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Background: At the end of 2019, the coronavirus disease 2019 (COVID-19)

pandemic increased the hospital burden of COVID-19 caused by the SARS-

Cov-2 and became the most significant health challenge for nations worldwide.

The severity and high mortality of COVID-19 have been correlated with various

demographic characteristics and clinical manifestations. Prediction of mortality

rate, identification of risk factors, and classification of patients played a crucial role

in managing COVID-19 patients. Our purpose was to develop machine learning

(ML)-based models for the prediction of mortality and severity among patients

with COVID-19. Identifying the most important predictors and unraveling their

relationships by classification of patients to the low-, moderate- and high-risk

groups might guide prioritizing treatment decisions and a better understanding

of interactions between factors. A detailed evaluation of patient data is believed

to be important since COVID-19 resurgence is underway in many countries.

Results: The findings of this study revealed that the ML-based statistically

inspired modification of the partial least square (SIMPLS) method could predict

the in-hospital mortality among COVID-19 patients. The prediction model was

developed using 19 predictors including clinical variables, comorbidities, and

blood markers with moderate predictability (Q2 = 0.24) to separate survivors

and non-survivors. Oxygen saturation level, loss of consciousness, and chronic

kidney disease (CKD) were the top mortality predictors. Correlation analysis

showed different correlation patterns among predictors for each non-survivor

and survivor cohort separately. The main prediction model was verified using

other ML-based analyses with a high area under the curve (AUC) (0.81−0.93) and

specificity (0.94−0.99). The obtained data revealed that the mortality prediction

model can be different for males and females with diverse predictors. Patients

were classified into four clusters of mortality risk and identified the patients at
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the highest risk of mortality, which accentuated the most significant predictors

correlating with mortality.

Conclusion: An ML model for predicting mortality among hospitalized COVID-

19 patients was developed considering the interactions between factors that

may reduce the complexity of clinical decision-making processes. The most

predictive factors related to patient mortality were identified by assessing and

classifying patients into different groups based on their sex and mortality risk

(low-, moderate-, and high-risk groups).

KEYWORDS

COVID-19, prediction model, machine learning, COVID-19 risk factors, clustering COVID-
19 patients

Introduction

The coronavirus disease 2019 (COVID-19) pandemic has
affected more than 600 million individuals in more than 220
countries and regions, with more than 6.5 million deaths till
21 August, 2022 (1). The approximate basic production number
is 3.15 with a 95% CI (2.41−3.90), while the estimated case
fatality ratio is 2.72% with 95% CI (1.29−4.16%) (2). COVID-
19 disease can manifest with a wide range of clinical features
ranging from no symptoms to multi-organ failure (3). Although
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) mainly affects the lungs, cardiovascular, neurological, renal,
and vascular complications can also contribute to mortality (4).
Accurate prognostication of clinical outcomes in this patient
population can be challenging due to the high variability in disease
severity; however, it is still essential considering the need for
effective triage and efficient allocation of limited resources (i.e.,
beds and ventilators). Therefore, identification of high-risk patients
and recognition of mortality predictors could possibly allow to
offer more targeted approaches and better allocate resources. The
identification of contributing factors would allow for applying
targeted strategies in patients with the highest mortality risk.
Patients’ accurate history, clinical signs, fever and oxygen saturation
measurements, blood cell counts (CBCs), other laboratory findings,
computed tomography (CT) scan imaging, and real-time reverse-
transcription polymerase chain reaction (RT-PCR) test are included
in prognostic and diagnostic criteria (5, 6). According to the
previous studies, some laboratory findings such as lymphopenia,
neutropenia, increased alanine aminotransferase (ALT), aspartate
aminotransferase (AST), lactate dehydrogenase (LDH), high-
sensitivity C-reactive protein (hs-CRP), and some clinical signs
such as myalgia and shortness of breath had a relationship with
an increased mortality and could also be considered as risk factors
for COVID-19 mortality (7, 8). In addition, underlying diseases
such as diabetes, cardiovascular disease (CVD), chronic pulmonary
disease (CPD), chronic liver disease (CLD), chronic kidney disease
(CKD), rheumatic diseases, cerebrovascular diseases, cancers,
immunodeficiency diseases, hypertension, risk factors such as high
body mass index (BMI), hyperlipidemia, and history of smoking
are also among the factors that can lead to more severe forms
of the disease (9, 10). In this regard, developing a mortality
prediction model using artificial intelligence approaches such as
deep learning for radiography and computed tomography (CT)

image analysis (11–16) and multivariable analysis could be of
tremendous value. To obtain invaluable knowledge from the high-
dimensional data effectively, projection-based machine learning
(ML) methods such as statistically inspired modification of the
partial least square (SIMPLS), random forest (RF), support vector
machine (SVM), and artificial neural network (ANN) have been
increasingly utilized (17–19). The ML methods are discriminated
from conventional statistical methods such as logistic regression,
Cox regression, generalized additive models, and least-square linear
regression method by presenting accurate predictions, enjoying
flexibility and scalability, and finding the relationships between
variables and internal validity of ML methods using large datasets
(20). In contrast to conventional prediction models that only use
input data, artificial intelligence-oriented models are more capable
of dealing with continuous data involving unpredictability and
uncertainty, which in turn lead to integrated results (21). This
property can help healthcare professionals use ML-based methods
in clinical settings and understand physiological and biological
processes to fight human diseases and global pandemics such as
COVID-19 (22).

In the current study, an ML-based statistical method was
applied to predict mortality among COVID-19 patients and
identified the complex relationship between predictors in clinical
practice. The clustering methods were also used to categorize the
patients based on sex and mortality risk (low-, moderate-, and
high-risk groups). To achieve this aim, 82 variables including
clinical data, comorbidities, and biochemical data were used in a
large cohort of COVID-19 patients. Understanding the potential
predictors of outcome in COVID-19 patients, including oxygen
saturation <88, loss of consciousness, and chronic kidney disease
as the top three mortality predictors, is vital to make an appropriate
clinical decision and improve the healthcare system to provide
better disease management services.

Materials and methods

Data collection

The present retrospective study was conducted by the Tehran
University of Medical Science (TUMS) in Imam Khomeini Hospital
Complex (IKHC) following the study of Allameh et al. (22, 23).
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TABLE 1 Distribution of patients’ demographics, clinical variables,
comorbidities, and blood analytes and cells between COVID-19
non-survivors and survivors.

