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The potential of the Medical
Digital Twin in diabetes
management: a review

Yanting Chu, Shanhong Li, Jie Tang and Huiqun Wu*

Department of Medical Informatics, Medical School of Nantong University, Nantong, China

Diabetes is a chronic prevalent disease that must be managed to improve the

patient’s quality of life. However, the limited healthcare management resources

compared to the large diabetes mellitus (DM) population are an obstacle that

needs modern information technology to improve. Digital twin (DT) is a relatively

new approach that has emerged as a viable tool in several sectors of healthcare,

and there have been some publications on DT in disease management. The

systematic summary of the use of DTs and its potential applications in DM is less

reported. In this review, we summarized the key techniques of DTs, proposed the

potentials of DTs in DM management from di�erent aspects, and discussed the

concerns of this novel technique in DM management.
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1. Introduction

In March 2011, the United States Air Force Research Laboratory (AFRL) presented

a seminal discourse titled “Condition-based Maintenance Plus Structural Integrity (CBM

+ SI) and the Airframe Digital Twin.” This marked the inaugural explicit mention of

the “digital twin” (DT) concept. The AFRL further elucidated a conceptual model of

DT technology, specifically for predicting the structural lifespan of aircraft in the same

year (1). The National Aeronautics and Space Administration (NASA) defines a “DT” as

a comprehensive utilization of physical models, sensors, operational history, and other

relevant data to amalgamate the entire process of multi-disciplinary, multi-physical, multi-

scale, and multi-probability simulation. This process culminates in a mapping within the

virtual space that mirrors the entire life cycle of the corresponding physical equipment. In

recent years, the DT concept has progressively permeated the medical field. For instance,

in the realm of cardiovascular systems, extant technology has advanced to the point where

it is feasible to construct fully personalized, high-resolution models of the entire heart (2).

The VirtaMed virtual surgical training system LaparoS has been a trailblazer in applying DT

technology to replicate intricate surgical scenarios. Similarly, the University of Linkoping in

Sweden has embarked on an innovative project aimed at investigating the potential of DTs

in various aspects of medical practice, including medical education, heart diagnosis, and

medical implant planning (3).

The evolution of health services in contemporary society is evident, with a shift toward

a more technologically advanced approach. The integration of artificial intelligence (AI)

and point-of-care sensors has revolutionized traditional face-to-face disease management,

transitioning it to an online platform. AI, when synergized with DTs, can construct models

that enhance the efficiency, precision, and promptness of patient care. In the realm of

healthcare, DT offers a unique perspective on self-quantification, potentially establishing

a new paradigm for disease management (4). Since 2017, Gartner’s emerging technology
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maturity curve has predicted that DT could reach a level of mature

application within the next 5–10 years. Presently, the innovative

applications of DT are transforming the manufacturing industry.

DT has facilitated the integration of digital and physical spaces

throughout the entire lifecycle of spacecraft (5). Furthermore, the

use of DT in collaborative painting robots has improved worker

safety and health (6). Despite these advancements, the application

of DT in the medical sector remains limited. It is reported that 47%

of DT applications are in the smart cities and urban spaces sector

and 17% of DT applications are in the manufacturing sector, but

only a meager 1% of DT applications are in the medical sector (7).

Specifically, the application of DT in managing chronic diseases,

such as diabetes mellitus (DM), is significantly lagging. In light of

this, we have reviewed the literature on DT, summarizing the key

techniques and exploring the potential applications of DT in DM

management. Our goal is to anticipate future trends and directions

in this field.

