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Recent evidence suggests that interleukin (IL)-13 is a crucial cytokine involved in 
the pathogenesis of atopic dermatitis (AD). It is a central driver of type-2 T-helper 
inflammation and is overexpressed in lesional skin of AD patients. Upon release 
in peripheral skin, IL-13 activates its receptors, recruits inflammatory cells, and 
modifies the skin microbiome. IL-13 also reduces the expression of epidermal 
barrier proteins and activates sensory nerve mediating the itch transmission 
signal. Novel therapeutics that target IL-13 seem to be efficacious and safe for the 
treatment of patients with moderate-to-severe AD. The aim of our manuscript is 
to review the role that IL-13 plays in AD immunopathogenesis.
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Introduction

Atopic dermatitis (AD) is a chronic inflammatory skin disease which has a complex and not 
yet fully understood pathophysiology (1, 2). AD is heterogeneous in its onset age, clinical 
phenotype, and severity of manifestations (1, 2). It has been reported that, in developed 
countries, AD affects in lifetime up to one fifth of the general population, resulting the most 
frequent among chronic inflammatory skin diseases (3–6). AD, especially in its moderate-to 
severe forms, results in a negative impact on the quality of life (QoL) of both patients, but and 
their families (6). Itch is the most troublesome symptom and has been linked with sleep 
disturbance, reduced work productivity, and poor mental health (7).

Atopic dermatitis pathophysiology implicates multiple interactions between altered type 2 
immune responses, skin microbiome dysbiosis, and epidermal barrier disruption (EBD) (8). 
Recent research advancements, lead to a crucial change in AD pathogenic model, overcoming 
the preceding hypotheses based on (i) key role of the EBD (“outside-in” theory); (ii) 
immunoglobulin E (IgE)- response (type 1 hypersensitivity), or (iii) principal role of the 
abnormal systemic immune activation (“inside-out” theory) (9–11). Currently, however, AD is 
thought to be  secondary to the complex interaction between several genetic defects, 
environmental stimuli and the activation of intricate inflammatory pathways that induce both 
the onset and chronicity of the disease (8–11). The discovery of the role for these multiple 
immune pathways and of related cytokines has led to the development of new drugs (8).

Atopic dermatitis is a disease related to type 2 immunity activation in response to 
environmental stimuli (2). Both adaptive and innate immune systems are involved in Type 2 
immunity (2, 12). Indeed, in the innate immune system activation, it has been showed that key 
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roles are played by Group  2 lymphoid cells (ILC2), mast cells, 
basophils, eosinophils, and macrophages activated by interleukin 
(IL)-4 and/or IL-13 (12–15). Furthermore, also keratinocyte is 
implicated in this mechanism by expressing an increased level of 
IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) (12–15). 
These cytokines may act as alarmins, inducing the production of IL-4, 
IL-13, and IL-5 from both T helper (Th)2, and ILC2 cells, which in 
turn trigger the complex inflammatory cascade that underlies the 
clinical expression of AD (16).

Additionally, adaptive immune responses of T and B cells, 
including CD4 Th2 cells and Th17 cytokines, are required for the 
development and progression to systemic inflammation in the atopic 
march (16). The activation of Th2 and ILC2 pathways are at the center 
of type 2 inflammation (12–15). Conversely, although the expression 
of Th17-cytokines such as IL-17A has consistently been found to 
be  increased in AD lesions, the role of these cytokines in AD 
pathogenesis is controversial (16). It has been supposed that they have 
a role in AD inflammation, rather, its presence is part of an effector 
response against Staphylococcus aureus (16).

In particular, IL-4 and IL-13 play a key role in AD pathogenesis, 
orchestrating effector Th2 immune responses (12). Even if IL-4 and 
IL-13 are encoded by adjacent genes and share a common receptor 
and signaling pathway, they are differently expressed in vivo by a 
variety of distinct cells that control both innate and adaptive immunity 
(12). Indeed, the follicular Th cells of the lymph node, regulating 
B-cell immunity, invariant natural killer T2 cells, and basophils 
express IL-4, while mucosal ILC2s mostly express IL-13 and little IL-4 
(17). This difference suggests that IL-13 and IL-4 may have distinct 
actions in Th2 immunity (12). Indeed, it has been showed that IL-4, 
which drives the T cell differentiation, may have a role in the first steps 
of the pathogenesis of AD, while IL-13 effects appear to influence the 
peripheral tissue cells and the effector phase of the immune response 
(12–17). The aim of this narrative review is to provide an overview of 
the role that IL13 has in AD pathogenesis.

