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Introduction: Diabetic macular edema (DME) is a major cause of vision 
impairment in the patients with diabetes. Optical Coherence Tomography (OCT) 
is an important ophthalmic imaging method, which can enable early detection 
of DME. However, it is difficult to achieve high-efficiency and high-precision 
extraction of DME in OCT images because the sources of OCT images are diverse 
and the quality of OCT images is not stable. Thus, it is still required to design a 
model to improve the accuracy of DME extraction in OCT images.

Methods: A lightweight model (DME-DeepLabV3+) was proposed for DME 
extraction using a DeepLabV3+ architecture. In this model, MobileNetV2 model 
was used as the backbone for extracting low-level features of DME. The improved 
ASPP with sawtooth wave-like dilation rate was used for extracting high-level 
features of DME. Then, the decoder was used to fuse and refine low-level and 
high-level features of DME. Finally, 1711 OCT images were collected from the 
Kermany dataset and the Affiliated Eye Hospital. 1369, 171, and 171 OCT images 
were randomly selected for training, validation, and testing, respectively.

Conclusion: In ablation experiment, the proposed DME-DeepLabV3+ model 
was compared against DeepLabV3+ model with different setting to evaluate 
the effects of MobileNetV2 and improved ASPP on DME extraction. DME-
DeepLabV3+ had better extraction performance, especially in small-scale 
macular edema regions. The extraction results of DME-DeepLabV3+ were close 
to ground truth. In comparative experiment, the proposed DME-DeepLabV3+ 
model was compared against other models, including FCN, UNet, PSPNet, 
ICNet, and DANet, to evaluate DME extraction performance. DME-DeepLabV3+ 
model had better DME extraction performance than other models as shown 
by greater pixel accuracy (PA), mean pixel accuracy (MPA), precision (Pre), 
recall (Re), F1-score (F1), and mean Intersection over Union (MIoU), which were 
98.71%, 95.23%, 91.19%, 91.12%, 91.15%, and 91.18%, respectively.

Discussion: DME-DeepLabV3+ model is suitable for DME extraction in OCT 
images and can assist the ophthalmologists in the management of ocular diseases.
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1. Introduction

Diabetic macular edema (DME) is the major cause of vision loss 
in the patients with diabetic retinopathy. Increasing prevalence of 
DME is tightly correlated with the global epidemic of diabetes mellitus 
(1, 2). DME is usually caused by the rupture of retinal barrier and 
increased permeability of retinal vessels, which is characterized by the 
leakage of fluid and other plasma components. The effusion can 
accumulate in the macula, resulting in edema (3, 4). In the clinical 
work, the presence and severity of retinopathy are required to 
be determined according to the size of edema area.

Optical Coherence Tomography (OCT) is a non-contact, 
non-invasive, and highly sensitive ophthalmic imaging method, which 
can enable early detection of diabetic macular edema by observing the 
transverse section of macular degeneration (5). Normal OCT image is 
shown in Figure  1A and OCT image with DME is shown in 
Figure 1B. DMEs accumulated in typical relative positions within the 
main retinal layers. Based on OCT patterns of DME, DME can 
be  classified into three different patterns, including diffuse retinal 
thickening (DRT), cystoid macular edema (CME), and serous retinal 
detachment (SRD). CME normally starts to manifest symptoms in the 
inner retina, while SRD and DRT typically appear in the outer retina. In 
the severe advanced stages of DR, CMEs can also proliferate from the 
inner to the outer retina and merge with DRT (6). Thus, rapid and 
accurate detection of all types of edemas is of great significance for 
evaluating the progression of diabetic retinopathy. In the clinical work, 
DME is usually segmented by the well-trained experts (7). However, 
manual extraction of DME edemas is time-consuming and labor-
intensive. Moreover, there is inevitable variability in the extraction results 
by different experts. With increased prevalence of diabetes, an increasing 
number of patients require disease management based on OCT images 
in the clinical practices. Thus, it is highly required to design an automatic 
method for rapid and accurate detection of DME in OCT images.

Image extraction is processed and analyzed according to the 
features, including image color, spatial structure, and texture 
information (8). Image extraction models can divide an image into 
several specific regions, such as threshold-based extraction model (9, 
10), region-based extraction model (11, 12), and edge detection-based 
extraction model (13). With the development of deep learning, several 
models have been developed to extract DME, such as fully 
convolutional network (FCN), U-Net, and PSPNet. Based on these 
deep learning models, several scholars have also developed the 

improved models for DME extraction. Table 1 showed the strengths 
and weaknesses of different models for DME extraction.