2. The key techniques with regard to
MeDigiT in DM management

The concept of a Medical Digital Twin (MeDigiT) can

be defined as a system that amalgamates various data science

methodologies, each tailored to predict specific aspects of a patient’s

health (8). As depicted in Figure 1, the DT cycle in the diabetes

care pathway incorporates a multitude of techniques at every stage

of the diabetes mellitus (DM) management cycle. This includes

pre-disease management, disease management, and post-disease

management. The integration of diverse data sources and the

application of various methods for data collection, modeling,

and visualization is fundamental to the efficacy of DT. In the

pre-disease management phase, DT can assess an individual’s

risk of developing DM by analyzing contributing factors such

as obesity, a sedentary lifestyle, and genetic predisposition. This

allows for the provision of preemptive interventions to prevent

the onset of DM. For patients already diagnosed with DM,

their DT counterpart can be utilized by healthcare professionals

to administer personalized treatment options. For instance, any

abnormality in blood sugar levels detected by real-time glucose

monitors can be relayed to theDT system, which can then adjust the

insulin dosage accordingly. In terms of post-disease management,

DTs have the potential to predict diabetic complications such

as cardiovascular disease, kidney failure, and vision loss during

follow-up sessions. However, despite the promising advancements

in technology, there remain challenges in achieving an optimal

DT system. For instance, vocabulary ambiguity in electronic

medical records (EMRs) is a common issue. Variations in body

imaging, particularly in soft tissue imaging due to different patient

positions, gestures, or motions, can lead to inconsistencies in the

anatomical DT. The functional simulation methods for physical

DT are still complex and time-consuming, which hampers timely

feedback. Additionally, concerns regarding patient data privacy

and the lack of medical liability in decision-making by DT persist.

These challenges underscore the need for further research and

development in the field of DT (Figure 1).

As depicted in Figure 2, the initial step in managing DM

involves the crucial task of collecting and integrating multiple

variables related to the disease. Subsequently, the MeDigiT system

integrates these biomedical data for advanced modeling and

simulation. For instance, 3D modeling can be executed using

imaging data, while time series modeling can be constructed using

data from wearable devices, among other techniques. Following the

diagnosis of DM, clinicians administer a drug or treatment plan

based on the decision-making support provided by the DT system.

Finally, the most effective treatment or medication is delivered to

the patient. In this context, we have reviewed the literature and

summarized the potential key techniques involved in this process

as follows.

2.1. The acquisition and integration of
multi-source heterogeneous healthcare
data

The application of DT in healthcare begins with the acquisition

of multi-source, heterogeneous patient data. The evolution of

sensor technology has made it possible to consolidate data from

wearables, medical imaging, and EMR onto a single platform. This

comprehensive data integration enables medical professionals to

deliver more efficient patient care. In the realm of data collection,

MeDigiT can digitize and quantify an individual’s data at various

levels. High-throughput sequencing data and expression profiles

can be obtained from T2DM patients’ biological samples using

multiple omics techniques, such as genomics, transcriptomics,

proteomics, and epigenomics (9–11). The advancement and

optimization of medical imaging techniques have also provided

a reliable data source for MeDigiT. For instance, Philips has

proposed HeartModel, a system that simulates every frame of

the cardiac cycle, thereby providing critical information for

clinical strategy (12). Continuous bio-signals, collected through

wearable devices, are crucial for health monitoring. Microsoft

has proposed an Internet of Things (IoT) application platform

that seamlessly connects various medical wearables to IoT central

instances. This platform enables the monitoring and management

of devices by customizing rules to specific device data and

triggering corresponding alerts. Moreover, lifestyle data (such

as diet, smoking, drinking, and drug use), environmental data

(including living and working conditions), EMR, mobile apps,

social media, and wearables all contribute to the data pool for

MeDigiT. Given the complexity, diversity, and scale of these data,

effective algorithms are required to integrate these multi-source

data streams.

2.2. Digital modeling and simulation

The MeDigiT system, established from patient data collected

through sensors, medical treatment facilities, EMRs, and more, can

be utilized to tailor interventions and therapies andmonitor patient

responses. For example, Pfizer has used AnyLogic software to assist

physicians in modeling and analyzing optimized drug dosages

for peripheral neuropathy (13). Digital modeling and simulation

techniques are crucial tools for accurately reflecting and modeling

a patient’s condition. For instance, anatomical models of the body
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FIGURE 1

Involved data and methods in the DT cycle of the diabetes care pathway. IoT, Internet of Things; ACM, autocontext model; RSOM, raster scanning

photoacoustic mesoscopy; VR, virtual reality; AR, augmented reality; MR, mixed reality.

and internal organs, created using 3D modeling tools, such as

Mimics, Simpleware, and 3dSlicer (14), are invaluable for clinicians

making diagnoses. Physical models, such as biomechanical models

for blood vessels, muscles, and bones, provide doctors with the

physical mechanisms needed to calculate and estimate full-cycle

and full-field dynamic simulations. Virtual reality (VR) simulation

systems have also been developed for personalized interventions,

such as percutaneous coronary intervention (PCI). These systems

combine the patient’s cardiac dynamic model to bridge the gap

between the physical world and the virtual scene (15). Ilyan et al.