Methods

For this narrative review of literature, search of the English-
language literature regarding the pathogenic role of IL-13 in AD was 
conducted. Different databases, namely Embase, PubMed, 
ResearchGate, Google Scholar and Scopus, have been consulted using 
the following terms: interleukin 13, IL-13, atopic dermatitis, atopic 
eczema, pathogenesis, pathogenic mechanism, Th2 inflammation.

IL-13 characteristics and signaling

IL-13 is an immunoregulatory cytokine with a structure 
characterized by a 4 α-helical hydrophobic bundle core (18). Although 
it is mainly secreted by Th2 cells, other cells, such as ILC2, mast cells 
and basophils, release IL-13 (4, 14).

A subgroup of ILCs, the ILC2, which are the only subset of 
lymphocytes with no antigen receptors rearranged, produce type 2 
cytokines, promoting inflammation and hyperresponsiveness (18–21). 
In the skin, dermal ILC2s secrete IL-13 regardless of allergen exposure 
and independently of the alarmins (IL-2, TSLP, and IL-33), driving 
dendritic cells (DC)2 precursors differentiation to a CD11blow 

phenotype that fosters Th2 priming (12). Conversely, in the lung 
ILC2s require alarmins to secrete IL-13 and induce the expression of 
Th2 cells (12). However, TSLP may directly stimulate CD11c + DCs 
differentiation and activation, resulting in the stimulation of Th2-cell 
expression, inhibition of IL-12 secretion in the context of type-2 
innate ligands, affecting B-cell development and survival (21). 
Recently, it has been demonstrated that the level of resident group 
ILC2 of the healthy human skin is notably increased in AD skin 
lesions (22). It has been showed that ILC2 in AD skin exhibits an 
elusive immunophenotype, and that among all the ILCs, inducible 
T-cell costimulatory (ICOS)-expressing cells, comprising both ILC2 
and ILC3, are the main producer of IL-13  in the dermis (23). 
Moreover, ILCs present a higher level of IL-13Rα1 subunit of IL-13 
receptor (IL-13R) than T cells (23).

The other major source of IL-13 is Th2 cells (4). In ex vivo 
coculture model, it has been demonstrated that a cutaneous 
lymphocyte-associated antigen (CLA)-dependent production of 
IL-13, upon activation with staphylococcal enterotoxin B (SEB), 
allows the differentiation of both Th2 high and low responder groups 
(24). SEB activation of the CLA T-cells resulted in a predominant 
IL-13 production among the Th2 cytokines (IL-5, IL-4, lL-13), and in 
stratification into the Th2 high and Th2 low groups, corresponding 
with disease activity (24). Additionally, in the Th2 high group, IL-13 
response directly correlates with AD severity [measured by Eczema 
Area Severity Index (EASI)], anti-Staphylococcus aureus IgE plasma 
levels, sIL-2R, and CCL17 (24). Regardless of source, the increased 
IL-13 expression leads to the recruitment of eosinophils and activated 
T cells, resulting in an amplification of skin IL-13/IL-4 expression, 
driving the pathway of chronic inflammation in AD (25).

The signaling of IL-13 is regulated by a complex receptor system 
(4, 14). In non-hematopoietic cells, IL-13 engages a heterodimeric 
receptor composed of 2 subunits, the alpha chain of the IL-4 receptor 
(IL-4Rα) and the alpha-1 chain of IL-13 (IL-13 Rα1), binding IL-13 
with low affinity; however, after forming a complex with IL-4Rα, it 
shows a higher affinity, resulting in the induction of the effector 
functions of IL-13 (4, 14). Another receptor, composed by IL-13-
specific binding chain alpha 2, named IL-13 Rα2, is strictly related to 
IL-13 Rα1. IL-13 Rα2 binds IL-13 with high affinity, and it is 
considered for having a compensatory role (decoy receptor), as it 
would be able to remove excess IL-13 (4, 14). The IL-13 binding of the 
functional heterodimeric IL-4Rα /IL-13 Rα1 receptor results in the 
activation of downstream tyrosine kinase 2 (TYK2), and Janus kinases 
(JAK) activating the signal transducer and activator of transcription 
(STAT3, STAT1 and STAT6) (4, 14). Thus, the activation of JAK–STAT 
pathway is followed by the increased secretion of several chemokines 
for eosinophils, cytokines, angiogenic factors, and growth of IgE level 
binding to mast cell receptors, resulting in the exacerbation of the 
inflammation process of AD (25).

