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Molecular insight in intrarenal
inflammation a�ecting four main
types of cells in nephrons in IgA
nephropathy

Haidong Zhang, Zhenling Deng* and Yue Wang*

Department of Nephrology, Peking University Third Hospital, Beijing, China

Immunoglobulin A nephropathy (IgAN) is the most common primary

glomerulonephritis and the leading cause of kidney failure in the world. The

current widely accepted framework for its pathogenesis is the “multi-hit

hypothesis.” In this review, we mainly discussed the intrarenal inflammation

in IgAN, which is initiated by immune complex deposition with complement

molecule activation, by focusing on four main types of cells in nephrons including

mesangial cells, endothelial cells, podocytes, and tubular epithelial cells (TECs).

Galactose-deficient IgA1 (Gd-IgA1)-containing immune complexes deposit in the

mesangium and activate complement molecules and mesangial cells. Activation

of mesangial cells by Gd-IgA1 deposition with enhanced cellular proliferation,

extracellular matrix (ECM) expansion, and inflammatory response plays a central

role in the pathogenesis of IgAN. Regional immune complex deposition and

mesangial–endothelial crosstalk result in hyperpermeability of endothelium

with loss of endothelial cells and infiltration barrier proteins, and recruitment of

inflammatory cells. Podocyte damage ismainly derived frommesangial–podocyte

crosstalk, in which tumor necrosis factor-α (TNF-α), transforming growth factor-β

(TGF-β), renin-angiotensin-aldosterone system (RAAS), and micro-RNAs are the

major players in podocyte apoptosis and disorganization of slit diaphragm (SD)

related to proteinuria in patients with IgAN. In addition to filtrated proteins into

tubulointerstitium and mesangial–tubular crosstalk involved in the injury of TECs,

retinoic acid has been discovered innovatively participating in TEC injury.

KEYWORDS

immunoglobulin a nephropathy, galactose deficient-immunoglobulin A1, complement,
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1. Introduction

Immunoglobulin A nephropathy (IgAN) is the most common primary glomerular

disease and the leading cause of kidney failure in the world with variable incidences in

different countries (1). The difference in the estimated incidence of IgAN might be partly

attributed to unsatisfactory systemic urine screening in some districts and disparities in

current indications for kidney biopsy.

The most common clinical presentation of IgAN in adults is asymptomatic hematuria

with varying degrees of proteinuria, with or without progressive kidney disease.

Approximately 10–15% of adult patients with IgAN present as synpharyngitic macroscopic

hematuria (2). Pathological lesion of IgAN is characterized by dominant or codominant

Gd-IgA1 staining in the mesangium with ECM expansion and mesangial hypercellularity.
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The “multi-hit hypothesis” is the current widely accepted

framework for the pathogenesis of IgAN, in which a large amount

of Gd-IgA1 characterized by the presence of galactose-deficient O-

glycan in the hinge region is generated in the susceptible population

after infection, and IgG autoantibodies targeting terminal N-

acetylgalactosamine (GalNAc) residues following the deficiency of

galactose in the hinge region on Gd-IgA1 are produced to form the

IgG-Gd-IgA1 immune complex and deposit in glomeruli, mainly

in the mesangium. These Gd-IgA1-containing immune complexes

deposit in the mesangium, activate complement molecules, and

initiate an intrarenal inflammatory response, which affects the four

main types of cells in nephrons, namely, mesangial cells, endothelial

cells, podocytes, and TECs.

Previous reviews have focused on clinical manifestation and

therapeutic management in patients with IgAN (2), elucidated the

genetic susceptibility of patients with IgAN (3), demonstrated the

molecular structure and resources of Gd-IgA1 (4), and clarified the

effect of mesangial–podocyte–tubular crosstalk in the pathogenesis

of IgAN (5, 6). Trimarchi and Coppo (7) discussed podocyte

damage in IgAN in detail. However, there was no review discussing

the pathogenesis of IgAN by summarizing the alteration of four

main types of cells in nephrons, and the contribution of intrarenal

inflammation to renal injury in IgAN is still unclear. Therefore, we

concluded the updated information on intrarenal inflammation in

IgAN by focusing on the fourmain types of cells in nephrons, trying

to draw amore comprehensive picture elucidating the pathogenesis

of IgA nephropathy.

2. Gd-IgA1-containing immune
complex deposition

Intrarenal inflammation is considered to be initiated by Gd-

IgA1-containing immune complex deposition in the mesangium.