(16) simulated the coronary vascular system of the human heart

to assist in the treatment of heart disease. MeDigiT can also

develop physiological models using signals from the IoT. For

instance, in traditional cardiac radiofrequency ablation surgery,

doctors have had to ’imagine’ all suspected heart conditions due

to technical limitations. They would then rule out some of these

conditions by applying electrical stimulation to the patient’s heart

to get an accurate diagnosis. However, Wu et al. (17) developed

a model-based cardiac radiofrequency ablation procedure assist

system, which used DT to enumerate suspected cardiac conditions

in the diagnostic process through cardiac electrophysiological

models. Beyond these models, biochemical models can simulate

functions of various systems, such as the endocrine system or

liver. Simulation is fundamental for further model-based analysis,

training, and prediction. Digital modeling and simulation are often

used in tandem, with simulations being performed on the model.

2.3. Decision-making and AI

The full potential of MeDigiT cannot be realized without

the integration of AI. As stated by Robert Hayward, “Clinical

Decision Support Systems (CDSS) link health observations with

health knowledge to influence health choices by clinicians for

improved healthcare.” CDSS are computerized systems that pair

patient clinical information with a knowledge base, aiding medical

staff in disease diagnosis and the optimization of treatment plans.

By prompting interventions in the diagnosis and treatment process,

CDSS can reduce medical errors and enhance the quality of

care. AI technology enables MeDigiT to achieve its decision-

making objectives, which include description, diagnosis, and

Frontiers inMedicine 03 frontiersin.org

https://doi.org/10.3389/fmed.2023.1178912
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Chu et al. 10.3389/fmed.2023.1178912

FIGURE 2

Key techniques involved in DT. (A) Multi-source heterogeneous health care data acquisition and integration. (B) Modeling and simulation. (C)

Outcome and follow-up. (D) Decision making.

prediction. There are two primary methods for achieving decision-

making. The first is through an expert knowledge base, which

mirrors how doctors make decisions based on their experience.

The system extracts decision rules and analyzes patient data as

variables to assess the patient’s situation and draw conclusions.

This approach allows the computer to perform enumeration

and reasoning tasks and present the results in a form that

aligns with the physician’s expertise. Consequently, physicians

can make accurate decisions with the system’s assistance, using

explanatory reasoning rules. The second method of decision-

making involves machine learning, including the latest deep

learning (DL) techniques. For instance, Zhang et al. (18) developed

a deep neural network model that captures the relationship

between contexts through risk code keywords. An analytical

method capable of generating treatment pathways was developed

and validated (19) with 27,904 diabetic patients. While these

methods can effectively assist doctors in decision-making, medical

decisions are complex and often fraught with uncertainty. When

decisions involve moral and ethical issues, it can be challenging

for doctors to explain their reasoning. In response to this,

behavioral artificial intelligence technology (BAIT) (20) has

been proposed. BAIT can predict the probability of a patient’s

condition, thereby assisting doctors in making decisions within

specific contexts.

2.4. Feedback and control

The integration of patient data, collected by a multitude of

sensors, with AI and IoT technologies, can facilitate the creation

of MeDigiT. This digital twin can simulate predicted outcomes

and assist doctors in making clinical decisions, enabling treatment

feedback to be relayed back to the patient in the physical

world. As treatment is administered, the MeDigiT model can

be updated in real time to reflect the physiological changes in

patients. This feedback mechanism allows the DT to establish a

closed-loop interaction between the real and virtual worlds. A

controlled trial in South Korea demonstrated the effectiveness

of this approach in managing diabetic patients using cell phone

glucose monitoring and feedback systems. The study showed

that patients who received feedback had more effective glycemic

control (21). Electronic biofeedback therapy, which uses modern

electronic instruments to convert bioelectricity into sound, light,

and other signals, has been used for patient rehabilitation. Song

et al. (22) verified its MeDigiT with a man–machine–environment

fusion to realize dynamic human–machine interaction. In addition

to its crucial role in clinical treatment, feedback can also be

used in the context of virtual candidate drugs applied to the

DT. The Swedish Digital Twin Consortium (SDTC) proposed a

strategy for this purpose: first, constructing unlimited copies of
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network models of all molecular, phenotypic, and environmental