The sources of OCT images are diverse and the quality of OCT 
images is not always stable. Moreover, the size and distribution of 
DMEs are not uniform and the borders of DMEs are blurred. Thus, it 
is still required to design a novel model to improve the accuracy of 
DME extraction in OCT images. In this study, we  proposed a 
lightweight automatic model (DME-DeepLabV3+) based on the 
DeepLabV3+ architecture. The major contributions of the proposed 
DME-DeepLabV3+ are shown below:

 • Taking MobileNetV2 as the backbone, the ability of 
DME-DeepLabV3+ is improved in extracting the low-level 
features of DME.

 • Improving ASPP by the sawtooth wave-like dilation rate, 
DME-DeepLabV3+ avoids grid effects, learns more local 
information, and extracts high-level features of DME better.

 • Based on the decoder, DME-DeepLabV3+ fuses the low-level 
and high-level features of DME, and refines the results of 
DME extraction.

2. Materials and methods

The flowchart of the proposed model, DME-DeepLabV3+, was 
shown in Figure 2.

Low-level features of DME extraction by MobileNetV2; High-
level features of DME extraction by the improved ASPP; Fusion and 
refinement of low-level and high-level features of DME by the decoder.

2.1. Low-level features of DME extraction 
by MobileNetV2

DeepLabV3+ is a deep learning model for image extraction with 
deep convolutional nets, which takes Xception as the backbone 
network (21). Xception uses numerous parameters, complicated 
operations, and high computer performance requirements (22), which 
leads to several challenges for DME extraction, such as fault-extraction 
and over-extraction problems. MobileNetV2 is a lightweight network, 
which shows a great advantage to solve the fault-extraction and 

FIGURE 1

Optical coherence tomography images in diabetic patients and healthy controls. (A) Normal OCT image; (B) OCT image with DME.
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over-extraction problems (23). In DME-DeepLabV3+ model, we used 
MobileNetV2 as the backbone to simplify model structure, which 
could improve the extraction efficiency and reduce the problems of 
fault-extraction and over-extraction.

MobileNetV2 used depthwise separable convolution to reduce the 
number of parameters and complex operations. Depthwise separable 
convolution consisted of DepthWise (DW) and PointWise (PW), 
whereas DW performed convolution operations on each channel of 
the input layer and PW fused the features and obtained the feature 
information with stronger expressive ability. MobileNetV2 used 
Inverted Residual to improve the memory efficiency.

In Inverted Residual, the dimension of DME features was 
increased by 1 × 1 convolution. Next, DME features were extracted by 
3 × 3 DW convolution, and the dimension of DME features was 
reduced by 1 × 1 convolution (Figure 3). When the stride was 1, DME 
output features were consistent with the input features and shortcuts 
were used to add the elements of DME input and output. When the 
stride was 2, no shortcut was required. At the same time, a linear 
bottleneck neural network was used in the last 1 × 1 convolutional 
layer of Inverted Residual, which could reduce the loss of 
low-dimensional feature of DME information.

Compared with DeepLabV3+ with Xception as the backbone 
network, DME-DeepLabV3+ with MobileNetV2 as the backbone 
network not only improved the accuracy but also improved the 
efficiency in DME extraction.

2.2. High-level features of DME extraction 
by the improved ASPP

ASPP consists of atrous convolution with different dilation rates, 
which strikes the best trade-off between multi-scale feature extraction 
and context assimilation, especially for small objects (24). DME has 
multi-scale features, especially with several small areas of edema. ASPP 
was then used to extract high-level features of DME. However, the 
dilation rate in ASPP had a grid effect, which not only lost the semantic 
information but also ignored the consistency of local information in 
edema regions (25). Here, we replaced the original dilation rate with 
the sawtooth wave-like dilation rate to improve ASPP for extracting the 

high-level features of DME. A sawtooth wave-like dilation rate was 
formed by the repeated combination of two sets of the same “rising 
edge” type dilation rate.

Figures  4, 5 show the illustration of the atrous convolution 
principle of DeepLabV3+ and DME-DeepLabV3+, respectively. 
Figures 4A,B show RF (receptive field) and the number of calculation 
times of DeepLabV3+. Figures 5A,B show RF and the number of 
calculation times of DME-DeepLabV3+. The results show that there 
was about 73% of information loss due to the grid effect in 
DeepLabV3+ model. In DME-DeepLabV3+ model, each pixel was 
effectively used and involved in further computations. Compared with 
DeepLabV3+ model, increased dilation rate in DME-DeepLabV3+ 
model can avoid the grid effects and learn more local information.