Levels of expression of IL-13 in atopic 
skin

Previous studies showed the key role played by IL-13  in AD 
pathogenesis, regarding multiple aspects of disease pathogenesis such 
as skin barrier disruption, epidermal thickening, itch, inflammation, 
and infection (26). In biopsies AD skin, there is an overexpression of 
IL-13  in both lesional and non lesional skin compared to healthy 
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controls (27). Additionally, AD severity is directly linked to the 
increased skin expression of IL-13, while a decrease in its 
concentration has been shown to correlate to improved clinical 
outcomes (27). Furthermore, a recent study confirms the dominance 
of the expression of IL-13 mRNA in both chronic and subacute lesions 
than non-lesional skin, and than healthy controls with near 
undetectable IL −4 expression (28–30). Recently, IL-13 has been 
identified in skin samples as a biomarker of AD, showing a strongest 
association with disease severity, circulating eosinophil levels, and 
total serum IgE (31). Furthermore, several atopic stigmata were 
associated with high levels of cutaneous IL13 such as thinning of the 
lateral eyebrow (Hertoghe sign), and maternal atopic rhinitis (31).

Effects of IL-13 on skin barrier

The STAT6 activation, by IL-4 and IL-13, reduce the expression of 
structural proteins like hornerin, desmoglein, loricrin, involucrin, 
desmocollin, filaggrin (FLG), keratin 1, and keratin 10, as well as the 
lipid composition (ceramides, free fatty acids, and cholesterol) important 
for normal skin barrier function (27, 32, 33). The overexpression of 
these cytokines, therefore, plays a key role in maintaining and increasing 
the impairment of the skin barrier in AD (34). Additionally, they induce 
a decreased production of AMP by keratinocytes, thus being important 
also in inducing skin dysbiosis, which is characterized by a significant 
colonization with Staphylococcus aureus, which may precede the onset 
of AD lesions (34).

OVOL1, an upstream transcription factor, regulates the expression 
of FLG (17); OVOL1 activation leads to its cytoplasmic-to-nuclear 
translocation, and resulting in the up-regulation of loricrin and FLG 
expression (35, 36). Interestingly, IL-13 and IL-4 inhibit FLG 
expression by interfering with OVOL1 signaling (16). Moreover, IL-13 
inhibits the expression of involucrin in an OVOL1-independent way, 
exacerbating barrier dysfunction (35, 36). In case of barrier-disrupted 
skin, keratinocytes produce high levels of IL-33, IL-25 and TSLP, 
promoting Th2 cells differentiation, and ILC2s, resulting in the 
stimulation of IL-13 production (37). Thus, a vicious cycle is formed 
to develop atopic dry skin. These findings suggest that IL-13–OVOL1–
FLG axis may play a central role in the pathogenesis of AD (17). Near 
this axis, IL-13-induced FLG down-regulation is in part mediated by 
the IL13–periostin–IL-24 axis (17, 38). It has been showed that, 
through STAT6 activation, IL-13 up-regulates the keratinocytes 
expression of periostin, stimulating keratinocyte production of IL-24, 
which down-regulates the FLG expression via STAT3 activation (38).

Furthermore, IL-13, acting on keratinocytes, reduces the 
expression of skin barrier proteins and lipids, regulating the expression 
of metalloproteinase (MMP)-9; MMP-9 mediates tissue remodeling 
and the migration of cells, through action of degradation on collagen 
IV of the basement membrane (39, 40). Moreover, IL-13 down-
regulates the expression of MMP-13 in dermal fibroblasts, leading in 
a decrease of the degradation of collagen, resulting in fibrosis, as found 
in the thickened dermis of chronic lichenified AD manifestations (41).

Effects of IL-13 on itch

Intradermal injection of IL-13 has been reported to induce 
allokinesis and itching (42). The sensory neurons and keratinocytes 

express IL-4Rα/IL-13Rα1 and IL-13Rα2 (43). After binding to its 
receptor IL-13Rα1, IL-13 activates sensory neurons acting as an 
enhancer of other stimuli such as histamine (44). However, IL-13 is a 
potent neuroactive cytokine that potentiates also the responses of 
nonhistaminergic itch pathways (45). For example, it is involved in a 
histamine-independent direct stimulation of afferent nerve endings 
mediated by transient receptor potential ankyrin 1 (TRPA1) 
pathway (45).

Further, scratch injury enhanced the expression of IL-13Rα2, 
while no significant modification were found in the functional 
heterodimeric IL-13 receptor IL-13Rα1 expression (46). IL-13 Rα2, a 
decoy receptor binding with high affinity to IL-13, internalizes IL-13 
and lowers the IL-13 level in the milieu; however, this receptor showed 
to have several other functions, especially in AD pathogenesis (47–
51). IL-13 and scratch injury upregulate the expression of IL-13 Rα2 
(47). which binds to IL-13 with high affinity, internalizes it, and 
decreases IL-13 levels in atopic skin (47).