factors relevant to disease mechanisms in individual patients,

and second, computationally treating those DTs with 1,000’s of

drugs to identify the best ones. Eventually, drugs selected by DTs

are used to treat real-world patients as feedback (23). Alacris

is an example of a MeDigiT that virtually tests which drugs

can stop cancer cells. The results suggested that everolimus,

usually approved for the treatment of breast and kidney cancer,

seemed to work in the case of mucosal tumors insensitive to

chemotherapy, immunotherapy, and radiotherapy, reducing the

rate of dividing cells to 15% (24). Furthermore, to improve patient

adherence and accessibility to chronic disease management, digital

therapeutics (DTx) have emerged as an innovative approach to

transcend the limitations of traditional pharmacotherapy. DTx, a

software program-driven, evidence-based intervention program,

can treat, manage, or control disease. It can be conducted alone

or in conjunction with drugs, medical devices, or other therapies.

DTx can digitally translate existing medical principles, medical

guidelines, or standard treatment protocols into application-

driven interventions. In summary, MeDigiT assists physicians in

leveraging big data and expanding the value of that data to make

clinical decisions by providing better feedback to the patient on the

course of their illness.

3. The application of MeDigiT in terms
of DM management at multi-scale
levels

Diabetes mellitus is a complex disease with a multitude of

contributing factors, including genetic predispositions, immune

disorders, microbial infections and their toxins, free radical toxins,

and psychological factors. These factors can lead to metabolic

disorders such as hypoglycemia and insulin resistance, resulting in

complications such as the kidney, eye, and foot failure. MeDigiT,

a dynamic digital replica of the patient, can assist healthcare

professionals in understanding a patient’s medical status and

providing personalized care for DM patients. MeDigiT offers an

effective blueprint for the treatment of chronic diseases such as

DM. For diabetic patients, complications from DM are a major

cause of disability or death, making the management of DM of

utmost importance. Studies have shown significant improvements

in self-care for patients with multiple myeloma when they received

a combination of online and offline health education, allowing

for continuous disease care and prevention of complications (24).

MeDigiT has potential in this whole disease management cycle,

serving as a core component at multi-scale levels for diabetic

patients (Figure 3).

3.1. The body level

MeDigiT plays a crucial role in DM management through

diet, exercise, and insulin function. Thamotharan et al. (25)

proposed a human digital twin (HDT) framework and IoT

architecture for personalized management of T2DM in older

adults. The framework combines deep learning (DL) models

and mathematical models based on various patient data and

can personalize insulin administration according to the patient’s

different statuses. Deployment and testing have proven that HDT

is effective in personalized management and treatment of DM.

Similarly, Twin Health proposed the whole-body DT for DM

by monitoring patient sensor data and offering personalized

recommendations (26). Shamanna et al. (27, 28) piloted a twin

precision treatment (TPT) program in patients with diabetic

hypertension to achieve improvements in insulin resistance and

hypertension. The program used the Twin mobile app, continuous

glucose monitors (CGM), Fitbit Charge 2 sensor watch, digital

Bluetooth-enabled blood pressure meter (TAIDOC TD-3140),

and Powermax BCA-130 Bluetooth Smart Scale to obtain and

analyze physiological data from DM patients. It created a MeDigiT

that dynamically represents the metabolic status of the DM

patient and provides personalized interventions. Currently, a

“metabolic DT” (MDTwin) (29) personalizes insulin dosing and

delivery patterns to patients by assessing individual glycemic

responses to a high-fat, high-protein diet to achieve optimal

patient blood glucose levels. In addition, family diet and various

educational and environmental data will be recorded, and a DT

around the person can be constructed if necessary. MeDigiT

can use various data and information to assess the condition

of the human body and give a personalized assessment. With

the help of expert knowledge systems, health assessments and

disease diagnoses are made automatically, and the information

is fed back to the patient to make improvements accordingly.