Immunofluorescence in kidney samples of patients with IgAN

reveals dominant or codominant mesangial Gd-IgA1 deposits

(predominantly polymeric Gd-IgA1), accompanied by a variable

degree of IgG and IgM. The majority of current evidence

suggested that mesangial immune deposits are mainly derived from

circulating Gd-IgA1-containing immune complexes. Deposited

Gd-IgA1 is polyclonal, containing kappa and lambda light chains

by immunofluorescence. Compared to the direct participation of

Gd-IgA1 in the pathogenesis of IgAN, IgM might not participate

in the pathogenesis of IgAN as it might be the result of entrapment

of macromolecules secondary to glomerular injury. The structure

of Gd-IgA1 and its corresponding synthesis process involved in

IgAN was described by Knoppova et al. (4). High levels of Gd-IgA1

were generally considered to be produced by tonsillar lymphocytes

(8) and plasma cells in the bone marrow and gut mucosa (3).

Interestingly, plasma cells from gut mucosa could release dimeric

IgA1, which could form polymeric IgA proteins, while IgA from

the bone marrow is predominantly monomeric (9), suggesting Gd-

IgA1 deposited in the mesangium with different forms might have

different resources. However, the possibility that such polymeric

IgA1 molecules are produced in the bone marrow of patients

with IgAN has been proposed (10), and the location of polymeric

IgA-producing cells in IgAN remains to be determined (11).

Immunoglobulin might come from non-B cells is a new idea for

the resources of immunoglobulin (12–14), and it has been reported

that human mesangial cells could also produce IgA (15), which

might be associated with the intrarenal inflammation in IgAN.

We speculated that IgA produced and secreted by mesangial cells

might at least contribute to Gd-IgA1 staining in kidney biopsies

and the formation of circulating immune complexes in the plasma

partly in patients with IgAN and might synergistically enhance the

inflammatory response of mesangial cells together with Gd-IgA1

from B cells. Further experiments are urgently needed to confirm

this speculation.

Autoantibodies targeting Gd-IgA1 in the blood of patients with

IgAN are predominantly the IgG isotype (16), and IgG recognizes

the hinge region of Gd-IgA1 with terminal GalNAc residues

(4, 17). In patients with IgAN, IgG-bound Gd-IgA1 cannot be

catalyzed by the liver (18), and therefore, these immune complexes

remain in circulation for a prolonged period (19). Furthermore,

the size of Gd-IgA1-IgG immune complex and polymeric Gd-

IgA1 aggregated for their de-glycosylation is large, and these large

molecules could not be cleared efficiently from the circulation and,

thus, tend to deposit in the renal mesangium to initiate intrarenal

inflammation. Clinical studies have revealed that circulatory levels

of anti-Gd-IgA1 IgG antibodies correlate with disease severity

(20). Intrarenal inflammation initiated by deposition of Gd-IgA1-

containing immune complex affecting mesangial cells, endothelial

cells, podocytes, and TECs is shown in Figure 1.

3. Activation of complement pathways

Complement molecules have been proven to participate in the

pathogenesis of IgAN (21). Clinical studies assessing the serum and

urinary levels of complement elements, and deposition in glomeruli

have revealed the importance of these molecules in predicting renal

outcomes (4).

Among the activation of the three complement pathways,

the alternative pathway is considered an important player in

the pathogenesis of IgAN as C3, properdin, and factor H were

detected in the immune deposits in the kidney biopsies of

patients with IgAN (21). In vitro experiments also indicated that

IgA could activate alternative pathways (22). A single-nucleotide

polymorphism (SNP) at position 1q32 in the factor H gene which

leads to large deletion of complement factor H-related genes 1 and

3 (CFHR1 and CFHR3) was identified, positioned downstream of

the factor H gene. Products of these two genes could bind C3 in a

similar way as with factor H (23) to negatively regulate alternative

pathways but with less efficiency compared to factor H. Absence

of them would induce a stronger factor H-mediated inhibition of

the alternative pathway, thereby loss of CFHR1 and/or CFHR3

from the specific SNP shows protective role in IgAN. Clinical study

has shown that CFHR1 and CFHR3 deletion was associated with

higher serum levels of factor H and C3, lower serum C3a levels,

and less C3 mesangial deposition in patients with IgAN (24). Rare

CFHR5 gene variants affecting FHR5 surface-binding regions to

increase C3b binding capacity were also identified in patients with

IgAN, resulting in greater complement-mediated injury and IgAN

susceptibility (25).