Variables Dead
(n = 305)

number (%)

Alive
(n = 1439)

number (%)

P-
value

Male 200 (65.5%) 831 (57.7%) <0.0001

Age (years) M ± SD 57.69 ± 18.23 57.96 ± 16.59 0.805*

ICU admission 213 (69.8%) 147 (10.2%) <0.0001

ICU length of stay 5.67 ± 9.14 0.61 ± 3.24 <0.0001

BMI M ± SD 23.01 ± 3.70 24.25 ± 10.80 0.048

Smoking and alcohol and
drug

45 (14.7%) 131 (0.09%) <0.0001

Chronic pulmonary disease 42 (13.7%) 138 (0.09%) <0.0001

Hypertension 211 (69.1%) 670 (46.5%) <0.0001

Hypotension 4 (1.3%) (0.2%) <0.0001

Cerebrovascular accident 20 (6.5%) 41 (2.8%) <0.0001

Cancer 43 (12.2%) 103 (7.1%) <0.0001

Cardiovascular disease 115 (37.7%) 338 (23.4%) <0.0001

Chronic kidney disease 85 (27.8%) 111 (7.7%) <0.0001

Chronic liver disease 10 (3.2%) 24 (1.6%) 0.001

Neurological disease 23 (7.5%) 64 (4.4%) <0.0001

Immunodeficiency disease 3 (0.9%) 12 (0.8%) <0.0001

Rheumatic disease 20 (6.5%) 42 (2.9%) <0.0001

Gastrointestinal ulcer 4 (1.3%) 23 (1.5%) 0.002

Hemiplegia 2 (0.6%) 10 (0.6%) 0.002

HIV 4 (1.3%) 3 (0.2%) <0.001

Diabetes 124 (40.6%) 478 (33.2%) <0.0001

Hyperthyroidism 19 (6.2%) 110 (7.6%) 0.001

Transplantation 4 (1.3%) 16 (1.1%) 0.002

Loss of consciousness 47 (15.4%) 18 (1.2%) <0.0001

Heart abnormal findings 110 (36%) 210 (14.5%) <0.0001

Weight loss 5 (1.6%) 16 (1.1%) 0.002

Wet cough 63 (20.6%) 277 (19.2%) 0.001

Trembling 95 (31.1%) 664 (46.1%) <0.0001

Sweating 22 (7.2%) 172 (11.9%) <0.0001

Sputum 32 (10.4%) 92 (6.3%) <0.0001

Rhinorrhea 9 (2.9%) 34 (2.3%) 0.002

Muscle pain myalgia 120 (39.3%) 774 (53.7%) <0.0001

Loss of taste 3 (0.9%) 80 (5%) <0.0001

Loss of smell 3 (0.9%) 97 (6.7%) <0.0001

Limb edema 21 (6.8%) 32 (2.2%) <0.0001

Joint pain arthralgia 8 (2.5%) 56 (3.8%) 0.001

Hemoptysis 16 (5.2%) 58 (4%) 0.001

Fatigue 13 (4.2%) 49 (3.4%) 0.002

Epigastric 27 (8.8%) 146 (10.1%) 0.002

Dizziness 16 (5.2%) 125 (8.6%) <0.0001

Diarrhea 33 (10.8%) 246 (17%) <0.0001

(Continued)

TABLE 1 (Continued)

Variables Dead
(n = 305)

number (%)

Alive
(n = 1439)

number (%)

P-
value

Chest pain 25 (5.5%) 224 (15.5%) <0.0001

Cardiac arrhythmia 3 (0.9%) 13 (0.9%) 0.002

Temperature 37.19 ± 0.84 37.19 ± 0.87 0.993*

Systolic blood pressure
M ± SD

122.22 ± 22.30 121.96 ± 17.30 0.821*

Diastolic blood pressure
M ± SD

75.39 ± 13.05 78.96 ± 33.82 0.069*

Heart rate M ± SD 96.10 ± 19.9 94.35 ± 37.3 0.427*

Respiratory rate M ± SD 21.46 ± 7.82 20.45 ± 7.52 0.036

Oxygen saturation (percent)
M ± SD

83.60 ± 11.61 90.76 ± 6.23 <0.0001

Hemoglobin (HB) M ± SD 13.00 ± 2.46 13.48 ± 2.18 0.001

Fasting blood sugar (FBS)
M ± SD

132.47 ± 91.24 98.95 ± 54.31 <0.0001

ESR M ± SD 56.26 ± 40.31 48.14 ± 38.59 0.001

Ferritin (I) M ± SD 589.47 ± 867.36 295.29 ± 432.65 <0.0001

Urea M ± SD 55.87 ± 63.83 34.70 ± 28.27 <0.0001

pHM ± SD 7.39 ± 0.03 7.40 ± 0.01 0.004

D-dimer M ± SD 1,073 ± 2,217 1490 ± 25,067 0.772*

Creatinine M ± SD 1.62 ± 1.30 1.20 ± 0.80 <0.0001

BSM ± SD 108.60 ± 106.26 71.05 ± 91.54 <0.0.0001

Albumin M ± SD 5.12 ± 13.99 5.31 ± 44.73 0.940

ALT M ± SD 49.06 ± 106.94 35.00 ± 30.51 <0.0.0001

AST M ± SD 34.16 ± 123.72 24.71 ± 21.81 0.007

ALP M ± SD 94.39 ± 97.13 83.55 ± 37.41 0.001

LDH M ± SD 185.43 ± 161.88 193.95 ± 333.58 0.191*

BNP M ± SD 399.95 ± 2783.98 37.86 ± 524.14 <0.0001

Troponin M ± SD 16.54 ± 131.92 2.44 ± 65.51 0.006

CPK M ± SD 126.01 ± 212.49 100.17 ± 49.09 <0.0001

Direct bilirubin M ± SD 0.30 ± 1.13 0.21 ± 0.07 0.002

Total bilirubin M ± SD 0.82 ± 1.52 0.66 ± 0.17 <0.0001

Calcium (Ca) M ± SD 8.43 ± 1.05 8.83 ± 0.86 <0.0001

Sodium (Na) M ± SD 138.41 ± 4.63 138.90 ± 3.79 0.049

Potassium (K) M ± SD 4.27 ± 0.67 4.18 ± 0.55 0.008

Phosphorus (P) M ± SD 3.75 ± 1.22 3.64 ± 0.81 0.057*

Magnesium (Mg) M ± SD 2.18 ± 0.49 2.15 ± 0.54 0.314*

WBC M ± SD 7,925 ± 8,710 29,268 ± 45,967 0.416*

Neutrophil M ± SD 7,404 ± 6,785 23,362 ± 2,58,760 0.437*

Lymphocyte M ± SD 1,519 ± 1,341 4,091 ± 52,326 0.391*

PLT M ± SD 2,32,662 ± 10,4536 2,41,032 ± 1,00,840 0.191*

*non-significant.

