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Artificial intelligence (AI) has great potential to improve the field of critical care 
and enhance patient outcomes. This paper provides an overview of current and 
future applications of AI in critical illness and its impact on patient care, including 
its use in perceiving disease, predicting changes in pathological processes, and 
assisting in clinical decision-making. To achieve this, it is important to ensure that 
the reasoning behind AI-generated recommendations is comprehensible and 
transparent and that AI systems are designed to be reliable and robust in the care 
of critically ill patients. These challenges must be addressed through research and 
the development of quality control measures to ensure that AI is used in a safe and 
effective manner. In conclusion, this paper highlights the numerous opportunities 
and potential applications of AI in critical care and provides guidance for future 
research and development in this field. By enabling the perception of disease, 
predicting changes in pathological processes, and assisting in the resolution of 
clinical decisions, AI has the potential to revolutionize patient care for critically ill 
patients and improve the efficiency of health systems.
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1. Introduction

The word Artificial Intelligence (AI) describes the methods by which a system may imitate 
human cognitive functions, such as reasoning capacity, decision-making, generalization, or 
learning from past experiences, to achieve goals without being expressly programmed for 
specific activities. AI is characterized as intelligent machines, as opposed to the intelligence of 
individuals or other living things (1). The areas of learning algorithms, processing natural 
languages, and robotics may thus fall under the umbrella of artificial intelligence (AI), which 
has the potential to advance biomedical research, primary care, and health systems. These fields 
can be adapted to almost any area of medicine.

One of the most hotly contested uses of artificial intelligence (AI) in the healthcare industry 
has been the development of technology. The use of software, algorithms for machine learning, 
or artificial intelligence (AI) to simulate mental abilities in the interpretation, evaluation, and 
comprehension of healthcare data is referred to as AI in healthcare. For instance, AI-based 
medical algorithms used in mammograms help radiologists by providing a second opinion while 
aiding in the diagnosis of breast cancer (1).
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AI was used in the healthcare industry to produce well-performing 
medicine. For instance, Insilico Medical has created AI algorithms 
that can halt viral infection. By providing nutritional guidance to 
expectant mothers based on their health state and algorithm estimates, 
another proposal seeks to safeguard them. Epileptic seizure detection, 
another excellent use of AI, assisted in lessening the severity of 
epileptic convulsions. With AI and the creation of a cutting-edge 
movement-detecting device, early stroke might also be 
accurately predicted.

Although using AI in medical healthcare seems to have the 
potential to drastically increase the effectiveness of clinical diagnosis 
and biomedicine in general, it has also raised some ethical questions. 
One of the main obstacles for medical AI is safety. IBM Watson for 
oncology is a very good example. It uses AI algorithms to analyse data 
from patient records and assist physicians in exploring cancer options 
for treatment for their patient populations. However, it has since come 
under fire for allegedly making risky and unreliable cancer 
therapy recommendations.

The quality of medical treatment for critically ill patients has greatly 
improved due to advancements in care standards (1). Despite this 
progress, traditional critical care has limitations in fully understanding 
and addressing the complexities of patients’ health, predicting 
deterioration, and providing timely treatment. The advent of advanced 
monitoring systems and non-invasive and invasive treatments has 
improved bedside care, but it is yet to be determined if these advancements 
represent the next step in critical care medicine. Artificial intelligence (AI) 
aims to help computers identify patterns in complex and diverse data, 
which was once only possible in limited fields like physics or astronomy 
due to limited computing resources. However, with the recent growth in 
computing power, AI can now be applied to other fields, including critical 
care medicine, where there is an abundance of complex data (2). 
According to a recent study (3), the number of articles about AI in the 
field of critical care medicine (CCM) has been increasing rapidly, 
particularly from 2018 to 2020. The majority of these articles are of high 
quality and come from top-ranked journals. Research into artificial 
intelligence (AI) has shown promise in terms of predicting disease 
outcomes and improving patient care (3).

While there are increasing numbers of studies using AI-powered 
models in the intensive care unit (ICU), our understanding of AI’s 
potential in critical care is still limited. Additionally, there are challenges 
that AI must overcome before becoming a routine part of clinical practice. 
Using the most recent literature, this review aims to improve 
understanding of the applications of AI in critical illness and its impact 
on patient care, and it makes recommendations for the future.