Products of lectin pathway like mannose-binding lectin (MBL)-

associated serine proteases (MASP) were detected in the glomerular
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FIGURE 1

Local deposition of Gd-IgA1-containing immune complexes activate complement molecules and initiates intrarenal inflammation a�ecting

mesangial cells, endothelial cells, podocytes, and tubular epithelial cells.

deposits (2), suggesting the lectin pathway is also activated in

IgAN. The interaction between MBL and IgA occurs between

the carbohydrate recognition domain of MBL and specific

glycosylation moieties on polymeric IgA (26). L-ficolin could also

bind to Gd-IgA1 through GalNAc via exposed acetyl groups (27).

Gd-IgA1-containing immune complex could stimulate mesangial

cells to produce collectin 11, an initiator of the lectin pathway.

Collectin 11 could deposit on the mesangial cell surface by

interacting with IgA1, thus initiating the lectin pathway and

accelerating C3 deposition on mesangial cells (28). Several clinical

studies have confirmed the negative prognostic impact of the

mesangial deposition of lectin pathway elements, including MBL,

MASP-1 and MASP-2, L-ficolin, C4d, and C4-binding protein (16,

29). However, the importance of activation of the lectin pathway by

binding to IgA in IgAN pathogenesis is still unknown.

Unlike the dominant roles of the alternative and lectin pathway

in complement pathway activation in IgAN, C1q, the first step

in the activation of the classical cascade, is usually missing in

IgAN kidney biopsies, and C1q deposition was only found in

only patients with 10% IgAN (30), suggesting classical pathway is

less significant in IgAN compared to the other two pathways (4).

However, the lack of C1q staining is not an absolute indication of

the role of the classical pathway in IgAN since the half-life of C1q

is very short and may disappear from the tissue quickly.

C3 in the common pathway is present in the mesangium

in up to 90% of cases (2). The role of C3 in IgAN was well

studied by several previous studies. It has been reported that Gd-

IgA1 deposition could induce mesangial cells to express C3 under

inflammatory conditions (IL-1 and TNF-α) in IgAN (31, 32), and

C3 activation is greater with larger molecular weight aggregates

(21), suggesting that C3 deposition in IgANmight be dependent on

polymeric but not monomeric IgA. Yanagihara et al. (33) supported

this speculation by figuring out that C3 activation requires IgG in

Gd-IgA-containing immune complexes serving as a surface for C3

cleavage for the production of C3 breakdown products. Moreover,

C3a was also considered to contribute to the production of ECM

from mesangial cells by inducing them to a secretory phenotype

(34). Furthermore, C3a and C5a could increase the production

of chemokine (C-C motif) ligand 20 (CCL20) from mesangial

cells and consequently augment Th9 cell recruitment and IL-9

levels, resulting in IgAN exacerbation (35). Terminal complement

complex co-deposited with Gd-IgA1 in the mesangium was also

detected in kidney biopsies (36). C5b9 induced production of

interleukin-6 (IL-6) and TGF-β and mesangial cell apoptosis in

a rat model of human mesangioproliferative glomerulonephritis

(37, 38), while C5a receptor knockout mice have less proteinuria

and reduced glomerular C3 and IgA deposition in another IgAN

murine model (39).
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FIGURE 2

Activation of mesangial cells initiated mainly by Gd-IgA1-containing immune complexes and enhanced by several other factors induces cellular

proliferation of mesangial cells, extracellular matrix expansion, and release of di�erent kinds of cytokine and chemokine to connect intrarenal

inflammation and systemic inflammatory response.

4. Mesangial cell

Activation of mesangial cells by Gd-IgA1-containing immune

complexes plays a central role in IgAN. Several kinds of

immunoglobulin receptors are constitutively expressed on

mesangial cells to recognize deposited Gd-IgA1-containing

immune complex, including FcαR(CD89) (40), FcγR (41),

transferrin receptors (TfR1/CD71) (42), β1,4-galactosyltransferase

1(β-1,4-GalT1) (43), and integrin α1/β1 and integrin α2/β1 (44).