Some authors also reported that IL-13 signals through IL-13 Rα2 
is able to induce transforming growth factor beta (TGF-β) and 
promote fibrosis (48). It has been showed that even chitinase 3-like 1 
(CHI3L1), also known as breast regression protein 39 (BRP-39) in 
mice and human homologue YKL-40, may act as an activator of IL-13 
Rα2 (49, 50). The levels of both cutaneous and serum CHI3L1/YKL-40 
are increased in AD patients (49). Notably, some variants of the 
CHI3L1 gene that codes for this protein have been associated with 
cases of severe AD with onset during late childhood, and a tendency 
to become chronic (51).

Summary of IL-13 in atopic dermatitis

IL-13 is produced from ILC2s and Th2 cells and is increased in 
skin from AD patients (Figure  1) (27). IL-13 binds to subunit 
IL-13Rα1 of its heterodimeric receptor for signaling via JAK1 and 
JAK2 (4, 14). The binding of IL-13 to IL-13Rα2, lead to the association 
with YKL40; the exact signaling transducing machinery related to this 
complex has not been fully understood (27). IL-13 contributes to the 
start of AD and itching and, acting with IL-4, lead to the aggravation 
of EBD by downregulating involucrin and FLG, via inactivation of 
OVOL1 and stimulation of periostin and IL-24 (Figure 1) (17). This 
contributes to the increased trans epidermal water loss in AD patients 
(52, 53). Moreover, IL-13 showed to decrease antimicrobial peptides 
(AMPs) production by keratinocytes and to have a role in the dysbiosis 
of the skin, characterized by a prevalent Staphylococcus aureus 
colonization (Figure 1) (34, 54). Hence, the increased permeability of 
the skin lead to the entry of antigens that reach DC, stimulating the 
activation of naive T cells to Th2 lymphocytes, and finally resulting in 
the amplification of this loop mechanism (55). Both cytokines 
enhance the differentiation of B-cell and the production of IgE, Th2 
development/differentiation, eosinophil recruitment, hence, the 
amplification of the inflammation mediated by Th2 cells (55). 
Furthermore, in the skin, dermal ILC2s secrete IL-13 regardless of 
allergen exposure and independently of the alarmins driving the 
differentiation to Th2 cells (12). IgE binding to both basophils and 
mast cells, lead to an increment of histamine and other inflammatory 
mediators release, increasing pruritus and vasodilation (55). 
Stimulating action on itching, however, mainly results from a 
histamine-independent direct stimulation of afferent nerve endings 
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mediated by TRPA1 pathway (55). Indeed, IL-13 is an effective, 
neuroactive cytokine able to modulate human sensory neurons in 
their neuronal excitability, increasing the itch pathways response (56). 
Scratching also upregulates the expression of decoy receptor IL-13Rα2 
that binds to IL-13 with high affinity, internalizes it, and lowers the 
IL-13 level in atopic skin. Thus, if on the one hand scratching 
exacerbates skin inflammation, on the other it triggers a reactive 
compensatory response against excess levels of IL-13 by upregulating 
the decoy IL-13 Rα2 (47). Moreover, IL-13 also plays a role in the 
maintenance of conjunctival well-being, hence, its inhibition may set 
the premises for dupilumab induced conjunctivitis. Interestingly, this 
appears to be associated with eosinophil fluctuations (which are on 
their turn the result of diminished tissue infiltration) (57).

Therapeutic implications

The increased knowledge of the role played by IL-4 and IL-13 in 
the pathogenesis of AD, resulted in the development of new targeted 
therapies (58). Dupilumab, the first approved biological agent for the 
treatment of AD, which acts by blocking IL-4Rα and thus the activity 
of both IL-4 and IL-13, demonstrated the effectiveness of blocking 
type 2 cytokines, their receptors, or their intracellular signal 
transducers JAK/STAT pathway (8, 59–61).