Through the MeDigiT of a diabetic patient, the doctor can

monitor the patient’s condition and enable accurate and timely

DM management. The Cleveland Clinic (30) conducted a pilot

randomized controlled trial (RCT) of DT precision treatment

which provides precise management of nutrition, activity, and sleep

with trained health coaches through the app and via telephone

to ensure that the average blood glucose of the day will be

consistently maintained within the optimal range. In the RCT, the

DT platform was used to obtain personalized multidimensional

data of patients, and the TPT treatment system was integrated

and predicted to give reasonable dietary guidance. Therefore,

the results are expected to provide a basis for the application

of MeDigiT in the treatment and management of DM at the

patient level.

3.2. The organ level

Diabetes mellitus is often associated with several chronic

complications, including retinopathy, atherosclerotic disease, and

diabetic foot. In addition to constructing a comprehensive

MeDigiT for DM management, it is also feasible to create

individual organ twins to prevent and treat DM complications.

Traditionally, pathological changes at the organ level are detected

and assessed through medical imaging. However, with the advent

of MeDigiT, digital replicas can be developed to model and

simulate the corresponding diseased organs. These patient-specific

models are crucial for planning and selecting the appropriate

intervention. For instance, Orcajo et al. proposed a foot twin,

which can be utilized for improved diagnosis, tailored treatments,
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FIGURE 3

Diagram of applications of DT in diabetic patients at di�erent scales.

and intervention risk reduction to achieve the best therapy

after testing new surgical procedures (31). Furthermore, the

introduction of MeDigiT can assist clinicians in developing

optimized therapy strategies for patients with chronic heart

failure (32). The Living Heart Project, developed by Dassault

Systèmes, a French software company, considers all aspects of

cardiac function (e.g., blood flow, mechanics, and electrical

pulses) to aid clinicians in predicting patient outcomes. Siemens

has also developed a cardiac DT model that is expected to

simulate a patient’s heart, including size, ejection fraction, and

muscle contraction. The DT of a patient’s heart allows for real-

time monitoring of the patient’s heart, and by monitoring the

patient’s heart function data and providing timely feedback to the

physician, it also offers the patient a timely prognosis as well as

precise treatment.

3.3. The molecular level

A person’s biogenetic characteristics can be directly inherited

from their grandparents. Concurrently, the sequenced genetic

data of an individual and their parents will be recorded in real

time, and every medical examination conducted by a healthcare

institution will be transmitted to the network with the consent

of the individual. Cells, as the basic structural and functional

units of the human body, store genetic information. With the

advancement of life observation technology to the single-cell level,

MeDigiT can also be applied to the segmentation, detection, and

tracking of stem cell images, with its accuracy and recall in stem

cell image segmentation found to be superior to those of phase

difference (33). Li et al. (34) constructed a MeDigiT framework

based on dynamic single cells, which can prioritize the upstream

regulator (UR) gene of biomarkers and drug discovery according

to the dynamic changes of MeDigiT in seasonal allergic rhinitis.

Chen et al. (35) proposed an innovative virtual cell experiment

scheme to establish the human Ensemble Cell Atlas (hECA)

system, a cell-centered human cell graph. The hECA can be used

to conduct drug experiments on virtual human cells, thereby

improving drug development efficiency and reducing the cost of

human clinical trials. Type 1 DM and advanced T2DM are due

to pancreatic β-cell loss and failure, leading to inadequate insulin

production. Some studies have identified molecular biomarkers

for the diagnosis of DM status, with the potential to detect DM

(36, 37). The EU combining photoacoustic imaging phenotyping

and multiomics to advance diabetes care (OPTOMICS) validated

a MeDigiT model of the static and dynamic processes involved in

the development of T2DM, by combining molecular biomarkers

and a non-invasive phenotyping technique called raster scanning

optoacoustic mesoscopy (38). ThisMeDigiTmodel, combined with

an in-depth molecular phenotype of the individual at the DNA,

protein, and metabolite levels, offers advantages for the prediction

and early detection of diseased individuals, thereby improving the

overall likelihood of prevention. The ILET bionic pancreas is a new

type of insulin delivery system, which can achieve the maximum

serum drug concentration in a short time by injecting insulin

with continuous glucose monitoring (39). In summary, the clinical

efficacy, benefit, and cost-effectiveness of MeDigiT in the treatment

of DM at the molecular level are considerable. This approach holds

significant potential to aid in the treatment and research of DM in

the future.
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4. The limitations and concerns of
MeDigiT in DM management

