CXCL12), insulin-like peptide 3 (INSL3), and PTX3 (Figure 3).

Ki-67

Ki-67 is expressed in proliferating cells, and its protein is
associated with different nuclear domains, whereas the Ki-67
protein was detected in mouse oocytes rather than mature sperm
(166, 167). Ki-67 is a DNA-binding protein expressed in all active
cell cycle stages and can be used as a marker for cell proliferation
(168, 169). Herein, Ki-67 expression has been regarded as the
signature for ovarian tissue transplantation activity and was used
to evaluate transplantation-associated follicle dynamics, where the
higher Ki-67 expression in ovarian granulosa cells indicated an
increase in activated growing/primordial follicles (170). Moreover,
an in vivo POF model indicated that the ovarian proliferation
index can be evaluated by Ki-67, which is expressed in epithelial
cells of the endometrium and glands (171). Additionally, lower
expression of Ki-67 was detected in the POF group than in
the control group. In contrast, ovarian tissue with higher FSH
levels showed morphologically normal follicles and significantly
decreased Ki-67 expression (172, 173), and gonadotropin inhibited
mitosis in granulosa cells early in the periovulatory interval (174).
When follicular atresia occurs, the mutual intensive interaction
between granulosa cell death and oocytes plays an indispensable
role (175). Moreover, the inhibition of NF-κB signaling reversed
the loss of Ki-67 expression in granulosa cells (176). A previous
study indicated that CYP19A1 expression and estradiol secretion
in human ovarian granulosa cells were directly modulated by NF-
κB signaling (177), and these two elements and Ki-67 expression
have served as indicators in ovarian disease estrogen treatment
(178). The intervention of Ki-67 expression will directly promote
ribosome synthesis during cell division, which is necessary for
ovarian granulosa cell proliferation (179). This evidence supports
it as a useful feature to better understand ovarian granulosa cells
and follicles, as well as abnormalities in human POF.

PCNA

Proliferating cell nuclear antigen (PCNA) is a key factor
for DNA replication and cell cycling, which can be used as an
indicator of ovarian cell proliferation and define the extent of
departure from Strzalka and Ziemienowicz (180), Thomas et al.
(181), Muskhelishvili et al. (182). Through immunohistochemical
detection, PCNA has been proven to distinguish follicles with
different maturation statuses, where PCNA expression is significant
in oocytes, granulosa cells and growing follicles and acts as a
primary regulator (183, 184). However, atretic follicles undergoing
atresia were negative for PCNA expression (185). In a secondary
POF model, the mRNA expression of PCNA was significantly

decreased in ovarian tissue compared with healthy controls
(186). Moreover, coenzyme Q10 (CoQ10) and/or cryptotanshinone
treatment promoted primary follicle and granulosa PCNA
expression and improved ovarian injury in POF (186, 187).
A previous study indicated that miR-376a influenced primordial
follicle assembly and oocyte apoptosis by binding to the mRNA 3’
untranslated region (3’-UTR), thereby inhibiting PCNA expression
(188). The microRNA modulatory effect on gene expression has
been proven to be associated with POF in a mouse model
(189). In POF, increased p53 might disturb oocyte quality and
damage ovarian functions (190), mainly through a posttranslational
mechanism (191). In this respect, the cyclin-dependent kinase
suppressor protein p21 is a key downstream target for p53,
where p53 boosts downstream effector expression by elevating
nascent RNA amounts (192, 193). Meanwhile, p21 is known as
a dual inhibitor for both cyclin-dependent kinases and PCNA,
and p21 has the ability to displace chromatin-bound PCNA to
interfere with S phase (194, 195). Not surprisingly, the upregulated
p53 expression and enhanced p21 transcription simultaneously
existed in POF ovarian tissues and were positively associated with
disease development (196). The reduction in PCNA will lose the
balance between apoptosis and fail to ensure successful follicle
development and protect follicular growth tissue homeostasis
(197). In addition, another regulator of follicular growth is the
Wnt signaling pathway, which is important for pregranulosa cell
transition during the period of primordial follicle activation (198).
Notably, significant expression of Wnt-2 in all stages of follicles
was positively associated with PCNA and induced granulosa cell
proliferation (199). A study in human cumulus cells demonstrated
that Wnt-2 recognizes its receptor FZD9 to regulate the formation
of β-catenin and E-cadherin (200). The knockdown of β-catenin in
granulosa cells inhibited PCNA expression but did not affect Wnt-
2 expression (199). Herein, the Wnt-2/β-catenin cascade controls
diverse ovarian developmental processes and has the potential to
modulate PCNA expression in POF (201).