Furthermore, IL-13 signaling alone is considered a potential 
therapeutic target for the management of AD (58). Tralokinumab, a 
fully human monoclonal antibody binding IL-13, acts by preventing the 
binding of IL-13 to both IL-13Rα1 and IL-13Rα2, resulting in the 
blockage of its signal transduction, showed to be a safe as and effective 
treatment option, even in monotherapy in adult AD patients (52, 58, 62, 

63). A phase III, double-blind, placebo plus topical corticosteroids 
(TCS) controlled clinical trial, in which patients were randomized 2:1 
to tralokinumab 300 mg or placebo every 2 weeks (Q2W) with TCS as 
needed over 16 weeks (63). At week 16, an higher rate of patients treated 
with tralokinumab than placebo achieved EASI 75: 56% vs. 35.7% 
[20.2% (9.8–30.6); p < 0.001], and Investigator Global Assessment (IGA) 
0/1: 38.9% vs. 26.2% [12.4% (2.9–21.9); p = 0·015] (63). Of the patients 
who were tralokinumab responders at week 16, 89.6 and 92.5% of those 
treated with tralokinumab Q2W maintained an IGA 0/1 and EASI 75 
response at week 32, respectively (63). Among patients not achieving 
EASI 75 and IGA 0/1 with tralokinumab Q2W after 16 weeks of 
treatment, 55.8 and 30.5% and achieved these endpoints, respectively, 
after 32 weeks of treatment (63). In the ECZTRA 6 trial, a phase III 
study, adolescents aged between 12 and 17 years old were randomized 
1:1:1 to tralokinumab 150 mg or 300 mg Q2W, or placebo; after 16 weeks 
of treatment, a significantly greater rate of patients achieved EASI-75 
and IGA0/1 on 150 mg/Q2W (IGA0/1: 21.4%; EASI75: 28.6%) and 
300 mg/Q2W (IGA0/1: 17.5%; EASI-75: 27.8%) with no need of rescue 
therapy, versus placebo (IGA0/1: 4.3%, EASI-75: 6.4%) (64). Ongoing 
trials are evaluating the treatment of tralokinumab for AD pediatric 
patients [NCT05388760] (65).

Lebrikizumab, is a fully humanized IgG4 antibody, acts by binding 
IL-13 in a different non–receptor-binding domain, preventing IL-4Rα/
IL13Rα1 heterodimerization and downstream signaling (58). In a 
double-blinded, placebo-controlled, multicenter, phase 3 clinical trial, 
145 subjects have been randomized to subcutaneous lebrikizumab and 
66 to placebo Q2W in combination with TCS. At week 16, IGA (0.1) 
was achieved by 60 (41.2%) patients in the lebrikizumab plus TCS 
group vs. 15 (22.1%) receiving placebo plus TCS (p = 0.01); 
corresponding proportions of patients achieving EASI-75 were 69.5% 

FIGURE 1

The effects of IL-13 on skin in atopic dermatitis.
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(101/145) vs. 42.2% (28/66) (p < 0.001) (66). The most frequently 
reported treatment-emergent adverse events were headache (7 
[4.8%]), conjunctivitis (7 [4.8%]), injection site reactions (4 [2.8%]), 
hypertension (4 [2.8%]), and herpes infection (5 [3.4%]) (62). Full 
trial results on lebrikizumab are still lacking (67, 68).

A phase 2, randomized, placebo-controlled, study evaluating the 
efficacy and safety of cendakimab (CC-93538) an anti- IL-13, in the 
treatment of moderate to severe AD, is still ongoing (69). Two 
hundred and fourteen patients have been enrolled in 3 different 
dosing regimens groups and in a placebo group (69). To date, no data 
are available (69).

Interestingly, it has been reported that the increased expression of 
IL-13 is linked with an optimal clinical response to dupilumab, while, 
on the other hand, non-responders patients showed to express less IL-13 
and relatively greater levels of Type 1 and 3 cytokines. Hence, IL-13 
levels may represent a predictor of response to IL-13 inhibitors (70).

IL-13 also showed to be  a potential target even in other skin 
diseases, indirectly suggesting a pathogenetic role of its pathway. 
Indeed, dupilumab has been proposed as potentially safe and effective 
therapeutic option for other diseases, such as Grover disease. Evidence 
supporting this finding includes the fact that IL-4 infusions may 
induce Grover disease and that the immunophenotype of the immune 
cells infiltrating Grover disease demonstrate a TH2 cytokine 
phenotype (71).

Finally, some authors proposed the use of anti-IL-13 vaccination 
which may have the potential of outperforming monoclonal antibody-
based approaches (72, 73).

Conclusion

Current evidence suggest IL-13 as a crucial cytokine AD 
pathogenesis, supporting its significant contribution in mediating 
several clinical features, including skin inflammation and pruritus. 
Therefore, IL-13 is considered a valid target for AD. Indeed, IL-13 
inhibitors such as tralokinumab and lebrikizumab seem to be  a 
possible treatment for patients with moderate-to-severe AD, with 
good safety and efficacy profiles. However, further investigations will 
be worthy to clarify the position of these treatments in the therapeutic 
ladder of AD.
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