2. Methods

A comprehensive search was carried out in PubMed, Google 
Scholar, PLOS One, and Scopus for all relevant literature using the 

following terms: “critical care,” “intensive care medicine,” “ICU 
medicine,” “artificial intelligence,” “AI,” “machine learning,” and 
“critical illness” from January 2018 through February 2023  in the 
English language. Similar articles were also reviewed using the 
suggested articles for each paper, and gray literature was also searched 
using relevant terms. All papers were imported into reference 
management software, and duplicates were removed. Older versions 
of the same papers were not included if newer versions were available. 
All relevant papers were read, and corresponding authors were 
contacted using email if the full text of a paper was not available. No 
unpublished papers were included in our review.

3. Applications of AI in critical care 
patient management

AI has a multitude of diverse applications for the care of critically 
ill patients. The Figure  1 includes the recognition of disease, the 
prediction of disease progression, and the recognition of unique 
patterns in complex patient data. AI can also significantly aid 
caregivers in complex decision-making, as shown in Figure 1.

3.1. Recognition of disease

Diagnosing the source of a critically ill patient’s clinical decline 
can be a complex task due to the subtle onset of the disease or the 
presence of other conditions that obscure the main issue. Properly 
understanding the underlying context can be a challenging feat. For 
example, the presence of pulmonary infiltrates does not always 
indicate an excessive accumulation of fluid in the air sacs; it could be a 
sign of cardiac-related pulmonary edema, fluid in the pleural cavity, 
inflammation- or infection-related fluid buildup, or blood collections 
from trauma. Without proper clinical context and additional testing, 
appropriate and prompt treatment may be  hindered. Artificial 

FIGURE 1

Artificial intelligence in critical care patient management.

Abbreviations: AI, Artificial intelligence; ML, Machine learning; RL, Reinforcement 

learning; ICU, Intensive care unit; CCM, Critical care medicine; RF, Random forest; 

SHAP, Shapley additive explanations; HAPrI, Hospital-acquired pressure-related 

injury; COVID-19, Coronavirus disease – 2019; HDF5, Hierarchical data format-

version 5; AUC, Area under the curve; REMAP-CAP, Randomized embedded 

multifactorial adaptive platform for community-acquired pneumonia.
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intelligence (AI) can aid in the medical diagnosis of critically ill 
patients by utilizing its advanced text and image processing abilities 
(4). A machine learning model, for instance, can differentiate 
congestive heart failure from other lung diseases and quantify 
pulmonary edema using a technique that provides a probabilistic 
manner for describing an observation (5). Furthermore, recent 
advancements in image analysis using convolutional neural networks 
have enabled the evaluation of traumatic brain injury with more 
accuracy than manual methods when viewed on head computed 
tomography scans (6). In a retrospective analysis by Prasad et al. (7), 
a reinforcement learning (RL) approach was used to develop a 
treatment protocol for electrolyte replacements in an ICU setting. This 
system provides recommendations for patient care that can 
be continuously updated based on the patient’s specific needs. The RL 
algorithm used available data from electronic health records, including 
vital signs, lab test results, and information about administered drugs 
and procedures, to estimate a patient-specific protocol for electrolyte 
repletion at six-hour intervals. The recommendations were presented 
by the AI algorithm in an interpretable and hierarchical manner, with 
the system first suggesting whether electrolyte replacement is needed 
and the best route for it, followed by the most appropriate dosage if 
the clinician chose to administer it. The RL system provided a more 
controlled and data-driven approach to electrolyte repletion as 
compared to traditional provider- or protocol-driven methods, which 
are often prone to error and deviation. This system also allows for 
greater flexibility and adaptability, considering patient context and 
clinical priorities. Optimal RL policy is reported to be  able to 
recommend electrolyte replacements in a more targeted manner, 
potentially reducing the number of repletion events and the cost and 
time associated with unnecessary or repeat orders. Additionally, the 
system uses a reward and punishment system, reducing the costs and 
risks associated with intravenous delivery (7). This is not to underscore 
the value and significance of care-givers in the critical care setting; 
instead, it is a remarkable example of how new technologies such as 
AI can have a significant impact on the care of critically ill patients.