2.3. Fusion and refinement of low-level and 
high-level features by the decoder

Low-level and high-level features of DME were extracted by 
MobileNetV2 and the improved ASPP, respectively. All features of DME 
were fused and refined by the decoder. The decoder is mainly composed 
of ordinary convolution and fusion layers. It fuses the features extracted 
from the encoder, uses the up-sampling to restore the feature dimension, 
and outputs the prediction results of the same size with less information 
loss as possible (26). In the decoder, low-level features with fewer 
channels were obtained by 1 × 1 convolution. Bilinear up-sampling of 
high-level features were conducted by a factor of 4. The concatenation 
features were obtained by concatenating the low-level features and high-
level features and a feature concatenation was refined by a few 3 × 3 
convolutions. Finally, the results of DME extraction were output 
following another bilinear up-sampling by a factor of 4.

2.4. Ethical statement

The design and conduct of this study adhere to the intent and 
principles of the Declaration of Helsinki. The protocols were also reviewed 
and approved by the ethical committee of Eye Hospital (Nanjing medical 
university). Informed consents were obtained from all participants.

TABLE 1 Strengths and weaknesses of different models for DME extraction.

Models Strengths Weaknesses

FCN (14)
End-to-end pixel-level classification without inputting size 

constraints
Ignore target boundary details and lack spatial consistency

U-Net (15) Good extraction performance on small objects
Down-sampling operators cause spatial information loss during 

encoding

PSPNet (16)
Aggregate contextual information from different regions and 

improve the ability of obtaining global information

No effective fusion of shallow features and missing target 

boundary details

FCN + Sobel operator + Dijkstra 

algorithm (17)
Achieve better results in DICE index

Divide OCT extraction tasks into two stages, coarse and fine 

extraction, which makes OCT extraction cumbersome
FCN + multiphase level set (18)

Avoid overlapping phenomenon of boundary and reduce the 

need for large training datasets

U-Net + Bayesian deep learning (19)
Improve the accuracy of OCT image extraction with better 

versatility and interpretability
Poor extraction performance for small-area objects

PSPNet + dual attention mechanism 

(20)
Aggregate context information of different regions

Insensitive to the information of fluid accumulation regions in 

DME
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FIGURE 2

Flowchart of DME extraction by DME-DeepLabV3+ model.

FIGURE 3

Structure of Inverted Residual. (A) Stride  =  1; (B) Stride  =  2.

https://doi.org/10.3389/fmed.2023.1150295
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Bai et al. 10.3389/fmed.2023.1150295

Frontiers in Medicine 05 frontiersin.org

2.5. Datasets

The datasets contained 1711 OCT images, including 416 images 
(512 × 512 pixels) selected from the Kermany dataset (27) and 1,295 OCT 
datasets (938 × 420 pixels) collected from the Affiliated Eye Hospital, 
Nanjing Medical University. All patients were required to undergo OCT 
scanning by a spectral domain OCT (RTVue, Optovue Inc., United States). 
These OCT images were centered on the macula with an axial resolution 
of 10 μm and a 24-bit depth and were acquired in 2 s, covering 4 × 4 mm 
area. Inclusion criteria were as follows: the presence of macular edema in 
at least one eye and clear optical media allowing OCT imaging with good 
quality. Subsets of 1,369, 171, and 171 OCT images were randomly 
selected for training, validation, and testing, respectively. Each OCT 
image was individually labeled by three experienced clinicians who had 
more than 10-year clinical working experience. The annotation results 
were binarized by MATLAB software, where the background was labeled 
as 0 and the DME labeled as 1. Due to the limited human energy, some 

artificial deviations were inevitable. For these images, a senior expert was 
consulted and thorough rounds of discussion and adjudication were 
conducted to ensure the accuracy of the labeling. The original OCT 
images and ground truth are shown in Figure 6.

3. Implementation

The hardware configurations used for this study are shown below: 
Windows 10, NVIDIA GeForce RTX 3060. The software environment 
is the deep-learning framework PyTorch 1.10.0, CUDA 11.3, and the 
programming language Python 3.9.