A total of 1,743 RT-PCR confirmed COVID-19 cases were
enrolled in the study. Overall, 82 variables including clinical data,
comorbidities, and biochemical data were collected at the hospital
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admission, intensive care unit (ICU) admission, and hospital
discharge time. Moreover, 42 binary and 40 continuous variables
were attended to in this study.

The initial clinical data element collected during the patient
encounter was considered the presentation data. These data
included (a) demographic variables such as age, sex, and BMI,
(b) comorbidities including diabetes, CVD, hypertension, CKD,
neurological diseases, and immunodeficiency disease, and (c)
clinical variables consisting of oxygen saturation level, fever,
loss of smell, loss of taste, and wet cough. To capture much
more complicated relationships and facilitate interpretations and
presentations of results, continuous variables were converted
to dichotomous variables using predictive partition analysis. Of
course, continuous variables were also used to create a prediction
model. Data underwent filtration when the variables were missed
or not measured in more than 85% of cases. The handling of the
missing data was performed using the mean imputation method in
all data analysis and prediction models.

Statistical analysis

A pro version of JMP (JMP R© v. 16.1.0/SAS Institute Inc.)
statistical discovery software was used for the data analysis. The
SIMPLS analysis was applied to create prediction models using
patients’ characteristics, clinical symptoms, comorbidities, and
biochemical data collected at the hospital admission time. As an
algorithm of PLS (a linear machine learning method) (24, 25).
SIMPLS is an alternative algorithm for partial least square (PLS)
regression that has been proposed to calculate the PLS factors
by maximizing covariance in the linear approach of the original
variable’s combination. SIMPLS is able to find the score vectors
of multiple Xs and Ys variables. The advantage of SIMPLS is
to compute the factors from the original (centered) data. The
R weights obtained by SIMPLS are associated with a simpler
interpretation compared to W weights. SIMPLS is a faster method
since the algorithm does not need to break down the X matrix.
SIMPLS could be similar to PLS1 in terms of univariate Y, but it is
different from PLS2 regarding multivariate Y in that the covariance
criterion is maximized by SIMPLS (25).

Statistically inspired modification of the partial least square
was performed using training and validation sets. The validation
set comprised 519 subjects that were automatically and randomly
created based on approximately 30% of 1,743 hospitalized COVID-
19 patients. Initially, the prediction model was created using all
variables, and the best prediction model was obtained using the
variable importance in projection (VIP) score of greater than
1.0. The VIP is defined as a weighted sum of squares of the
variable’s weights and shows the contribution of variables to predict
and characterize the factors in the model (26). The statistics Q2

(goodness of prediction) and R2Y (goodness of variation) were
obtained by SIMPLS using the leave-one-out cross-validation (CV)
procedure. The CV, known as internal validation, constructed Q2

and R2Y based on the training set and validated them using the
validation set. The prediction model determines the number of
factors to be included in the model. The best prediction model
was selected when Q2 had the maximum value and did not start
decreasing. In addition, R2Y was higher than Q2, which prevented

overfitting. Moreover, the partition analysis was used to create
a decision tree of the data partition according to a relationship
between the outcome and predictors. The data were partitioned
into training and validation sets. The partition algorithm searched
all possible splits of predictors to best predict the response.
The most differentiating clinical predictors obtained by SIMPLS
used the partition analysis. The predictive partition analysis was
applied for categorizing continuous variables by obtaining the
best cutoff point for each variable such as age, BMI, clinical
symptoms [heart rate (HR) and respiratory rate (RR)], and blood
biochemical data. The partition prediction algorithm found all
possible splits of the variables to predict the response. As there
might be more than one cutoff point for each variable, the first
cutoff points were selected for the best split. Furthermore, the
partition analysis was used to obtain cutting values for either
continuous or categorical (nominal or ordinal) variables such as
age, HR, RR, and BMI. Principal component analysis (PCA) was
used to present the differentiation between survivors and non-
survivors in an unsupervised manner using all variables. PCA was
also used to cluster subgroups using only the most differentiating
variables obtained from SIMPLS. PCA analysis was carried out
in two steps. The first step used all variables to find outliers
and trends, while the second step used the most differentiating
predictors obtained from SIMPLS method. Latent class analysis
(LCA) was applied to identify the COVID-19 patients at the highest
risk of mortality by clustering patients into subgroups with high,
moderate, and low mortality rates. All continuous variables were
normalized, transformed, and scaled to be used independently
or in combination with binary data for predicting the mortality
rate. The model screening was performed to verify the final
prediction model by providing a summary table using the other
ML methods such as SVM, K-nearest neighbor (KNN), generalized
regression lasso (GRL), boosting neural networks (BNN), and
random forest (RR). Model screening also helps to find an efficient
workflow as well as compare and explore datasets for the best
predictive model.

Results

Patients’ characteristics

A total of 2,498 patients registered in the COVID-19
registry based on their hospitalization between 20 February,
2020, and 27 October, 2020, were included in the analyses.
These patients had positive SARS-CoV-2 RT-PCR. A total of
1,743 COVID-19 patients were enrolled in the study with
17.4% in-hospital mortality (n = 305). Table 1 shows the
demographic characteristics, comorbidities, clinical symptoms, and
blood biochemical concentrations of COVID-19 survivors and
non-survivors that were admitted to the hospital. Table 1 indicates
that most comorbidities and clinical symptoms were significantly
different between non-survivors and survivors. Among the
analyzed blood concentrations, only D-dimer and LDH were not
significantly different between COVID-19 survivors and non-
survivors, and none of the blood cells were significantly different
between the two groups.
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FIGURE 1

Statistically inspired modification of the partial least square (SIMPLS)-based scatter plot indicating a good separation between COVID-19 survivors
and non-survivors.