3.2. Prediction of disease progression using 
random forest models

Predicting disease progression is crucial for critically ill patients, 
as a delay in detecting clinical instability can result in harm or death 
(4). A dynamic random forest model is a type of machine learning 
algorithm that can be used to predict outcomes in the critical care 
setting. It works by using an ensemble of decision trees that can adapt 
and update in real-time as new data becomes available. A study by 
Yoon et  al. (2) found that a dynamic model using random forest 
classification could predict cardiorespiratory instability, defined as a 
combination of hypotension, tachycardia, respiratory distress, or 
decreased oxygen saturation 90 min before it occurred in reality (2, 4). 
The use of AI and machine learning has expanded across various fields 
such as public health, disease prediction, and drug development, 
including the ability to predict viral mutations before they arise (4). 
The power of AI approaches continues to be utilized in a wide range 
of disease prediction and drug development applications (8). In a 
study by Davoudi et al. (9), tachycardia, which frequently precedes 
shock, was predicted 75 min before its onset using a random forest 
model (9). Although not in the critical care setting, hypotension was 

also predicted prior to its occurrence in the operating room and 
confirmed by a randomized controlled trial, reducing the rate of 
intraoperative hypotension to 1.2% (10, 11). In the critical care space, 
the prediction of hypotension events in the ICU has already been 
achieved using a random forest model that analyzed electronic health 
records and vital signs data, with 92.7% sensitivity, 15 min before the 
event even occurred (12). Another area where machine learning, a 
subset technology of artificial intelligence is in the assessment of pain 
in critically ill patients. In a study by Kobayashi et  al. (13) which 
focused on using machine learning to assess the pain experienced by 
ICU patients, reported that vital signs, which are measured 
continuously in the ICU, can be used to predict pain with an accuracy 
upwards of 85% using a random forest (RF) model. This shows that 
machine learning can be used to continuously evaluate pain, which is 
important for pain management and the use of pain medication in 
ICUs. Their study also suggests that the use of an automated and 
continuous pain assessment algorithm may help relieve pain in 
patients who cannot communicate which could improve their life 
expectancy (13). All these examples show how the utilization of such 
models can prove significantly useful for management of critically 
ill patients.

3.3. Recognition of unique patterns in 
complex data

Critical illness is a complex condition that presents itself in various 
and unpredictable ways, leading to organ dysfunction and complicating 
the disease and recovery processes. To effectively manage these critical 
states, a careful consideration of underlying etiologies and clinical 
conditions is necessary. AI can help by recognizing unique patterns within 
complex data and identifying specific phenotypes or endotypes that 
reflect the individual’s critical state, leading to more personalized 
treatment plans (14). This relies heavily on access to large amounts of 
training data and phenotypic information. The complexity of medical care 
is highlighted by the fact that the same symptoms can be caused by 
different underlying conditions, making it difficult to provide personalized 
treatment. Diseases such as brain disorders, cardiovascular issues, and 
digestive problems are examples of this complexity. Innovative techniques 
and tools have been used to achieve personalized phenotyping in patients, 
combining practical experiences and scientific knowledge to realize the 
potential for using AI in a systems medicine approach to personalize 
medical care (15). The advancement of AI techniques has enabled 
researchers to uncover the underlying causes of various phenotypes, 
including genetic variations and cancer diseases, and by utilizing these 
tools and combining them with other methods, the biomedical field will 
be able to advance their knowledge and understanding of the relationship 
between genomics and expressions in diseases, promising faster and more 
accurate discoveries (16). This exemplifies how AI can serve as an aid to 
personalized patient care for critically ill patients.

3.4. Aid to complex decision-making in 
critical care

AI has the potential to assist doctors in the complex process of 
assessing patient risk levels for treatments, determining those who are 
most likely to experience a sudden deterioration, and analyzing 
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multiple small outcomes to enhance overall patient outcomes. 
However, the complexity of AI techniques can affect physician 
comprehension and interpretation of results (17). To overcome this 
challenge, it is important for medical education to involve physicians 
in model creation and educate them in this field. AI platforms have 
the potential to be  more efficient in some aspects compared to 
caregivers. For example, when compared to senior consultants, an AI 
platform such as Childhood Cataract Cruiser has proven to be more 
efficient and time-efficient for diagnoses, with high patient satisfaction 
rates (18). Such platforms can also be tested in the critical care setting. 
If they prove successful, it could significantly increase the efficiency of 
care delivery in the ICU. One-size-fits-all solutions are not effective in 
dealing with complex problems, as evidenced by the lack of 
improvement in septic shock outcomes in recent years despite various 
treatment guidelines (19, 20). Utilizing the concept of reinforcement 
learning has the potential to offer individualized solutions to the 
diverse nature of septic shock and varying host responses. A study by 
Komorowski et al. (21) used reinforcement learning on time series 
data with 44 features collected from mechanically ventilated patients, 
which resulted in improved outcomes compared to standard clinical 
care, reducing 90 day and ICU mortality rates (21). AI can also 
perform real-time electrocardiogram analysis to detect myocardial 
infarctions. A study by Chen et al. (22) reported using AI-assisted 
real-time analysis of electrocardiograms in the prehospital setting and 
found that it was feasible and had the potential to reduce delays in 
treatment times for patients requiring percutaneous coronary 
interventions (22). These examples demonstrate the use of AI for 
therapeutic guidance in medical decision-making for critically ill 
patients with good efficacy.