4. Evaluation metrics

Seven metrics were calculated to estimate the extraction 
performance of DME-DeepLabV3+, including pixel accuracy (PA), 

FIGURE 4

Illustration of atrous convolution principle of DeepLabV3 + with  dilation rate = [1, 6, 12, 18] and RF  =  75  ×  75. (A) Effective pixels in RF, which were 
marked in blue; (B) The number of calculation times of each pixel.

FIGURE 5

Illustration of atrous convolution principle of DME-DeepLabV3+ with dilation rate = [1, 3, 9, 1, 3, 9] and RF  =  53  ×  53. (A) Effective pixels in RF, which 
were marked in blue; (B) The number of calculation times of each pixel.

https://doi.org/10.3389/fmed.2023.1150295
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Bai et al. 10.3389/fmed.2023.1150295

Frontiers in Medicine 06 frontiersin.org

mean pixel accuracy (MPA), precision (Pre), recall (Re), F1-score 
(F1), mean intersection over union (MIoU), and frames per 
second (FPS).
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TP, FP, and FN denote the true positive region, false positive 
region, and false negative region, respectively. pii  is the number 

of edema area pixels which was correctly classified as edema 
areas; pij  is the number of background area pixels which are 
misclassified as edema areas; p ji  is the number of edema area 
pixels which are incorrectly classified as the background; k is the 
labeling results of different classes, where k = 0 expressed as 
background class and k = 1 as DME class; frameNum  is the 
number of OCT images that are input to the model when 
performing inference; elapsedTime is the time consumed by the 
model when performing inference. PA is the overall pixel 
accuracy. MPA is the average pixel accuracy of DME and 
background. Pre and Re are the proportion of real DME regions 
in the samples predicted as DME and the proportion of correct 
predictions in all DME, respectively. F1-score (F1) is a balanced 
metric and determined by precision and recall. MIoU is a metric 
to measure the similarity of ground truth and prediction. FPS is 
the number of OCT images inferred per second.

5. Results

To evaluate the performance of DME extraction of 
DME-DeepLabV3+ model, two comparative experiments were 
performed. In experiment 1, DME extraction performance of 
DME-DeepLabV3+ model was evaluated by comparing against 
DeepLabV3+ model under different settings. In experiment 2, DME 
extraction performance of DME-DeepLabV3+ model was evaluated 
by comparing against other end-to-end models, including FCN, UNet, 
PSPNet, ICNet, and DANet.

5.1. Experiment 1 (ablation experiment)

To evaluate the effects of MobileNetV2 and the improved ASPP 
on DME extraction performance, the proposed DME-DeepLabV3+ 
model was compared against DeepLabV3+ model with different 
settings, including DeepLabV3+, DeepLabV3+ with MobileNetV2 
(MobileNetV2-DeepLabV3+), DeepLabV3+ with the improved ASPP 

FIGURE 6

Original OCT images and DME labeling by three experienced clinicians.
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(Improved ASPP-DeepLabV3+). Figure 7 showed the DME extraction 
results by DeepLabV3+ model with different settings, where red, blue, 
and white DME regions represented true positive (TP) regions, false 
positive (FP) regions and false negative (FN) regions, respectively. 
DeepLabV3+ model led to some missed and false extraction of 
DME. MobileNetV2-DeepLabV3+ and improved ASPP-DeepLabV3+ 
reduced the missed and false extraction of DME. However, the missed 
extraction still existed in small edematous regions as shown in OCT2. 
DME-DeepLabV3+ had better extraction performance, especially in 
small-scale macular edema regions. The extraction results of 
DME-DeepLabV3+ were close to the ground truth.

Table  2 showed the results of evaluation metrics for 
DeepLabV3+ under different settings. Compared with DeepLabV3+ 

model, the MobileNetV2-DeepLabV3+ enhanced the scores of PA, 
MPA, Pre, Re, F1, MIoU, and FPS of DME extraction results, which 
were 98.69(0.28↑), 94.95(1.50↑), 91.02(0.57↑), 91.09(3.31↑), 
91.06(1.97↑), 91.05(1.78↑), and 9.24(3.40↑), respectively. FPS 
increased by about 58%. The improved ASPP-DeepLabV3+ 
enhanced the scores of PA, MPA, Re, F1, and MIoU of DME 
extraction results, which were 98.47(0.06↑), 93.90(0.45↑), 
88.49(0.71↑), 89.45(0.36↑), and 89.61(0.34↑), respectively. 
DME-DeepLabV3+ enhanced the scores of PA, MPA, Pre, Re, F1, 
and MIoU of DME extraction results, which were 98.71(0.30↑), 
95.23(1.78↑), 91.19(0.74↑), 91.12(3.34↑), 91.15(2.06↑), and 
91.18(1.91↑), respectively. FPS was 9.03, which was lower than that 
of MobileNetV2-DeepLabV3+ (0.21↓).