Predicting hospital mortality using
machine learning-based model

Patients’ demographics, clinical symptoms, comorbidities, and
blood analytes were used for predicting the hospital mortality
using the SIMPLS as an ML-based multivariate data analysis model
(Figure 1). The best prediction model was obtained by SIMPLS
using the most differentiating variables with VIP > 0.8 (26). The
prediction of mortality was determined based on the 1,224 and 519
COVID-19 patients in the training and validation sets, respectively.
The best model to predict the mortality had moderate predictability
(Q2 = 0.259) with the variability of R2 = 0.267 using 19 most
differentiating predictors that contributed to the prediction.Table 2
presents 19 predictors ordered by their importance in the model.
In this regard, oxygen saturation <88% was the most important
variable to predict the COVID-19 mortality and was followed by
loss of consciousness, CKD, heart abnormal findings, hypertension,
and age >65.

Although most of variables were found to be significant
predictors between non-survivors and survivors (Table 1) using
univariate analysis, the multivariate prediction model revealed that
19 variables ordered by their importance in the model could be the
best and most predictable variables for predicting the mortality.

The coefficient plot showed the positive correlation of age
>65, presence of hypertension, cancer, CVD, CKD, rheumatic
disease, heart abnormal findings, sputum, limb edema, loss of
consciousness, oxygen saturation <88%, potassium >4, and ALT
>13 with the mortality among COVID-19 patients. Astonishingly,
BMI > 24.8, diabetes, trembling, muscle pain myalgia, loss of taste,
and loss of smell were negatively correlated with the mortality. The
coefficient plot illustrated the correlation between predictors and
mortality (Figure 2).

Principal component analysis-based correlation analysis
showed a high positive correlation between age >65, hypertension,
CVD, CKD, and heart abnormal findings. Diabetes was correlated

TABLE 2 The most differentiating predictors and their importance in the
projection (VIP) scores for the predicting the mortality outcome.

Variables VIP

1 Oxygen saturation < 88 3.21

2 Loss of consciousness 2.49

3 Chronic kidney disease 2.32

4 Heart abnormal finding 2.15

5 Hypertension 2.04

6 Age > 65 1.87

7 Cardiovascular disease 1.47

8 Trembling 1.24

9 Muscle pain myalgia 1.22

10 Limb edema 1.12

11 Sputum 0.84

12 Rheumatological disease 0.96

13 Loss of smell 0.94

14 Cancers 0.94

15 Diabetes 0.98

16 ALT = 13 0.92

17 Potassium = 4 0.84

18 Loss of taste 0.83

19 BMI = 24.8 0.83
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FIGURE 2

Coefficient plot shows the relative correlation of 19 most differentiating variables to predict mortality. Loss of consciousness, oxygen
saturation < 88 and chronic kidney disease shows the highest relative correlation with mortality.

with the above-mentioned predictors, with the exception of
heart abnormal findings. Trembling, muscle pain myalgia,
and loss of taste and smell were negatively correlated with
age > 65, hypertension, CVD, CKD, and heart abnormal findings.
Interestingly, oxygen saturation < 88% showed a relatively high
correlation with only age > 65, hypertension, and heart abnormal
findings. Fascinatingly, although BMI > 24.8 was not correlated
with comorbidities and oxygen saturation, it somehow had a
positive correlation with clinical symptoms (Table 3).

Multivariate correlation analysis showed a different correlation
pattern between the predictors for each of the non-survivor and
survivor cohorts separately (Figure 3). According to Figure 3, the
correlations between hypertension, heat abnormal findings, CVD,
and age >65 discriminated non-survivors from survivors.

Model screening showed high AUCs (>0.80), high specificities
(>90%), and good sensitivities (>70%) using the most
differentiating predictors in other ML methods such as SVM,
KNN, and GRL (Table 4).

Mortality prediction model revealing the
difference in the prognosis of mortality
rate between male and female patients

Statistically inspired modification of the partial least square-
based prediction models showed that the prediction of mortality

was different between male (training set = 723, validation set = 308)
and female (training set = 501, validation set = 211) patients.
The best mortality prediction models used the most differentiating
variables with VIP > 1.0 and revealed the predictabilities of
Q2 = 0.243 and Q2 = 0.195 for males and female, respectively.
Hence, the best models were obtained by 26 (VIP > 0.8)
and 19 (VIP > 1.0) predictors among males and females,
respectively, (Table 5). Remarkably, oxygen saturation < 88%, loss
of consciousness, and CKD were the top important predictors
for predicting the mortality among male and female patients.
Nonetheless, unique mortality predictors among male patients
indicated that muscle pain myalgia, loss of smell, creatine > 1.7,
and ALY > 23 had a negative correlation with the mortality,
while sputum, CPD, smoking/alcohol/drug history, urea > 49,
and transplantation history had a positive correlation with the
mortality. Unique mortality predictors among female patients
showed that BMI > 24.8, chest pain, calcium > 9, and
sweating had a negative correlation with the mortality, whereas
rheumatic disease, CLD, and human immunodeficiency virus
(HIV) had a positive correlation with the mortality. Interestingly,
the correlation of trembling, Mg > 2.2, and loss of taste with
the mortality was different between male and female patients.
The male-specific model for predicting the mortality showed
the differences in two overlapped trembling and loss of taste
predictors with the general prediction model. These predictors
had positive and negative correlations with mortality in the
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Age > 65 1 -0.08 0.303 0.021 0.263 0.075 0.16 0.023 0.022 0.111 -0.11 0.006 -0.13 -0.08 -0.1 0.007 -0.12 0.02 -0.01

BMI > 24.8 -0.08 1 -0.01 -0.08 -0.01 0.01 0.012 0.006 0.009 -0.09 0.121 0.042 0.087 0.085 0.045 -0.02 0.053 -0.01 0.061

Hypertension 0.303 -0.01 1 -0.02 0.335 0.178 0.287 0.035 0.08 0.247 -0.1 0.015 -0.07 -0.05 -0.09 0.075 -0.1 0.04 0.016

Cancers 0.021 -0.08 -0.02 1 -0.03 0.023 0.003 -0 0.061 0.092 -0.08 0.021 -0.1 -0.03 -0.03 0.055 0.007 0.005 -0.01