3.5. Intelligent decision making 
intervention in critical illness

By assisting in decision-making and enabling healthcare 
professionals to concentrate their efforts on investing more time with 
patients, artificial intelligence can help to promote shared decision-
making (SDM) (22). AI technologies offer a wide range of information 
and have the capacity to evaluate enormous amounts of data and find 
correlations that scholars and healthcare professionals would have 
overlooked (23). The bioethics of employing AI for health decision-
making, the challenges involved, patients’ and healthcare practitioners’ 
perspectives of AI-based decision aids, and how it should be included 
to provide patient-centered healthcare are all topics of developing 
study. Nevertheless, little is known about the actual application of AI 
in SDM or how it may help with the decision-making phase of SDM.

4. Challenges and obstacles to AI in 
critical care patient management

Despite the potential benefits of AI in healthcare, particularly in 
the critical care setting, it is important to be aware of the potential 
challenges and obstacles that may arise when implementing AI models 
for critically ill patients. These roadblocks should not be ignored or 
overlooked, as they can have significant consequences for patient care 
and outcomes. The Figure 2 includes interpretability, data privacy and 
sharing, decreased clinical readiness and sub-optimal adherence to 

standard. A figure depicting the challenges and ethical concerns of AI 
in critical care patient management is shown in Figure 2.

4.1. Interpretability of AI in the intensive 
care unit

The deployment of AI in a healthcare setting, specifically at the 
bedside, requires careful planning and consideration of key factors 
such as usability and trustworthiness. The involvement of all relevant 
stakeholders, including patients, clinicians, researchers, and hospital 
administrators, is crucial for the success of the deployment. To ensure 
that the AI systems are effective and well-received, the implementation 
strategy should focus on creating models with a manageable amount 
of information that is presented in an understandable and visually 
appealing manner. This can be  achieved through the use of 
interpretable logic and a user-friendly graphic interface. One of the 
key challenges in deploying AI systems at the bedside is ensuring that 
the AI-generated alerts are accurate and not overwhelming, so as to 
prevent alarm fatigue (23). In recent research on predicting 
hypotension in the ICU, the use of a stacked random forest model was 
found to reduce the number of alerts tenfold while still maintaining 
accuracy (12). To build trust and acceptance of AI systems among end 
users, it is important to understand the AI-generated predictions and 
recommendations. Despite the complex nature of many AI models, 
researchers are working to enhance their interpretability. The creation 
of a graphic user interface is essential for the effective deployment of 
AI systems at the bedside, as it helps to improve hospital workflow and 
reduce the burden on healthcare workers. Additionally, the use of deep 
learning in the analysis of patient behavior and environmental stimuli 
can provide useful information for detecting delirium in ICU patients 
(9). Care-takers are keen to understand how machines arrive at 
predictions that involve patient care. There are different software 
technologies that can help caregivers to understand how machines 