CXCL12

Chemokine (C-X-C motif) ligand 12 gene, also known as
stromal cell-derived factor (SDF-1), interacts with its receptor
CXCR4 and plays an essential role in primordial germ cell
(PGC) migration, proliferation, and survival (202). Moreover, there
is evidence indicating that the expression of CXCL12/CXCR4
was increased in a POF mouse model and was negatively
associated with primordial-to-primary follicle transition (203).
In the Chinese Han population, CXCL12 polymorphism-related
CXCL12 expression and high CXCL12 protein levels were supposed
to be associated with POF and have the potential to be candidate
biomarkers (204). A high level of CXCL12 expression has been
deemed a potentiator for primordial follicle densities and smaller
follicle sizes due to chemokine and receptor interactions, and
increased CXCL12 expression inhibits follicle activation and
ovarian functions (205). However, the detailed CXCL12 regulation
mechanisms in the pathogenesis of POF are still unclear. In
terms of inflammation, POF-related atretic follicles and granulosa
cells are usually characterized by an inflammatory response
involving leukocytes and their secretory inflammatory factors
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FIGURE 3

The abnormal gene expression and relevant cascades in POF.

(206, 207). Among them, the interaction between CXCL12 and its
receptor CXCR4 was demonstrated to participate in physiological
inflammatory processes, including follicular dysregulation (208,
209). In line with this, the cyclophosphamide- and busulfan-
induced POF mouse model presented a positive correlation
between CXCL12/CXCR4 protein expression and the inflammatory
response compared to the normal control, namely, increased
proinflammatory cytokines (IL-6, IL-8, and TNF-α) and decreased
anti-inflammatory cytokines (IL-10) (203). On the other hand,
the chemotaxis role of the CXCL12/CXCR4 axis in mesenchymal
stem cell (MSC) transplantation also attracted great interest in
POF therapy. Ling et al. (210) reported that CXCL12 can induce
CXCR4-expressing MSC migration and homing in the ovaries of
POF mice, and blocking the CXCL12/CXCR4 axis significantly
reduced MSC homing to ovaries and reduced their therapeutic
efficacy in POF. As in previous studies, the CXCL12/CXCR4
axis might be a prerequisite for MSC homing, where CXCL12
acts as a chemoattractant molecule to guide CXCR4+ MSC
directional migration (211–213). In this process, the activated
PI3K/Akt signaling pathway was implicated in the CXCL12-
CXCR4 interaction as a downstream factor and is thought to
be involved in POF (210, 214). The CXCL12/CXCR4 pathway is
known as an upstream switch for Akt phosphorylation, which in
turn modulates various biological effects, such as cell migration,
chemotaxis and adhesion (215). The binding of CXCL12 to
CXCR4 was accompanied by PI3K/Akt signaling activation, while
CXCL12/CXCR4 inhibition synchronously inhibited PI3K/Akt
signaling, which directly decreased the MSC transplant treatment
effect in the POF model (210). The higher homing rate and
survival of MSCs to the ovary in individuals will reduce depletion
of germline stem cells and increase the therapeutic efficacy

for POF (216). Moreover, activation of PI3K/Akt signaling has
been reported to promote MSC differentiation into endothelial
cells (217, 218) and is positively associated with granulosa cells
and follicle proliferation in therapy for POF (219–222). In
contrast, suppressed PI3K/AKT signaling probably contributed to
large-scale oocyte loss and more serious POF (223). Moreover,
PI3K/Akt signaling in MSCs post-transplant also showed the
ability to increase the Th17/Tc17 and Th17/Treg ratios to improve
the inflammatory immune environment, thereby promoting the
recovery of ovarian function in POF (222). Together, the balance
of CXCL12 expression is important in POF development, while the
pros and cons of mechanisms should be further investigated.