4.1. Interoperability of healthcare data

The realization of MeDigiT is contingent upon the aggregation

and integration of multiple sources of data, which in turn relies

on solutions for interoperability. In the integration of large-scale

biomedical data, standardization emerges as a significant means

of integrating and standardizing multi-source heterogeneous data

in non-standard formats to facilitate subsequent utilization and

analysis. The Health Level Seven (HL7) standard has been released

to access patient data (40) in an interoperable manner. This

standard enables the access and exchange of integrated and

collaborative use of data in a coordinated manner between different

information systems, devices, applications, and programs, within

and across institutional, regional, and national boundaries. For

instance, an AI model predicts the 5-year risk of end-stage

renal disease in T2DM using data from the EMR, enabling

preprocessing of unstructured data in compliance with the HL7

standard (41).

4.2. Privacy and security challenges

The implementation of MeDigiT presents a significant

challenge when it comes to privacy violations, which involve

social and ethical risks (42, 43). Achieving interoperability implies

the possibility of multi-platform connectivity and information

transfer. However, data sharing requires a strict ethical review to

protect patient privacy. Foreign attacks could potentially destroy

the program code and cause harm to the patient’s interests or

even life. Healthcare providers or any other organization possessing

a persistent, detailed picture of a person’s biological, genetic,

physical, and lifestyle information over time poses a significant

privacy risk. Therefore, it is crucial to obtain absolute consent

from stakeholders when dealing with these data. Hackers could

potentially steal gene data from gene banks to carry out criminal

activities. Assuming that DNA can be obtained through cybercrime,

there is a risk that criminals will place DNA samples at the

crime scene. Therefore, for security issues including medical

data security, user platform security, and network security, it is

necessary to establish a security management system. Furthermore,

running such highly secure and sensitive software must be immune

to disruption and loss of medical data access when software

patches are upgraded. For privacy issues, various technologies

can be used for encryption, such as passwords, fingerprints,

and iris recognition. Access to or modification of the MeDigiT

should be granted only to a physician or professional with the

appropriate permissions.

4.3. Ethical and socioeconomic
considerations

The implementation of MeDigiT can amplify the individual

differences that already exist among humans, including health,

longevity, and strength. For instance, an athlete’s performance

enhanced through long-term training, diet, and lifestyle may be

comparable to that of a person who has improved through the

use of DT-based drugs. This poses an inequality problem in

competitive arenas. When this inequality is extrapolated to society

at large, one can access high-volume data related to someone’s

genes, metabolism, lifestyle, etc. For example, if MeDigiT predicts

that an individual is likely to suffer from a certain disease, it may

facilitate healthcare, but this result will become part of the person’s

identity and could eventually influence society’s judgment of the

person, labeling them as “sick”. Furthermore, MeDigiT can also

exacerbate pre-existing socioeconomic gaps. People who can afford

to pay for the services can gain knowledge that others may not have

by testing treatment withMeDigiT. The countries that are relatively

wealthy and possess MeDigiT research and development facilities

and the resulting intellectual property can widen the gap between

rich and poor nations. If the development and design of the DT

itself are biased (race and gender), then patients may be treated

discriminatively (44).

5. Conclusion

In conclusion, DT is an emerging technology based on data,

with the model as the core, and software as the carrier, by

describing the physical world, diagnosing the physical world,

and then gradually upgrading to predicting the physical world

and finally making decisions. In healthcare, MeDigiT has the

advantage of lowering costs, reducing animal testing, and

improving disease prevention. It will continue to grow in

popularity and accelerate its current trend with the development

of AI and computer technology. To reach the goal of fully

applying the MeDigiT to DM management, there is still a

need to continue to advance its exploration in data integration,

modeling and simulation, and decision-making, as well as feedback

and control.
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