FIGURE 7

DME extraction results by DeepLabV3+ model with different settings Red, blue, and white DME regions represented TP regions, FP regions and FN 
regions.

TABLE 2 Evaluation metrics of DME extraction by DeepLabV3+ model with different settings.

Models Evaluation metrics

PA(%) MPA(%) Pre(%) Re(%) F1(%) MIoU(%) FPS(it/s)

DeepLabV3+ 98.41 ± 0.07 93.45 ± 0.36 90.45 ± 0.85 87.78 ± 0.62 89.09 ± 0.16 89.27 ± 0.20 5.84 ± 0.87

MobileNetV2-

DeepLabV3+
98.69 ± 0.01 94.95 ± 0.14 91.02 ± 0.58 91.09 ± 0.43 91.06 ± 0.08 91.05 ± 0.05 9.24 ± 0.33

Improved ASPP-

DeepLabV3+
98.47 ± 0.03 93.90 ± 0.40 90.43 ± 0.30 88.49 ± 0.68 89.45 ± 0.42 89.61 ± 0.25 5.59 ± 0.13

DME-DeepLabV3+ 98.71 ± 0.02 95.23 ± 0.26 91.19 ± 0.44 91.12 ± 0.48 91.15 ± 0.02 91.18 ± 0.09 9.03 ± 0.43
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5.2. Experiment 2 (comparative 
experiment)

We evaluate DME extraction performance of 
DME-DeepLabV3+ model by comparing against other models, 
including FCN, UNet, PSPNet, ICNet, and DANet. Figure  8 
showed DME extraction results by different models, where red, 
blue, and white DME regions represented true positive (TP) 
regions, false positive (FP) regions, and false negative (FN) 
regions, respectively. As shown in Figure  8, DME extraction 
results of DME-DeepLabV3+ were close to the ground truth. A 

part of the background was extracted falsely by FCN, U-Net, or 
DANet models. Compared with FCN and U-Net, PSPNet and 
ICNet reduced the fault-extraction, but the small-scale macular 
edema was over-extracted. Table  3 showed the parameter 
configurations of different models and Table 4 showed the results 
of DME evaluation metrics. Compared with FCN, U-Net, PSPNet, 
and DANet models, DME-DeepLabV3+ achieved higher scores 
of PA, MPA, and FPS. As for Pre, Re, F1, and MIoU, 
DME-DeepLabV3+ substantially exceeded other models. 
Compared with ICNet, DME-DeepLabV3+ achieved a better 
trade-off in the accuracy and efficiency for DME extraction.

FIGURE 8

DME extraction results by different models Red, blue, and white DME regions represented TP regions, FP regions and FN regions.
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6. Conclusion and discussion

With the increased incidence of diabetes, DME has become a 
major cause of visual impairment in diabetic patients (28). DME 
occurs as a result of the disruption of blood-retinal barrier and 
consequent increase in vascular permeability (29). OCT allows 
longitudinal, functional, and microstructural analysis of human 
macula (30). However, manual labeling DME is time-consuming 
and labor-intensive (31). Automatic extraction of DME based on 
machine learning can help physicians assess disease severity, 
determine treatment options, and improve life quality of patients 
(32). Thus, it is urgent to develop an efficient model for DME 
detection. In this study, we proposed a lightweight model based 
on DeepLabV3+, termed DME-DeepLabV3+, to extract DME in 
OCT images. MobileNetV2 architecture was used as the backbone 
to extract the low-level features of DME and reduce the model 
complexity to enhance DME detection accuracy. With the help of 
improved ASPP structure, DME-DeepLabV3+ avoided the grid 
effects and learned more local information. Finally, the decoder 
was used to fuse the low-level and high-level features of DME and 
refined the results of DME extraction.

OCT image modality has been widely used for detecting 
DME due to its non-invasive and high-resolution features. 
Considering the clinical characteristics that are present in OCT 
images such as thickness, reflectivity or intraretinal fluid 
accumulation, DMEs have been categorized into three different 
types: SRD, DRT, and CME. Traditional DME detection is based 
on the low-level hand-crafted features, which require significant 
domain knowledge and are sensitive to the variations of lesions. 
Given great variability of morphology, shape, and relative ME 
position, it is difficult to detect all three ME types simultaneously. 