INSL3

Insulin-like peptide 3 (INSL3) is a member of the relaxin family
of neohormones, which is thought to be specific for mammalian
traits with respect to reproduction (224). INSL3 is mainly produced
by interna cells of the growing antral follicle and is recognized
by the specific receptor RXFP2, which modulates the synthesis
of the steroid precursor androstenedione (225). In the follicle,
INSL3 expression and activation orchestrate the generation of
steroid precursors and rostenedione and promote estradiol release
in granulosa cells (225, 226). Of note, INSL3 expression was
absent in preantral, atretic follicles, granulosa cells or oocytes (227,
228), while RXFP2 was expressed in mammalian oocytes and was
associated with oocyte maturation (229, 230). Moreover, INSL3
can also be secreted into the circulation and detected in serum,
with a level of immunofluorescence detection of ∼100 pg/ml in
women, by which we can monitor the growth of antral follicles
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(231). As described above, INSL3 expression is consequently
increased in polycystic ovary syndrome (PCOS) and decreased in
females with POF, which might be a valuable biomarker for POF
patients. Importantly, the effect of high INSL3 expression on follicle
development might be attributed to the stimulation of GDF9 in
oocytes, and the inhibition of GDF9 specifically blocks the INSL3
growth-stimulating effect (232). Moreover, INSL3 from theca cells
induces the generation of the enzyme 17α-hydroxylase (CYP17A1)
in the same cell, which can modulate the production of the follicular
steroid precursor and androstenedione from pregnenolone or
progesterone (225). Additionally, released androstenedione will be
absorbed by granulosa cells and act as a precursor for estrogens
(estrone, estradiol). In the development of POF, the serum INSL3
level was observed to be continuously decreased and showed a
strong negative association with FSH (233). Thus, INSL3 might be
a promising new specific biomarker for POF progression.

PTX3

PTX3 is a glycoprotein with two structural domains: one
is in the C-terminal region and homology with C-reactive
protein (CRP)/serum amyloid P component (SAP), and the
other is a unique N-terminal domain without homology (234).
PTX3 is specifically expressed in the ovarian cycle and has
multifunctional properties under different conditions. Of note,
PTX3 was demonstrated to be expressed in cumulus cells, a subtype
of granulosa cells surrounding oocytes (235). Cumulus cells are
special and have different fates compared to other granulosa
cells, such as facilitating oocyte release and fertilization (236).
In a mouse model, PTX3 expression is significantly increased in
cumulus cells before ovulation and is associated with cumulus
matrix formation, and PTX3 blockade in mice results in infertility
(237). Due to the specific recognition of heavy chains (HC)
to the PTX3 N-terminal domain and its covalent linkage to
hyaluronan (HA) polymers (238), PTX3 indirectly influences the
HA biological context in cumulus cells, which can be reversed
by PTX3 blockade (239). Herein, PTX3 might modulate the HA
cascade via the interaction between the HC (240). Notably, HA was
reported to be an excellent cell scaffold for MSC transplantation
in POF, which not only promotes cell secretory function but also
prolongs the retention of MSCs to improve therapeutic efficiency
(241, 242). Moreover, HA also protects ovarian function in an
immunosuppressive drug-induced POF mouse model, where HA
improves granulosa cell damage, estradiol concentration, and the
number of follicles (243). In ovarian granulosa cells, HA activation
potentially increased progesterone receptor membrane component
1 (PGRMC1) expression, thereby preventing abnormal granulosa
cell apoptosis and follicle loss in POF (244). Together, these data
indicate that altered expression of PTX3 might influence the POF
ovarian microenvironment and cell functions, likely ameliorating
proliferation, damage, and hormone levels.