Cardiovascular diseases 0.263 -0.01 0.335 -0.03 1 0.145 0.158 0.02 0.028 0.202 -0.1 0.014 -0.06 -0.04 -0.05 0.093 -0.07 0.022 0.018

Chronic kidney disease 0.075 0.01 0.178 0.023 0.145 1 0.131 0.059 0.15 0.164 -0.01 0.029 -0.02 -0.05 -0.04 0.096 -0.05 0.066 0.087

Diabetes 0.16 0.012 0.287 0.003 0.158 0.131 1 0.023 0.042 0.045 -0.06 0.024 -0.02 0.002 -0.02 0.019 -0.05 -0.03 -0.01

Rheumatological diseases 0.023 0.006 0.035 -0 0.02 0.059 0.023 1 0.011 0.013 -0.01 0.007 -0.02 -0.03 -0.03 0.056 -0.03 -0.01 0.001

Loss of consciousness 0.022 0.009 0.08 0.061 0.028 0.15 0.042 0.011 1 0.063 -0.02 0.04 -0.04 0.013 -0.01 0.018 -0.1 -0 -0.01

Heart abnormal findings 0.111 -0.09 0.247 0.092 0.202 0.164 0.045 0.013 0.063 1 -0.11 -0.04 -0.12 -0.02 -0.03 0.115 -0.11 0.054 0.041

Trembling -0.11 0.121 -0.1 -0.08 -0.1 -0.01 -0.06 -0.01 -0.02 -0.11 1 0.018 0.219 0.097 0.102 -0.03 0.073 -0 -0.04

Sputum 0.006 0.042 0.015 0.021 0.014 0.029 0.024 0.007 0.04 -0.04 0.018 1 0.06 0.074 0.066 -0.04 0.003 0.032 -0.04

Muscle aain myalgia -0.13 0.087 -0.07 -0.1 -0.06 -0.02 -0.02 -0.02 -0.04 -0.12 0.219 0.06 1 0.11 0.097 -0.06 0.012 -0 -0

Loss of taste -0.08 0.085 -0.05 -0.03 -0.04 -0.05 0.002 -0.03 0.013 -0.02 0.097 0.074 0.11 1 0.64 0.007 0.075 -0.04 -0.02

Loss of smell -0.1 0.045 -0.09 -0.03 -0.05 -0.04 -0.02 -0.03 -0.01 -0.03 0.102 0.066 0.097 0.64 1 -0 0.072 -0.03 -0.01

Limb edema 0.007 -0.02 0.075 0.055 0.093 0.096 0.019 0.056 0.018 0.115 -0.03 -0.04 -0.06 0.007 -0 1 -0.04 0.024 0.023

Oxygen saturation < 88 -0.12 0.053 -0.1 0.007 -0.07 -0.05 -0.05 -0.03 -0.1 -0.11 0.073 0.003 0.012 0.075 0.072 -0.04 1 -0.03 -0.04

Potassium > 4 0.02 -0.01 0.04 0.005 0.022 0.066 -0.03 -0.01 -0 0.054 -0 0.032 -0 -0.04 -0.03 0.024 -0.03 1 0.044

ALT > 13 -0.01 0.061 0.016 -0.01 0.018 0.087 -0.01 0.001 -0.01 0.041 -0.04 -0.04 -0 -0.02 -0.01 0.023 -0.04 0.044 1

Cardiovascular diseases, chronic kidney disease and hypertension have more correlation with other predictors. Positive correlations are shown in red while negative correlations are shown in blue. The intensity of the color is related to correlation coefficients.
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FIGURE 3

Multivariate correlation heat map clearly indicating a different pattern between survivors and non-survivors. Age > 65, BMI > 24.8 and hypertension
as well as oxygen saturation < 88, cardiovascular disease and chronic kidney disease are more correlated among non-survivors than survivors.

TABLE 4 Model screening of prediction mortality COVID-19 patients shows a high AUC and specificity for most ML-based methods such as support
vector machine, neural boosted and K Nearest Neighbors.

Method N Entropy R2 Misclassification
rate

AUC RASE Generalized
R2

Sensitivity Specificity

Training set

Bootstrap forest 1224 0.419 0.125 0.927 0.290 0.532 63 97

Boosted tree 1224 0.414 0.109 0.917 0.287 0.527 73 97

Neural boosted 1224 0.312 0.143 0.874 0.316 0.416 61 95

Nominal logistic 1224 0.287 0.147 0.866 0.322 0.386 66 96

Generalized regression lasso 1224 0.269 0.152 0.863 0.325 0.365 74 97

Support vector machines 1224 0.248 0.147 0.885 0.322 0.34 85 99

Decision tree 1224 0.234 0.158 0.82 0.334 0.323 71 96

Fit stepwise 1224 0.22 0.152 0.825 0.335 0.308

K nearest neighbors 1224 0.152 0.168 80 98

Validation set

Neural boosted 519 0.291 0.144 0.857 0.317 0.392 57 94

Fit stepwise 519 0.282 0.146 0.846 0.319 0.382

Generalized regression lasso 519 0.258 0.152 0.844 0.325 0.353 72 97

Nominal logistic 519 0.240 0.152 0.840 0.328 0.331 61 94

Boosted tree 519 0.238 0.158 0.837 0.331 0.328 55 98

Decision tree 519 0.235 0.1541 0.8112 0.33513 0.3247 70 96

Support vector machines 519 0.2316 0.1387 0.8354 0.32522 0.3205 81 99

Bootstrap forest 519 0.1909 0.1638 0.8072 0.34281 0.2691 73 97

K nearest neighbors 519 0.0855 0.1734 83 96
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male-specific and general models, respectively. Model screening
showed high AUCs > 0.89 and > 0.81 for models for men and
women, respectively, with high specificities (>95%), and good
sensitivities (>70%) for models of women than men using the most
differentiating predictors in other ML methods such as SVM, KNN,
and GRL (Supplementary Tables 1, 2).