Our proposed model can achieve automatic and simultaneous 
detection of all three types of ME (SRD, DRT, and CME) in the 
ophthalmological field. However, the accuracy of DRT detection 
is still not good as SRD or CME detection. DRT is characterized 
by a sponge-like retinal swelling of the macula with reduced 
intraretinal reflectivity. In addition, DRT is characterized by 
uniform thickening of inner retinal layers but without 
macroscopic optical empty spaces. Thus, further improvement of 
our proposed model is still required for enhancing the accuracy 
of the automatic detection of DRT edemas.

In clinical practice, layer segmentation and fluid area 
segmentation can provide qualitative information and 
visualization of retinal structure, which is important for DME 
assessment and monitoring. Although commercial OCT devices 
with on-board proprietary segmentation software are available, 
the definition of retinal boundaries varies between the 
manufacturers, making the quantitative retinal thickness 
difficult. In addition, proprietary software is difficult to be used 
for image analysis from other OCT devices, which poses a great 
challenge for effective diagnosis of DME (33). Although 
automated methods for layer segmentation have been proposed, 
most of them usually ignore the priority of mutually exclusive 
relationships between different layers, which can also affect the 
accuracy of DME assessment (34). In future study, we  will 
improve our model to consider both layer segmentation and fluid 
area segmentation for better monitoring the progression of DME 
in retinal diseases.

Both microaneurysm (MA) formation and DME lesions are the 
important signs of DR. Early and accurate detection of DME and 
MAs can reduce the risk of DR. Due to the small size of MA lesions 
and low contrast between MA lesion and retinal background, 
automated MA detection is still challenging. Many imaging 
modalities have been used to detect MAs, including color fundus 
images, optical coherence tomography angiography (OCTA), and 
fluorescein fundus angiography (FFA). However, MAs are situated 
on the capillaries, which are not often visible in color fundus images. 
Although FFA can capture the small changes of retinal vessels, FFA 
is an invasive method compared with other imaging modalities. 
OCTA can provide the detailed visualization of vascular perfusion 
and allow for the examination of retinal vasculature in 3D (35). In 
future study, we would also improve our model by considering the 
segmentation of FFA for better monitoring the progression of DME 
in retinal diseases. We would design modules with better feature 
extraction capabilities, such as embedding attention mechanism to 
the model, strengthening key information, suppressing useless 

TABLE 4 Evaluation metrics of DME extraction by different models.

Models Evaluation metrics

PA(%) MPA(%) Pre(%) Re(%) F1(%) MIoU(%) FPS(it/s)

FCN 98.27 ± 0.11 89.88 ± 1.50 81.76 ± 1.20 79.44 ± 1.40 80.58 ± 0.85 82.66 ± 0.48 4.08 ± 0.20

U-Net 98.61 ± 0.01 90.73 ± 1.05 86.31 ± 0.41 81.15 ± 0.65 83.58 ± 0.15 85.32 ± 0.23 3.43 ± 0.24

PSPNet 98.69 ± 0.04 92.52 ± 0.41 84.61 ± 1.27 85.76 ± 0.90 85.17 ± 0.24 86.41 ± 0.21 7.96 ± 0.48

ICNet 98.07 ± 0.02 90.94 ± 0.20 90.73 ± 0.78 82.57 ± 0.93 86.45 ± 0.29 86.86 ± 0.13 15.86 ± 0.30

DANet 98.06 ± 0.01 92.15 ± 0.16 87.44 ± 0.77 85.68 ± 1.16 86.54 ± 0.21 87.11 ± 0.08 6.12 ± 0.50

DME-DeepLabV3+ 98.71 ± 0.02 95.23 ± 0.26 91.19 ± 0.44 91.12 ± 0.48 91.15 ± 0.02 91.18 ± 0.09 9.03 ± 0.43

TABLE 3 Parameter configurations of different DME extraction models.

Models Backbone Learning 
rate

Total 
epochs

Batch 
size

FCN ResNet50 0.01 200 1

U-Net VGG16 0.01 200 2

PSPNet ResNet50 0.01 200 2

ICNet ResNet50 0.01 200 2

DANet ResNet101 0.0001 200 2

DME-

DeepLabV3+
MobileNetV2 0.01 200 2
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information, and better capturing contextual information, to 
improve the generalization of the model for the diagnosis of 
retinal diseases.
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