POF relevant clinical trials

Although the POF incidence rate only accounts for 1% of
women under the age of 40 (245), monitoring and management

show potential to prevent POF from devastating outcomes (246).
POF, a term that appropriately describes the end-stage of premature
ovarian insufficiency, is typically diagnosed when amenorrhea
combined with high gonadotrophins and hypoestrogenemia,
wherein some adolescent patients have follicular depletion or insult
to the ovary and present with delayed puberty or amenorrhea
(247, 248). Current therapeutic management of POF includes
psychosocial support, hormone replacement therapy, and fertility
management (249). The diverse etiologies of POF, such as genetics,
immune disorders, and microenvironmental dysregulation, have
also attracted great attention in the treatment of POF (250).
Interestingly, providing more information regarding the etiology,
diagnosis, and treatment of POF in adolescents or high-risk
populations will provide new insights into preventing disease
development, along with the development of more sensitive
markers. Below, we will present the latest clinical trials on the
diagnosis and treatment of POF.

Diagnosis

The POF is serious clinical disease with high FSH, low
hormonal and ovarian failure. Women of reproductive age
diagnosed with POF or premature ovarian failure according to
ESHRE criteria are usually based on a sinus follicle count (AFC),
AMH, and early follicular serum FSH levels (251). The premature
ovarian insufficiency is usually accompanied with anovulatory
cycles leading to abnormal uterine bleeding (AUB), it is important
to identify the pathogenies for irregular cycles such as FSH, LH,
and estradiol measurements (252). The FSH levels of premature
ovarian insufficiency women are typically higher than 25 mIU/ml
(253), but precise cutoff levels have not been determined. Some
patients with premature ovarian insufficiency symptoms show low
FSH levels compared with above standard, while FSH > 40 mIU/ml
was deemed as POF (254, 255). In addition, simultaneous
measurement of upregulated basal luteinizing hormone (LH)
levels is helpful to determine whether a high FSH level is
associated with ovulation (254). In clinical practice, more stable
and detectable indicators are urgently needed. A clinical trial using
a combination of FSH stimulation and transvaginal ultrasound
examination developed a method for the precisely detection of POF
(NCT00006156). Among these interventions, FSH intervention in
normal ovaries showed a significant stimulation in serum inhibin
B, and ultrasound examination will further define parameters
that could improve the earlier diagnosis of POF (256). Moreover,
ovary ultrasound characteristics appear to predict ovarian activity,
where ovarian volume/area and follicle count are associated
with the age of menopause and primordial follicles in POF
patients (257, 258). Some clinical trials have been established for
endogenous etiological substances, such as the etiological elements
endocan, sFlt-1, PIGF, and niacin, in POF patients (NCT03924648,
NCT03932877 and NCT04641624). The above prospective studies
included POF patients and normal controls with some potential
molecular analysis, and blood was obtained at the early follicular
phase of the menstrual cycle. These molecular functions are
not well studied in the POF mechanism and diagnosis, whereas
they are significant in follicle development and POF population
(259–261). These works underscore the idea that additional

Frontiers in Medicine 12 frontiersin.org

https://doi.org/10.3389/fmed.2023.1194865
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-10-1194865 June 2, 2023 Time: 15:25 # 13

Yang and Yang 10.3389/fmed.2023.1194865

attempts are needed to understand the impact of POF discrete
microenvironments and potential diagnostic markers.