FIGURE 2

Challenges and ethical concerns of AI in critical care patient 
management.
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arrive at these predictions. One such example is the Shapley additive 
explanation (SHAP), a method that explains how machines arrive at 
individual predictions. In a study by Alderden et al. (24), the risk of 
developing hospital-acquired pressure-related injury (HAPrI) was 
analyzed in COVID-19 patients who were hospitalized in the ICU. The 
study aimed to utilize machine learning algorithms to create a 
predictive model for HAPrI risk and ensure that the model was 
transparent and understandable for medical professionals. The best-
performing model was an ensemble SuperLearner, which showed 
good discrimination in HAPrI risk assessment. The use of explainable 
AI methods such as SHAP plots was a novel approach in this study 
and provided a way to visualize the relationships between the patient’s 
characteristics and the predictions made by the model. This study 
found that COVID-19 positive critical care patients have a higher risk 
of HAPrI compared to non-COVID patients. The use of machine 
learning algorithms to evaluate HAPrI risk in COVID-19 patients in 
the ICU is reported to be a feasible approach, and explainable AI 
methods such as SHAP plots provide a means of ensuring that the 
model is understandable and trustworthy for medical professionals. 
Medical professionals need to understand how the model reached its 
decisions for each individual patient to decide whether the model is 
trustworthy for that patient (24). Care-takers generally have a positive 
attitude towards the adoption of AI. Mlodzinski et al. (25) set out to 
examine the perspectives of both healthcare providers and 
non-providers regarding the use of machine learning (ML) in critical 
care. The study found that both groups generally have positive 
attitudes towards the use of ML in healthcare; however, non-providers 
with more knowledge about ML and AI are more likely to feel 
favorable towards its use. The study also found that there were no 
major differences in the level of comfort or knowledge among 
providers, regardless of their level of experience. Furthermore, the 
study identified common concerns such as systemic bias in data, 
patient safety, negative effects on the doctor-patient relationship, and 
data privacy an security. Among providers, workflow interruptions 
were also identified as a major concern, while limited knowledge of 
ML and AI was a concern among non-providers. It provided 
important insights into provider and non-provider perspectives on 
ML-based tools and will play a crucial role in optimizing their clinical 
utility (25). In the future, it will be important to design ICU systems 
that embrace the capabilities of AI and address caregiver concerns in 
order to enable early detection of patient deterioration and improve 
the accuracy and trustworthiness of AI-generated predictions. The 
complex nature of many AI models often makes it difficult to 
understand the rationale behind the computation and output, leading 
to resistance among healthcare professionals to adopting these models 
in daily practice. The fear of performing unnecessary interventions or 
changing treatment strategies without scientific evidence can have 
serious consequences, especially in critical care where patient 
outcomes are directly linked to such decisions (26, 27). However, there 
are efforts underway to address the issue of complex AI models. ML 
techniques are being used to determine what kinds of strategies 
caregivers use to make their decisions. For example, using game 
theory to measure the importance of features in predicting near-term 
hypoxic events during surgery has helped explain the contribution of 
various features to the AI model’s output. This approach has been 
shown to provide consistent results with prior knowledge and 
literature, leading to improved clinical decision-making and 
preventing hypoxia during surgery (28). This can also be extrapolated 

to the critical care setting to explain the contribution of different 
features in the output of AI models. Additionally, providing detailed 
methodologies for model validation, robustness of analysis, and expert 
knowledge can help alleviate concerns and increase the reliability and 
trust in AI models (4).

In this study, in contrast to SHAP, we will concentrate on two 
more example post-hoc model accuracy techniques that have gained 
minimal attention in the physical scientific world, namely breakDown 
(BD) research and Ceteris-Paribus (CP) analyses. The BD technique, 
like the SHAP method, is founded on the variety attribution principle, 
which divides each observation’s estimate into its individual variable 
components (29, 30). The BD values offer action descriptions of the 
impacts of variables in a clever way, in contrast to the SHAP values. 
The independence and non-interaction of the input characteristics 
(factors or descriptors) constitutes a component of the BD method’s 
presumptions (31). For BD evaluation, there are two algorithms: 
step-up and step-down. The step-down approach begins with a 
complete collection of input characteristics.

Finally, in order to minimize the proximity to the prediction 
models, each selected feature contribution is determined by 
successively eliminating one characteristic from a set accompanied by 
variable relaxation. In contrast to the step-down approach, the step-up 
method begins with a null set and proceeds in the other manner. In 
feature contributions, both techniques have been proved to deliver 
consistent results.

On the contrary hand, the CP profiles, also known as individual 
conditional expectancies (ICE) plots, assess the impact of a variable 
from a learned ML model while assuming that the levels of all other 
variables remain constant (akin to what-if analysis).

Using CP profiles, one can quickly see how the source and 
responses are connected and how the projected response depends on 
a characteristic (e.g., in a non-linear, linear or complex). In this 
approach, the CP analysis aids in quantifying the influence of a 
particular variable on the conclusions drawn from a black version and 
offers a brief, visual description of the functional form linking an input 
with an output. From either the SHAP or BD analysis, it is difficult to 
draw conclusions regarding this type of functional reliance. Hence, 
adding CP profile plots to SHAP and BD studies is of great utility.