CD71 and β-1,4-GalT1 share common intracellular signaling

pathways in mesangial cells (43). The relationship between

CD71 expression on mesangial cells and the progression of

IgAN was investigated by Jhee et al. (42). Mesangial cells could

secrete soluble CD89 into the extracellular compartment, and

these soluble CD89 could in turn upregulate the expression of

CD71 after binding to Gd-IgA1 (45), which might strengthen

the progression of IgAN. Cell culture experiments suggested

circulating immune complex containing high levels of Gd-IgA1

with large molecular mass (>800 kDa) could activate mesangial

cells by inducing cellular proliferation and overproduction of

cytokines and components of ECM, whereas complex without

Gd-IgA1 or Gd-IgA1 alone with low molecular mass (≤800 kDa)

exhibits an inhibitory effect (46, 47). These large complexes bind

to CD71 on mesangial cells’ surface to activate mitogen-activated
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FIGURE 3

Circulating Gd-IgA1-containing immune complexes and IL-6 from endothelial autocrine and mesangial paracrine synergistically induce endothelial

cell loss, increase in endothelium permeability, and recruitment of inflammatory cells to enhance Gd-IgA1 deposition and inflammatory response in

the mesangium.

protein kinase/extracellular-signal-regulated kinase (MAPK/ERK)

pathway and the phosphoinositide 3-kinase (PI3K)/protein

kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway

(7, 47). Interestingly, the MAPK/ERK pathway is involved in

pro-inflammatory cytokine secretion, and the P13K/Akt/mTOR

pathway is involved in mesangial cell proliferation, respectively. In

those IgA1-stimulated mesangial cells, SUMO1 protein, a protein

that drives SUMOylation modification in post-translational

modification, might contribute to mesangial cell proliferation

by inhibiting their autophagy (48). Epigenetic factors might also

participate in Gd-IgA1-induced mesangial cell activation. Dai

et al. (49) demonstrated that histone deacetylase is upregulated

in mesangial cells from patients with IgAN and subsequently

activates TGF-β/recombinant mothers against decapentaplegic

homolog 2/3 (Smad2/3) and Janus kinase 2 (Jak2)/signal transducer

and activator of transcription 3 (Stat3) signaling pathways for

cellular proliferation and ECM expansion. Gd-IgA1 could also

induce mesangial cell ferroptosis by damaging mitochondria and

increasing reactive oxygen species and malondialdehyde (50).

In addition to direct interaction between Gd-IgA and

mesangial cells, there are several other factors enhancing mesangial

cell proliferation, ECM production, and cytokine release from

mesangial cells. B cell-activating factor belonging to the TNF

family (BAFF), which is generally vital for B-cell survival,

proliferation, and activation, could also target BAFF receptors on

mesangial cells to promote proliferation through Akt activation

(51) and enhance fibroblast factors expression like connective

tissue growth factor (CTGF) and fibronectin (FN) in mesangial

cells through tumor necrosis factor receptor-associated factor 6

(TRAF6)/NF-κB signaling pathway (52). ADAMTS5, one member

of the metalloproteinase family, was upregulated in infiltrated

monocytes in IgAN tubulointerstitium and glomeruli (but not in

the tissue-resident macrophages), which affected multiple ECM

proteins (53) including basement membrane components and

basement membrane-binding integrins. Especially, ADAMTS5

could catalyze C3 in the mesangium into C3c and C3d and

appeared to affect the interaction of IgA and associated proteins

with cultured mesangial cells, thus limiting inflammation in the

mesangium. Triggering receptor expressed on myeloid cells-1

(TREM-1), which was detected to be expressed on neutrophils

and monocytes, is also expressed on mesangial cells to amplify

the Gd-IgA1 deposition-induced inflammatory response through

MARK/ERK and NF-κB signaling pathways (54). The mechanism

of TREM-1-driven cell activation differs between neutrophils and

monocytes (55), and the mechanism of TREM-1 exacerbating

mesangial cell proliferation remains unknown. One of those

hints suggested TREM-1 could also strengthen TLR-engaging

inflammatory response by binding LPS (56), but it is still unknown
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FIGURE 4

TNF-α, TGF-β, Ang II, and micro-RNAs from mesangial cells and dsRNA targeting toll-like receptor 3 and retinoic acid-inducible gene 1-like helicases

are the main drivers of disorganization of the slit diaphragm and podocyte apoptosis in podocyte damage in IgAN.