Classification of COVID-19 patients to
low-, moderate-, and high-risk groups

Latent class analysis (LCA) was applied to cluster the COVID-
19 patients into low-, moderate-, and high-risk groups using
19 most differentiating predictors obtained from the SIMPLS
prediction models. The best model was obtained by 4 clusters
using LCA among COVID-19 patients. LCA-based clusters showed
3%, 8% (low risk), 18% (moderate risk), and 36% (high risk)
of the mortality rate due to COVID-19 for the clusters 1, 2, 3,
and 4, respectively, (Figures 4, 5). Table 6 shows the coefficient
contribution of each variable in different LCA-based clustering
groups. The mentioned table indicates that cluster 1 with the lowest
mortality rate (3%) was apparently characterized by age <65 and
the presence of trembling, muscle pain myalgia, and loss of taste
and smell. On the other hand, the presence of hypertension, CKD,
and diabetes was highly correlated with cluster 4 with the highest
mortality rate (36%). Remarkably, cluster 3 with the second highest
mortality rate (18%) was similar to cluster 4; however, it was well-
characterized by a higher correlation of age >65, cancers, CVD,
heart abnormal findings, oxygen saturation <88%, and potassium
>4.

Further SIMPLS analysis revealed a very high predictive
(Q2 = 0.63) prediction model to discriminate four clusters
based on the 19 most differentiating variables obtained from
the primary SIMPLS (Figure 4), showing the significant impact
of the above-mentioned variables on each cluster (Table 6).
The results demonstrated that the best prediction model was
obtained through the combination of patients’ clinical variables
and comorbidities with paraclinical variables, while none of them
were strong predictors to be separately applied for predicting the
mortality. Moreover, the obtained data showed that the categorical
paraclinical variables worked better than continuous variables
(details are not shown).

Prediction of ICU admission need using
ML-based SIMPLS models

Statistically inspired modification of the partial least square-
based prediction models showed moderate predictability
(Q2 = 0.248) for prediction ICU admission need using the
SIMPLS-based model on the training set = 1224 and validation
set = 519 (Supplementary Figure 1). Although the predictability
of the model was similar to that of the mortality model, it
suffered from a lower sensitivity (65−70%) than other models.
Nonetheless, loss of consciousness, oxygen saturation, heart
abnormal findings, CKD, and hypertension were the top five
most important predictors among the 12 predictors of the current
model (Supplementary Table 3). Interestingly, hypertension,

TABLE 5 The most differentiating predictors and their importance in the
projection (VIP) scores for the predicting the mortality outcome A:
among men COVID-19 patients, B: among women COVID-19 patients.

Predictors VIP Correlation
with mortality

(A)

1 Oxygen saturation < 88 3.45 Positive

2 Loss of consciousness 2.69 Positive

3 Chronic kidney disease 2.55 Positive

4 Hypertension 2.44 Positive

5 Heart abnormal findings 2.45 Positive

6 Age > 65 1.92 Positive

7 Cardiovascular disease 1.77 Positive

8 Muscle pain myalgia 1.51 Negative

9 ALT > 13 1.40 Positive

10 Sputum 1.41 Positive

11 Potassium > 4.0 1.11 Positive

12 Diarrhea 1.12 Negative

13 Total lung involvement 1.09 Positive

14 Diabetes 0.99 Negative

15 Trembling 1.03 Positive

16 Loss of sense of smell 0.96 Negative

17 Chronic pulmonary disease 0.94 Positive

18 Smoking alcohol drug history 0.95 Positive

19 Limb edema 0.91 Positive

20 Mg > 2.2 0.99 Negative

21 Cancers 0.91 Positive

22 Urea > 49 0.85 Positive

23 Loss of sense of taste 0.82 Positive

24 Creatine > 1.7 0.93 Negative

25 Transplantation 0.81 Positive

26 ALY > 23 0.93 Negative

(B)

1 Oxygen saturation < 88 3.24 Positive

2 Loss of consciousness 2.89 Positive

3 Chronic kidney disease 2.27 Positive

4 Heart abnormal findings 2.05 Positive

5 Trembling 1.93 Negative

6 Hypertension 1.68 Positive

7 Age > 65 1.74 Positive

8 Rheumatological diseases 1.74 Positive

9 Limb edema 1.59 Positive

10 BMI > 24.8 1.38 Negative

11 Cardiovascular disease 1.34 Positive

12 Chronic liver disease 1.17 Positive

13 HIV 1.15 Positive

14 Chest pain 1.15 Negative

15 Cancers 1.09 Positive

16 Calcium > 9 1.01 Negative

17 Sweating 1.01 Negative

18 Mg > 2.2 1.00 Positive

19 Loss of sense of taste 1.02 Negative

The gray highlighted variable represents unique predictor between models of men
and women.
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FIGURE 4

Principal component analysis (PCA) plot illustrates the Latent class analysis (LCA)-based clustering of COVID-19 patients. Clusters 3 and 4 are
correlated with a higher mortality rate.

hypotension, and age < 65 were positively correlated with ICU
admission (Supplementary Figure 2).

Discussion

The current study focused on the application of the ML-based
statistical method in a clinical setting. The findings indicated that
the ML-based SIMPLS model can moderately predict the mortality
among COIVD-19 patients using clinical data, comorbidities,
and biochemical data. The prediction model set the scene for
identifying the most important predictors impacting the mortality
of COVID-19 patients. In our study, only 19 variables including 2
demographics, 9 clinical symptoms, 6 comorbidities, and 2 blood
chemicals were the potential predictors of the mortality, while
many variables were significantly different between non-survivors
and survivors. Mortality predictor variables were weighted and
ordered based on their importance in the prediction model. Hence,
oxygen saturation < 88%, loss of consciousness, CKD, heart
abnormal findings, and hypertension were regarded as the top
five most important predictors with the highest impact on the
model. Nonetheless, the model was less successful without other
predictors in the list (Table 1) with less impact coefficient (VIP).