4.2. Reproducibility issues of AI systems 
during application

Frequently, determining the causative factors of deteriorating 
patients from the complete list of differential diagnoses is tough, 
because of the subtle feature of early illness progression or the 
existence of co-existing disorders disguising the underlying problem. 
Above all, it is important to accurately interpret the underlying 
context, which is sometimes difficult to do. For instance, it is not 
enough to infer that pulmonary infiltrates are caused by an excessive 
amount of alveolar fluid. These may signify pleural effusion, 
pulmonary embolism fluid from an infection or inflammation, 
pulmonary edema with a cardiac origin, collections of blood due to 
trauma, or any of these conditions. Lacking clinical context and 
additional testing, proper and prompt care might be delayed. AI 
might aid in such circumstances by obtaining a more exact diagnosis, 
given enhanced text and picture processing power. Using a machine 
learning algorithm, congestive heart failure (CHF) could 
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be  distinguished from other cause of lung illness (32), and the 
quantity of pulmonary edema brought on by the CHF could 
be measured using semi-supervised machine learning and a finite 
difference autoencoder. An AI model was used to evaluate imaging 
data from hospitalized patients in during acute pulmonary syndrome 
coronavirus 2 (SARS-CoV-2) epidemic in order to identify 
coronavirus disease 2019 (COVID-19) (33).

The application of AI in the clinical setting is hindered by a lack 
of sufficient clinical trials and experiments, leading to a low rate of 
reproducibility and future analysis. A review of 172 AI solutions 
created from chart data revealed that the clinical readiness level of AI 
was low, with 93% of the analyzed solutions falling below stage 4 for 
real-world application and only 2% undergoing prospective validation 
(29). The reproducibility of AI solutions is uncertain due to limitations 
in data openness and algorithmic complexity, and there are no clear 
protocols in place to examine this thoroughly. A study showed that 
attempting to reproduce mortality prediction projects resulted in large 
sample size differences in half of the experiments, highlighting the 
importance of accurate labeling, clinical context, and precise reporting 
methods (30). Adherence to reporting standards and the risk of bias 
are also sub-optimal, as a study of 81 non-randomized and 10 
randomized trials using deep learning showed that only 6 of the 81 
non-randomized studies had been tested in a real-world clinical 
setting, and 72% of the studies had high risks of bias (31). Even more 
complex AI models, such as reinforcement learning, face challenges 
as they require significant computational resources and are difficult to 
test on patients in a clinical environment. However, new approaches 
such as inverse reinforcement learning may offer a solution by 
inferring information about rewards, potentially making decision-
assisting engines more robust and reliable with varying input data, 
which is crucial in critical care data science where data is vast and 
extremely diverse (34).

5. Ethical concerns

The use of AI in critical care is a new and developing field, and 
the ethical issues that may arise from its use are not fully 
understood. However, there are a few aspects that can be discussed 
to anticipate potential ethical dilemmas. One issue is data privacy 
and sharing. The process of collecting and manipulating data to 
find patterns could lead to the leakage of confidential information, 
particularly during the pre-processing stage and external 
validation. De-identification and novel models such as federated 
learning might help to minimize data leakage and increase the 
speed of the validation process (4). Another ethical concern is the 
safety of AI models in patient care. The maturity metric used for 
self-driving cars has been used to describe the safety of AI models, 
with 6 levels ranging from no automation to full automation (35). 
Based on this scale, most AI-driven solutions would currently fall 
into the categories of partial or no automation, meaning that 
human oversight and decision-making are still required. This also 
raises questions about patient autonomy and informed consent, as 
AI recommendations may not always align with a patient’s 
preferences. In order to address these ethical issues and overcome 
the limitations of AI, researchers and clinicians need to be aware 
of the potential problems and develop solutions to mitigate them. 
This also includes understanding patient perspectives and 

incorporating them into the development of practical and ethical 
AI solutions (4).

6. Guidance for future

The Figure 3 includes efficient data transfer, data de-identification, 
rapid processing, quality control, and decentralized federated learning. 
The field of AI has the potential to greatly impact critical care, but there 
are several steps that must be taken in order to make this happen, as 
highlighted in Figure  3. Many of the recommendations have either 
already been implemented or are in the process of being implemented.