whether TREM-2 is expressed by mesangial cells or not. RAAS

was also activated in patients with IgAN. Angiotensin II subtype

1 receptor (AT1R) was downregulated in mesangial cells in

response to enhanced intrarenal expression of angiotensin II (Ang

II) (57). This regulation could be considered as a protective

role of mesangial cells in controlling inflammation as Gd-IgA1-

induced ERK1/2 activation is dependent on AT1R (47). GATA-

binding protein 3 (GATA3), a transcriptional factor with essential

roles in cell lineage commitment and differentiation, functions in

mesangial cells maturation, and it is highly expressed by mesangial

cells and renin-expressing cells of the juxtaglomerular apparatus in

IgAN (58). Over-expression of GATA3 is associated with enhanced

mesangial cell proliferation, sustained heavy proteinuria, and renal

dysfunction in patients with IgAN.

In IgAN, mesangial cells could also participate in the renal

immune response by acting as antigen-presenting cells (59), and

mesangial cells in juxtaglomerular mesangial region play a role as

a bridge connecting local immune response and systemic immune

response by phenotypic alteration after Gd-IgA1 stimulation (60).

Antigen–antibody immune complexes, complement components,

and pathogen-associated molecular patterns (PAMPs) and/or

damage-associated molecular patterns (DAMPs) could activate

phagocytosis by mesangial cells via Fc receptors, C3 receptors, and

Toll-like receptors (TLRs) expressed on the cell surface, respectively

(61, 62). It has been reported that up to 15% of the mesangial

cell population processes phagocytic function, and they are derived

from bone marrow and belong to the family of mononuclear

leukocytes (61). TLRs, which were traditionally considered to

recognize PAMPs and/or DAMPs in innate immunity, were also

reported to be involved in IgA-stimulated cytokines secretion

from mesangial cells in IgA nephropathy. Activation of TLR4 on

the mesangial cell surface can induce the release of a variety of

chemokines and cytokines, including monocyte chemoattractant

protein-1(MCP-1), IL-6, TGF-β, and TNF-α through myeloid

differentiation factor 88 (MyD88)/NF-κB signaling pathway (62,

63). TLR3 on the mesangial cell surface is also involved in MCP-

1-induced monocyte chemotaxis (64). Another key characteristic

of mesangial cells as antigen-presenting cells is that they express

a major histocompatibility complex (MHC) on the cell surface.

Both MHC-II and MHC-I are expressed in mesangial cells (59).
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FIGURE 5

Protein filtration from endothelium damage and podocyte damage, and TNF-α, TGF-β, and activation of the renin–angiotensin–aldosterone system

in mesangial–tubular crosstalk and the newly discovered retinol metabolism are the main determinants of survival of tubular epithelial cells and

tubulointerstitial inflammatory response.

The expression of MHC-II on mesangial cells could be promoted

by IFN-γ, and MHC-I could be promoted by TNF-α and IFN-γ

(65, 66). Antigen presentation by mesangial cells to T lymphocytes

is facilitated by intercellular cell adhesionmolecule-1(ICAM-1) and

CD80 on the mesangial cell surface. The activated mesangial cells

drive the proliferation and differentiation of CD4+ T cells. CD4+

T cells activated by IFN-γ-stimulated mesangial cells undergo Th1

differentiation (67), and the IFN-γ from Th1 cells could feedback

to mesangial cells to enhance expression of MHCI, MHCII, ICAM-

1, inducible nitric oxide synthase (iNOS), chemokines, and Fc

receptors, resulting in a stronger inflammatory response in the

glomeruli (68). In addition, IL-1, IL-6, and TNF-α from mesangial

cells in infection could induce Th22 cell differentiation and

proliferation, and these TGF-β producing Th22 cells are recruited

by CCL20, CCL22, and CCL27 secreted by mesangial cells to

contribute to renal fibrosis (69). Th17 cells are also recruited by

CCL20 and secreted by activated mesangial cells (70).

The associated molecular mechanism of mesangial cells in

IgAN leading to cellular proliferation, ECM expansion, and acting

as antigen-presenting cells is seen in Figure 2.

5. Endothelial cell

Clinical data have reported that damage of endothelium in

IgAN with loss of endothelial cells is very common. Dissection of

glomerular endothelial cells from the basal membrane, formation

of endothelial cavitation, and insertion of the basal membrane was

also observed in rat models with IgAN (71, 72).