Therapeutic strategies

A randomized clinical trial from South Valley University
proposed a hypothesis by using filgrastim to recover ovary
functions, with 10 participants from 16 to 40 years (NCT02783937).
Filgrastim is a granulocyte-colony stimulating factor (G-CSF) and
has been approved to stimulate peripheral blood stem cell numbers
(262) and potentially improve ovarian follicle formation (263). In
ovarian failure, there are still some residual very small embryonic-
like stem cells (VSELs) that serve as a backup pool for mature
stem cells and are mobilized under stress conditions, which might
be involved in gonadal rescue after exogenous/endogenous stimuli
(264, 265). Filgrastim treatment in combination with stem cell
studies in a mouse model showed promising results in the recovery
of oogenesis and reproductive capacity (266, 267); thus, further
clinical studies in humans potentially promote more appropriate
treatment for POF. Recently, another clinical trial with 150
participants used the natural plant antitoxin resveratrol to target the
NOX/ROS cascade and improve oxidative stress in POF patients
(NCT05410093). NOX function in oxidative damage is harmful
to ovarian function and structure (268). Moreover, resveratrol
exhibited estrogen-like effects and showed great potential in
estrogen deficiency-related osteoporosis, as well as increasing
ovarian serum estrogen (269). Estrogen upregulation will improve
the POF clinical presentation. In this respect, some chemotherapy-
induced POF was potentially prevented by the gonadotropin-
releasing hormone agonist goserelin (270). The application of
goserelin is associated with amelioration of ovarian reserve markers
such as AMH, estradiol and FSH, as well as improving ovarian
function (271). Nevertheless, further exploration of goserelin
function in chemotherapy-induced POF through ovarian function
biomarkers are still ongoing (NCT04536467). On the other hand,
many trials have focused on systemic balance regulation in
POF treatment. Zhang et al. (272) demonstrated that Kuntai
capsule, a traditional Chinese medicine, has been widely used
for the clinical treatment of menopausal syndrome and showed
the ability to improve damaged ovarian function. By improving
atretic follicles, AMH expression, the antioxidant pathway, and
the Bcl-2/Bax-related apoptotic pathway, Kuntai capsule presented
therapeutic potential in the symptoms caused by ovarian failure
and ovarian endocrine function recovery. In addition, another POF
mouse model demonstrated that Kuntai capsules might inhibit
PI3K/AKT/mTOR signaling by decreasing the phosphorylation of
pathway protein members, as well as recovering AMH, FSH, and
estradiol, ultimately improving ovarian function and protecting
reproductive capacity in POF (273). More recently, a random
clinical trial with 120 participants was established, which aimed
at the efficacy and safety of the Kuntai capsule in POF patients
and first used the Kupperman score to evaluate the therapeutic
efficacy of the Kuntai capsule (NCT05021094). Another traditional
Chinese medicine (HuYang YangKun Formula) was also put
forward for POF treatment (NCT02794948), whose systematic
regulatory effect significantly improves the ovarian function of
POF, such as AMH, FSH, follicle number, TGF-β/TAK1 signaling,

and JAK2/STAT3 signaling (274, 275). The ongoing clinical trial
is exploring more effective strategies to address these issues so
that we can begin to provide etiology-based management for POF-
affected women.

Conclusion and prospective

Despite the increase in emerging research, the underlying
mechanisms of POF remain poorly understood due to its variable
etiology and complex microenvironment. We summarized the
recent dynamic changes in POF that are partly important
relevant biomarkers in ovarian development by animal and
clinical data, which provided essential evidence to confirm the
heterogeneity of genomic variants, gene expression and relevant
proteins in POF phenotype and etiology. This review evaluated
the role of the above important factor status and pathogenic
mechanisms in POF, as well as the downstream and downstream
consequences. Future genetic studies should involve different
ethnic groups and larger sample sizes to promote the understanding
of underlying genetic mechanisms in POF. Additionally, effective
diagnosis and management necessitate more reliable biomarker
targets in the early point POF, wherein the residual ovarian
functions may offer an invaluable chance to intervene early.
Currently, the therapeutic options for ovarian functional decline,
either physiologically or pathologically, are limited. Established
clinical trials provide new insights into developing strategies for
ovarian resumption and fertility improvement in POF patients.
However, the limitations of current genomic studies have restricted
the clinical exploration of POF therapy. Therefore, exploring
gene-based effective diagnosis and treatment strategies will be
beneficial for the physical, mental, and reproductive health
of POF patients.
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