The model overfitting was observed with a shorter list of predictors.
Our findings using ML-based prediction models showed different
patterns of predictors between male and female patients. However,
overall oxygen saturation < 88%, loss of consciousness, and CKD
were the top three predictors of the mortality among male and
female patients. Diabetes and CPD were important comorbidity
predictors in male patients, while rheumatic disease and CLD
were important comorbidity predictors in female patients. ALT,
potassium, urea, creatinine, magnesium, and alkaline phosphatase
(ALP) were potential blood chemical predictors in male patients. In
female patients, calcium and magnesium were the blood chemical
predictors. The LCA-based clustering was able to provide more
information about the variables and patterns. Clustering enabled
us to characterize the risk factors and easily interpreted them
according to 4 clusters of COVID-19 patients. The clustering of
patients had additional information to the main prediction model
to address the differentiating risk factors of the main model to the
subsets of the cohort. Four major clusters revealed the frequency
of each differentiating risk factor in different clusters that were
not apparent in the main model using two non-survivor and
survivor groups. The findings of the clusters can elucidate an
important milestone toward a comprehensive understanding of the
course of COVID-19 infection that could subsequently be used
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FIGURE 5

Principal component analysis (PCA) scatter plot shows a very good separation between four clusters obtained from Latent class analysis (LCA)
analysis. Cluster 1 and 2 included the patients with a lower mortality risk, while clusters 3 included moderate risk of mortality, and cluster 4 included
patients with higher mortality.

to optimize disease treatment and patient care. An appropriate
clustering method could be a powerful tool for better subgrouping
of patients and better grouping of variables in the population. By
applying more clusters, future investigations may represent more
specific risk factors for each cluster.

One of the main differences of this study in terms of analysis is
to apply the ML-based method to develop a model for predicting
the mortality using the most important clinical, comorbidities,
and chemical factors and determining the variables that affect the
performance of the model by applying their weighting in the model.
Although the current study was similar to Banoei et al.’s study
(27), this study focused on a large cohort of COVID-19 patients,
developed two prediction models for males and females, introduced
internally multivariate correlation analysis for non-survivors and
survivors, and assessed the current SIMPLS-based model using
other ML-based models such as SVM, RF, and bootstrap. All the
mentioned features differentiated the current study from other
similar studies conducted in this regard.

Nonetheless, Banoei et al. (27) reported an ML-based study
on 250 confirmed COVID-19 patients with similar predictability
for predicting the mortality among a Florida/USA cohort.
Captivatingly, CAD, diabetes, age > 65, altered mental status
(AMS), oxygen saturation < 88%, and hypertension were the
top most important predictors for predicting the mortality in
Banoei et al.’s study (27). Excitingly, both studies showed that

age 65 years or older was correlated with mortality. Moreover,
cardiovascular complications were correlated with an increased
mortality in both of these different cohorts. Although diabetes had
a negative correlation with the mortality in the basic model in our
study, Figure 2 shows that either having or not having diabetes
did not have a large impact among all patients for predicting the
mortality. Our study further revealed that diabetes was a risk factor
for a group of patients with the highest mortality rate.

Age and lower oxygen level have been reported as significant
predictors of COVID-19 mortality (5, 28–31). Age has almost
been the most significant predictor of the mortality in well-known
comorbidities (32). ML-based studies have previously shown that
CKD has either a negative (29) or positive (31–33) correlation
with the in-hospital mortality among COVID-19 patients. The use
of the LASSO approach revealed that the loss of consciousness
stood up as the most important predictor of mortality followed
by sex, sputum, blood urea nitrogen (BUN), RR, D-Dimer, and
age (29). Hypertension has been the second variable among the six
important predictors of in-hospital mortality (31).

Many studies have been conducted on developing ML-based
models to build and design a model with high accuracy in
the field of COVID-19 prognosis or diagnosis (28, 29, 34–
43). In the systematic review, Wang et al. (44) examined 78
studies in this regard and reported an accuracy of 70.00−99.92%.
Most of these studies were performed in developed countries,
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TABLE 6 The conditional probabilities for each cluster are presented for each response category of 19 variables in the analysis.

Predictors Category Cluster 1 Cluster 2 Cluster 3 Cluster 4

Age > 65 No 0.850 0.834 0.376 0.482

Age > 65 Yes 0.150 0.166 0.624 0.518

BMI > 24.8 No 0.651 0.800 0.939 0.697

BMI > 24.8 Yes 0.349 0.200 0.061 0.303

Hypertension No 0.646 0.879 0.202 0.132

Hypertension Yes 0.354 0.121 0.798 0.868

Cancers No 0.955 0.925 0.855 0.955

Cancers Yes 0.045 0.075 0.145 0.045

Cardiovascular disease No 0.856 0.956 0.529 0.577

Cardiovascular disease Yes 0.144 0.044 0.471 0.424

Chronic kidney disease No 0.964 0.976 0.812 0.803

Chronic kidney disease Yes 0.036 0.024 0.188 0.197

Diabetes No 0.668 0.837 0.556 0.454

Diabetes Yes 0.332 0.163 0.444 0.546

Rheumatological diseases No 0.988 0.969 0.959 0.956

Rheumatological diseases Yes 0.012 0.031 0.041 0.044

Loss of consciousness No 0.955 0.988 0.922 0.963

Loss of consciousness Yes 0.045 0.012 0.078 0.037

Heart abnormal findings No 0.878 0.950 0.549 0.856

Heart abnormal findings Yes 0.122 0.050 0.451 0.144

Trembling No 0.300 0.494 0.854 0.441

Trembling Yes 0.700 0.506 0.146 0.559

Sputum No 0.816 0.947 0.959 0.892

Sputum Yes 0.184 0.053 0.041 0.108

Muscle pain myalgia No 0.196 0.442 0.783 0.320

Muscle pain myalgia Yes 0.804 0.558 0.217 0.680

Loss of taste No 0.164 0.999 0.992 0.999

Loss of taste Yes 0.836 0.001 0.008 0.001

Loss of smell No 0.251 0.971 0.989 0.993

Loss of smell Yes 0.749 0.030 0.011 0.007

Limb edema No 0.965 0.991 0.921 0.983

Limb edema Yes 0.035 0.009 0.079 0.017

Oxygen saturation < 88 Yes 0.109 0.196 0.394 0.300

Oxygen saturation < 88 No 0.891 0.804 0.606 0.701

Potassium < 4 No 0.284 0.241 0.195 0.220

Potassium < 4 Yes 0.716 0.759 0.805 0.780

ALT < 13 No 0.961 0.947 0.912 0.939

ALT < 13 Yes 0.039 0.053 0.088 0.061

0 and 1 values are considered as the absence and presence of the clinical variables, respectively. Gray highlighted cells represent the higher condition probability of each variable among four
clusters.