One of the most important is ensuring that the data used for 
training AI models is properly de-identified and standardized. This is 
important for both privacy and data quality, as data from different 
hospitals may be structured differently and contain different amounts 
of personal information. The Society of Critical Care Medicine and the 
European Society of Intensive Care Medicine have developed a process 
for de-identifying data, that involves separating personal data from 
anonymous data, conducting a risk-based process to de-identify the 
personal data, and conducting an external review to ensure that all 
privacy and legal considerations are met (36). Another important step 
is standardizing the data in order to facilitate efficient exchange between 
different hospitals. This requires developing a standard format for 
storing and exchanging clinical and physiological data. One such 
format, the Hierarchical Data Format, Version 5 (HDF5), allows for the 
storage, compression, and real-time streaming of multiparameter data. 
This would allow for the integration of other types of large-scale 
datasets, such as those in imaging or genomics (37). Another solution 
is the use of federated learning, where models can be trained locally at 
different hospitals rather than having the data sent to a central location 
for training. This helps to preserve privacy and can be particularly useful 
when the data distribution is imbalanced or skewed. A successful 
example of this approach was seen during the COVID-19 pandemic, 
where 20 academic centers collaborated to predict clinical outcomes 

FIGURE 3

Guidance for future.
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from COVID-19 using a federated learning approach. The AI model 
was trained on chest X-ray data, and achieved an average area under the 
curve (AUC), of 0.92 for predicting 24–72 h outcomes (4). The task of 
labeling events for AI models can be  labor-intensive and resource-
intensive, but novel AI models, such as weakly supervised learning, are 
being developed to make the process more efficient. This type of 
learning can build desired labels with only partial participation of 
domain experts, which preserves resources. Additionally, clinical trials 
can also be designed with AI models to maximize benefits and minimize 
risks to participants, as well as to make the best use of limited resources. 
One example of this is the Randomized Embedded Multifactorial 
Adaptive Platform for Community-Acquired Pneumonia 
(REMAP-CAP) trial, which uses a Bayesian inference model, to identify 
the optimal treatment for community-acquired pneumonia and has 
contributed to improved survival among critically ill COVID-19 
patients (38). The labeling process for AI models can be a difficult and 
resource-intensive task. To make this process more efficient, new AI 
models such as weakly supervised learning have been developed. This 
method of learning allows for the partial involvement of domain experts 
and can reduce resource usage. For example, in the case of COVID-19 
patients visiting the emergency department, weakly supervised learning 
was used in conjunction with medical ontologies and expert-driven 
rules to classify patients with related symptoms. This combination of 
weakly supervised learning and pretrained language models improved 
performance compared to a majority vote classifier, reducing the cost of 
creating classifiers in a short period of time, especially during a 
pandemic when experts may not be available for labeling. Innovative 
trial designs can also be developed with AI models to make the best use 
of resources and minimize risks to participants (39). This platform, 
initially developed for community-acquired pneumonia, has continued 
to enroll patients during the COVID-19 pandemic and has contributed 
to improved survival among critically ill patients (4, 40–42). For an AI 
model to be useful in real-life settings, it needs to provide important 
information in a timely manner, especially for critically ill patients who 
require quick feedback. The AI model should have a fast data 
pre-processing platform, parsimoniously feature input data, and deliver 
output rapidly. To date, no such model has been developed that can 
successfully do the above-mentioned tasks in such a quick manner. 
Although true real-time prediction is a challenging task, the application 
of a real-time AI model in the critical care environment could offer 
significant benefits without delay. Once the AI model is deemed useful 
in a clinical setting, quality assessment efforts should follow to ensure 
its maturity and integration with healthcare. The National Academy of 
Medicine of the United States has published a white paper on AI use in 

healthcare, emphasizing the development of guidelines and legal terms 
for safer, more effective, and personalized medicine (43).

7. Conclusion

The utilization of artificial intelligence (AI) in critical care presents 
numerous opportunities for enhancing outcomes in critically ill patients 
by enabling the perception of disease, predicting changes in pathological 
processes, recognizing unique patterns in disease presentations, and 
assisting in the process of clinical decision-making in a symbiotic fashion 
with care-givers. Moreover, AI can facilitate the understanding of 
medical processes by presenting recommendations for patient care in an 
interpretable and hierarchical manner through techniques such as 
reinforcement learning. The technology has the potential to improve 
understanding of the diverse clinical needs of critically ill patients, risk 
assessment for treatments, and the analysis of patient outcomes.
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