Initially, damage to the endothelium was considered to

be attributed to local Gd-IgA1 deposition. Gd-IgA1-containing

immune complex deposition on endothelium could stimulate

the expression of soluble vascular endothelial growth factor

(sVEGF) receptor and soluble fms-like tyrosine kinase-1 (sFlt-1)

by endothelial cells, leading to reduced proliferation ability and

enhanced apoptosis of endothelial cells (73). Gd-IgA1-containing

immune complexes mediate glycocalyx loss in endothelial cells

(74). As glycocalyx covers the luminal surface of vascular

endothelial cells, provides a barrier against free passage of

proteins, and prevents the adherence of inflammatory cells to the

endothelium (75), loss of glycocalyx results in hyperpermeability of

the endothelium, deteriorating deposition of Gd-IgA1-containing

immune complexes in the mesangium and might be partially

attributed to proteinuria in patients with IgAN. Gd-IgA1-

containing immune complexes could also increase the production

of adhesion factors including vascular cell adhesion molecule-1

(VCAM-1), ICAM-1, and E-selectin to strengthen inflammatory

cells recruitment and induce the production of pro-inflammatory

cytokines such as TNF-α and IL-6 by glomerular endothelial cells

for intrarenal inflammation exacerbation (74).

The effect of IL-6 (mainly from mesangial cells) in the

formation of endothelial damage has been well studied by several
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groups. IL-6 increases the permeability of renal glomerular

endothelial cells in IgAN by downregulating the expression of

vascular endothelial cadherin via the trans-signaling pathway

and inducing β-catenin phosphorylation on endothelial cells (76)

through the classic pathway, respectively. In the trans-signaling

pathway, IL-6 binds to soluble IL-6R to form the IL-6/IL-6R

complex and thereafter binds to gp130 on endothelial cells to

release MCP-1 by activating JAK/STAT3 and PI3K/AKT pathways

simultaneously (77). IL-6 could also enhance endothelial cell

proliferation and promote ICAM-1 expression on endothelial

cells to strengthen monocyte–endothelial adhesion through

downregulating miR-223 (78), in which NF-κB and STAT3

signaling pathways were activated. MiR-223 addition could

inhibit NF-κB and STAT3 nuclear translocation, thereby

alleviating endothelial cell proliferation, ICAM-1 expression,

and monocyte adhesion on the endothelium. Another in vitro

experiment demonstrated that elevated expression of endostatin,

an endogenous angiogenesis inhibitor, and IL-6 with decreased

cell proliferation activity was found in cultured endothelial cells

after polymeric IgA stimulation (72). As direct stimulation of

IL-6 enhances endothelial cell proliferation, it is reasonable to

hypothesize that endostatin secreted by endothelial cells plays a

self-protective role in cell proliferation while IL-6 from mesangial

cells stimulated by Gd-IgA deposition enhances endothelial cell

proliferation, and they collaboratively result in endothelial cell loss

and hyperpermeability of endothelium finally.

The endothelium damage resulting from Gd-IgA1-containing

immune complex deposition and IL-6 from autocrine and

paracrine is shown in Figure 3.

6. Podocyte

Podocyte damage with increased glomerular permeability

was found in part of patients with IgAN (79). Rather than

the podocytopathy in lupus nephritis with diffuse foot process

effacement and full nephrotic syndrome (80), podocyte damage in

IgAN is typically localized and segmental and is correlated with

proteinuria and decline in renal function in patients with IgAN

(81). Process interfering with podocyte apoptosis and integrity of

slit diaphragm (SD) is the main character of podocyte damage

in IgAN (Figure 4). Podocyte detachment resulting from the

lengthening of the mesangial axis (82) was also found in IgAN, in

which the integrins αVβ3 and α3β1 on podocytes are involved (7).

Compared to mesangial cells, podocytes were rarely bound

with Gd-IgA1 in IgAN because of the absence of known IgA

receptors in podocytes (83). However, two in vitro experiments

suggested that Gd-IgA1 deposition on the mouse podocyte cell

line MPC-5 cells could induce podocyte apoptosis (84) and induce

the expression of NOD-like receptor, pyrin domain-containing

3(NLRP3), an important sponsor after recognizing PAMPs and/or

DAMPs in innate immunity, and initiate podocyte-macrophage

transdifferentiation (PMT) to promote inflammation and renal

fibrosis with an increased level of ICAM-1 and α-smooth muscle

actin (α-SMA) (85). In these two in vitro experiments, aggregated

IgA1 incubated from monomeric IgA1 manually was used to

substitute polymeric IgA1 from patients with IgAN to stimulate

MPC-5 cells. Different glycosylation moieties between aggregated

IgA1 and polymeric IgA1 and different species of the cells might be

the reason why Gd-IgA1 deposited on podocytes in vitro but not

in vivo.