and the considered indicators generally included comorbidities,
demographic factors, laboratory data and symptoms. Some models
also predicted the severity or mortality by considering the
genetic indicators or metabolomics (38, 45–48). Image analysis
approaches based on deep learning algorithms were also utilized

in the field diagnosis and prognosis of COVID-19 patients
using CT and radiographic images (11–16). Various indicators
have been considered as risk factors for COVID-19 severity
and vary from one dataset or country to another (44). The
issues that may not have been discussed in previous studies
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are the importance of each indicator and their relationship. By
entering all the factors together and discussing statistical and
modeling process details, the issue of importance alone and in
relation to other factors was neglected in previous studies. Unlike
other studies, the relationship between variables was discussed
considering both clinical and statistical aspects in this study.
Artificial intelligence studies that use complex statistical analysis
to find the relationship between factors and the model design
have always been questioned due to the very high mathematical
complexity of the medical aspects. In this respect, understanding
the relationship between factors and forming different clusters
considering these relationships will be more comprehensible
medically. In the study conducted by Santosh (49), it is emphasized
that a few but major uncertainties may come from multiple
sources such as demographics, vulnerability issues originating
from underlying comorbidities, hospital settings/capacity, test
rates, social distancing issues, and income versus commodities.
Therefore, perhaps identifying the best risk factors and their
interactions for predicting mortality is of greater significance than
merely developing various models with high accuracy.

Unlike previous studies, the correlation and interaction
between different risk factors were investigated in this study
and shown in Table 3 and Figure 3 as a heat map. The
correlation patterns were generally different between survivors and
non-survivors. As expected, there were some relationships and
positive correlations between some risk factors such as CVD and
hypertension, or age and blood pressure. There was a correlation
between age and some underlying medical conditions such as
cancer or CKD in the survivor group; however, this was not the
case for the non-survivor group. The mentioned finding indicated
the importance of these conditions regardless of age and suggested
that some of these factors independently play an influential role
in increasing mortality. This issue has been assessed in another
way in Table 6, which divided patients into different mortality
categories, providing the opportunity for a better understanding
of the existing relationships between factors and the role of each
factor in predicting the mortality. For example, clusters 3 and
4 with a mortality rate of 18 and 36%, respectively, correlated
with age > 65 though this correlation was generally higher in
cluster 3 as compared with cluster 4. In contrast, blood pressure
in cluster 4 had a more positive correlation, indicating that blood
pressure was not necessarily associated with very elderly patients.
Yet, factors such as CVD were more common in cluster 3. Another
interesting finding of this study was the significance of CKD and
diabetes. CKD, which was found as one of the most crucial factors
in predicting the mortality in this study, revealed a relatively
independent pattern from that of other factors. Regarding diabetes,
although it was stated that it had an overall negative correlation
with the mortality, it was considered as one of the influential factors
in cluster 4 that played a role in predicting the mortality. This
discrepancy observed in this study may be attributed to the high
number of diabetic patients (both patients with end-organ damages
and patients with appropriate controls) (N = 602). Interestingly,
there were some differences in terms of some risk factors such
as BMI > 24.8, which negatively correlated with the mortality.
As shown in Table 3, this factor negatively correlated with most
other essential risk factors. In Table 6, the correlation of this factor
was high in clusters 1 and 4. The mentioned finding indicated the
presence of 2 groups of morbidly obese patients, i.e., the group

suffering from other comorbidities and metabolic syndrome and
the young group with a healthy status without any other underlying
diseases. In general, the main strength of this study was examining
the interactions between important risk factors in the prediction of
the mortality and revealing the impact of these factors on creating
new patterns and new categories for performing mortality analyses
as separate models in male and female patients. However, future
studies are required to investigate the impact and interaction of
different risk factors that were not included in the dataset of this
study. Other studies also have reported the better performance of
ML algorithms for investigating COVID-19 stratification, mortality
risk, and identification of high-risk patients (6, 50).

This study has several limitations. There is not a high certainty
to select the appropriate ML method and model for the large
dataset. To our knowledge, holistic and concerted care and higher
attentiveness must be given to the use of ML-based methods or
artificial intelligence in clinical practice by clinical scientists and
biologists to interpret the findings. More importantly, the major
limitation of the current study is the lack of external validation
using an independent validation cohort. Although our prediction
model was created using a diverse cohort of multisite study, the
validation of the current findings needs to be performed in other
populations as the capacity of the health system is not the same
among different countries. The prediction model in the current
study was obtained with partitioning data to training and validation
sets at least once, therefore, future works require repeating the
partitioning process several times to the average behavior. Lastly,
we cannot control the variables in a retrospective study to establish
a predictive model, since the findings may need to be supported
using a prospective study. The current data lacks information
about the use of steroid treatment among patients which can cause
heterogeneity due to immunosuppression’s impact on laboratory
values. Moreover, we missed other known biomarkers such as
the troponin associated with the severity, particularly COVID-19
pneumonia. Additionally, racial and socioeconomics are important
factors to determine the severity of the disease that can be
considered as other sources of bias. Regarding the pandemic
situation and during the peak of COVID-19 infection, many
critically ill patients were forced to turn away due to limited hospital
capacity which could be another potential source of bias.

Statistically inspired modification of the partial least square
algorithm empirically works with the cross-covariance matrix
between response variables and regressor variables in a linear
regression approach, hence SIMPLS is very sensitive to outliers.
The outlier detection was performed using the explore outlier
commands to measure the quantile distribution of the values in a
column where the outlier values locate.

Conclusion

In this study, ML-based models were developed to accurately
predict the COVID-19 patients’ mortality. Moreover, the study
classified patients into four categories and extracted the main
risk factors correlated with mortality and severity in each group.
According to the obtained results, low oxygen saturation under 88,
loss of consciousness, and CKD were the three leading predictors
of mortality. Analyzing the correlation between various factors
and assessing their interactions indicated that the relationship
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pattern of the underlying conditions could differ between male
and female patients, which highlights the necessity of conducting
further assessments. Moreover, future studies are required in order
to externally validate the model and confirm the importance
of risk factors generally and in the specified subgroups. In the
validation study, the selected features (risk factors) obtained
with the training set will be used to predict the probability of
mortality in an independent external cohort. AUROC, sensitivity
and specificity external validation study will be used to evaluate the
model performance.

Machine learning-based statistical methods are different form
conventional methods such as logistic regression, Cox regression,
generalized additive models, and least-square linear separation
methods by providing accurate predictions, enjoying flexibility and
scalability, and finding the relationships between variables and
internal validity of ML methods using large datasets.
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