The damage of podocytes in IgAN has been supposed to

originate mainly from altered mesangial–podocyte crosstalk (4),

in which elevated amount of TNF-α and TGF-β is released

from mesangial cells and reduces expression of nephrin, erzin,

and podocin in podocytes (83). Increased synthesis of platelet-

activating factor (PAF) in podocytes induced by IgA deposition

acts as a secondary mediator in nephrin reduction (86). TNF-α

from mesangial cells increases TNF-α synthesis and expression

level of TNF receptor 2 (TNFR2) on podocytes, which enhances

IL-6 synthesis to induce podocyte apoptosis (87) and activates

the inflammatory response of podocytes (57) via TNFR1 and

TNFR2, respectively. TNF-α-induced podocyte apoptosis was also

detected to be associated with increased expression of caspase-3 in

renal tissue of mouse model (88), suggesting TNF-α might induce

podocyte apoptosis through TNFR1-/caspase-8/caspase-3 death

pathway. Another cell culture experiment demonstrated that TNF-

α might induce podocyte apoptosis and foot process effacement

through the NF-κB signaling pathway (7). However, direct evidence

confirming the mechanism of TNF-α in inducing apoptosis of

podocytes is still needed. The dendrin was restored in the nucleus

in injured podocytes to modulate apoptosis of podocytes after

TGF-β stimulation and the podocyte apoptosis induced by TGF-

β was significantly alleviated in dendrin knockdown podocytes

(89), suggesting the role of translocational dendrin in enhancing

podocyte damage (90). Podocin, another constructing protein of

SD, is also endocytosed in IgAN, which is facilitated by the

newly identified protein sorting nexin 9 (SNX9) (91). Smad7

plays as an amplifier in TGF-β-induced podocyte apoptosis by

inhibiting nuclear translocation and transcriptional activity of NF-

κB, while decorin, a small proteoglycan secreted by mesangial cells,

antagonizes the effect of TGF-β1 through the mTOR pathway to

inhibit podocyte apoptosis (92). However, decorin is sequestered

in the accumulated mesangial matrix in IgAN and the level

of podocyte-encountered decorin decreases, leading to enhanced

podocyte apoptosis by TGF-β (93).

RAAS and micro-RNA are another two players in the

mesangial–podocyte crosstalk in podocyte damage. Prorenin

receptor (PRR) and angiotensin II type 1 receptor (AT1R)

expressions on podocytes are enhanced by humoral mediators

released by activated mesangial cells to aggravate podocyte

apoptosis through the notch 1 signaling pathway (5, 94). Ang II

from Gd-IgA-stimulated mesangial cells could modulate α3β1

integrin expression on podocytes to reduce their adhesiveness

(95). Yu et al. (96) recently reported that MiR-4455 derived

from mesangial cells is upregulated and transferred to podocytes,

directly reducing expression of Unc-51-like autophagy activating

kinase 2 (ULK2) and inducing podocyte injury through

inhibiting autophagy.

DsRNA from virus replication contributes to glomerular

injury and might be associated with the progression of IgAN

(3). Podocytes express TLR3 and retinoic acid-inducible gene 1

(RIG-I)-like helicases (RLHs) to recognize the extracellular and

cytosolic dsRNA, respectively. After binding to dsRNA, these two

pathways induce phosphorylation of transcription factor interferon

regulatory factor 3 (IRF3) and NF-κB and their translocation to the
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nucleus for protein synthesis. DsRNA also suppresses podocyte cell

migration, which alters the expression of SD-constructing proteins

including nephrin, podocin, and CD2-associated protein (CD2AP)

to enhance proteinuria in patients with IgAN (97).

7. Tubular epithelial cell

Limited studies were focused on TEC’s injury in IgAN. Injury

of TECs in IgAN is mainly associated with protein filtration from

filtration barrier damage and mesangial–tubular crosstalk, and

retinoic acid metabolism. The associated mechanism is shown in

Figure 5.

Filtrated proteins including albumin, complement

components, cytokines, growth factors, and Gd-IgA1 from

endothelium injury and podocyte damage play an indisputable role

in the tubulointerstitial injury. These filtrated proteins stimulate

proximal tubular epithelial cells (PTECs) to secrete different

kinds of inflammatory factors to build up an inflammatory

micro-environment in the tubulointerstitium (5). Specifically,

filtrated albumin could also stimulate TECs to secrete exosomes

containing high levels of MCP-1 mRNA; then, the MCP-1 mRNA

from TECs is directly transferred to macrophages in interstitium

to enhance macrophage influx and induce tubulointerstitial

inflammation (98). Plasmin is another kind of filtrated protein

that could also induce damage to TECs, which is associated

with strengthened macrophage and neutrophil infiltration (99).

Injury of ETCs is usually accompanied by reduced reabsorption

ability, in which the essential protein for proximal tubule

reabsorption, megalin, is downregulated, under the effect of

miR-148b (100).

Injury of TECs was also considered to be a result of mesangial–

tubular crosstalk (5). The crosstalk between mesangial cells and

TECs is mediated by TNF-α, TGF-β1, and MCP-1 (6). TNF-α from

mesangial cells could enhance AT1R expression on TECs in the

early phase and then boosts AT2R expression subsequently, after

which increased Ang II level from mesangial cells could deteriorate

TEC damage by inducing inflammatory response viaAT1R through

MAPK pathway and inducing TEC apoptosis via AT2R through

caspase pathway (20). Furthermore, Ang II could also upregulate

the expression of the mineralocorticoid receptor (MR) by PTECs,

and binding of aldosterone to MR on PTECs induces cellular

apoptosis through the generation of reactive oxygen species

(101). TGF-β1 could increase the expression of NLRP3 on TECs

transiently colocalizing with kidney injury molecule-1 (KIM-1)

expression, which is correlated with the progression of IgAN (102).

Lin et al. (103) found that KIM-1-positive TECs were associated

with significantly increased infiltration of T cells and macrophages,

probably through enhancing the expression of MCP-1 in TECs.

PRR expressed on TECs plays a protective role in IgAN progression

in which the expression level of PRR on TECs correlates with

autophagy activation in TECs, suggesting that PRR might prevent

TEC death and the subsequent fibrosis through activation of

cytoprotective autophagic machinery (104).

Nakamura et al. (105) innovatively discovered that the

“stimulated by retinoic acid 6” receptor (STRA6) and retinaldehyde

dehydrogenase (RALDH) functioning in the uptake of retinol and

converting retinol to retinoic acid (RA) are constitutively expressed

on PTECs. The RA-producing capacity of PTECs is relocated to

myofibroblasts in renal injury. The level of RA frommyofibroblasts

increases and RA promotes PTECs regeneration via RA receptor-

γ in the nucleus. This investigation by Nakamura et al. (105)

demonstrated the role of RA signaling in TEC repair and may

suggest a beneficial effect of fibrosis in the early response to injury.

8. Conclusion

As the most common primary glomerulonephritis and the

leading cause of kidney failure in the world, IgAN plays one of

the dominant roles in affecting people’s health and national socio-

economic status. In this review, we debated the pathogenesis of

IgAN by focusing on intrarenal inflammation initiated by Gd-

IgA1-containing immune complex deposition with complement

molecule activation affecting four main types of cells in nephrons,

including mesangial cell, endothelial cell, podocyte, and tubular

epithelial cells.

Activation of mesangial cells by deposition of Gd-IgA1-

containing immune complexes with enhanced cellular

proliferation, ECM expansion, and release of cytokines and

chemokines plays a central role in deteriorating renal function

in IgAN. Endothelium alteration in IgAN is mainly induced

by Gd-IgA1 deposition and mesangial–endothelial crosstalk to

strengthen the intrarenal inflammation. Podocyte damage in IgAN

characterized by podocyte apoptosis and disorganization of SD is

mainly induced by altered mesangial–podocyte crosstalk. Protein

filtration into tubulointerstitium and mesangial–tubular crosstalk

with inflammatory cell infiltration play the dominant role in

TEC injury.

The mesangial cell might be another resource of Gd-IgA1 in

addition to B cells. However, the role of Gd-IgA1 spontaneously

produced by mesangial cells in enhancing the inflammatory

response of mesangial cells and in deteriorating renal function in

IgAN needs further laboratory investigation.
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