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Extracorporeal membrane oxygenation (ECMO) played an important role in the 
treatment of patients with critical care such as cardiac arrest (CA) and acute 
respiratory distress syndrome. ECMO is gradually showing its advantages in 
terms of speed and effectiveness of circulatory support, as it provides adequate 
cerebral blood flow (CBF) to the patient and ensures the perfusion of organs. 
ECMO enhances patient survival and improves their neurological prognosis. 
However, ECMO-related brain complications are also important because of 
the high risk of death and the associated poor outcomes. We summarized the 
reported complications related to ECMO for patients with CA, such as north–
south syndrome, hypoxic–ischemic brain injury, cerebral ischemia–reperfusion 
injury, impaired intracranial vascular autoregulation, embolic stroke, intracranial 
hemorrhage, and brain death. The exact mechanism of ECMO on the role of 
brain function is unclear. Here we  review the pathophysiological mechanisms 
associated with ECMO in the protection of neurologic function in recent years, as 
well as the ECMO-related complications in brain and the means to improve it, to 
provide ideas for the treatment of brain function protection in CA patients.
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1. Introduction

Extracorporeal membrane oxygenation (ECMO) is used clinically as a partial or complete 
replacement for cardiopulmonary function, providing effective respiratory/circulatory support, 
and is becoming an essential adjunctive support technique in clinical care (1). Since 2009, the 
use of ECMO has increased globally, from 3,262 cases to 20,317 cases in 2021, indicating a 623% 
or sixfold increase in use (2). In terms of indications, ECMO was mainly used to provide 
respiratory support (51% of cases), followed by cardiac support (37%) and assistance with 
extracorporeal cardiopulmonary resuscitation (ECPR) (12%). Especially in ECPR, ECMO is 
initiated emergently on patients who have had a cardiac arrest (CA) and on whom conventional 
cardiopulmonary resuscitation (CCPR) has failed. As well as the outbreak of COVID-19 in 2019, 
ECMO has played an indispensable role in the treatment of novel coronavirus pneumonia (3–5). 
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ECMO is gradually showing its advantages in terms of speed and 
effectiveness of circulatory support (6–8), and its trend as acute 
cardiopulmonary life support is gaining ground worldwide (9–11).

ECMO has gradually drawn attention in the field of 
neuroprotection, which could remarkably increase long-term survival 
and improve the prognosis of neurological function to improve the life 
quality of critical care patients. In 2020, Yannopoulos et  al. (12) 
reported that early application of ECMO improved survival from 7 to 
43% in patients with “refractory cardiac arrest” compared with 
standard advanced cardiac life support (ACLS). ECMO significantly 
preserves neurological function and improves functional status scores 
after 6 months for survivors (12). Notably, this significant increase in 
survival and improvement in neurological function is inextricably 
linked to the possible neuroprotective function of ECMO. However, 
some studies have also shown that the use of ECMO may result in 
several brain-related complications due to improper cannulation or 
others. These complications include stroke, hypoxic–ischemic brain 
injury, seizures, intracranial hemorrhage, cerebral embolism (13, 14).

Therefore, ECMO can be a lifesaving therapy in patients with 
refractory severe respiratory and/or cardiac failure and improve 
survival. However, ECMO remains associated with significant 
neurologic morbidity and mortality. Here we  review the 
neuroprotection pathophysiological mechanism of ECMO, as well as 
the ECMO-related brain complications, and the means to improve it, 
to provide ideas for the treatment of brain function protection in 
CA patients.

2. The benefits of ECMO in 
neurological function of CA patients

CA is a clinical emergency in which there is a sudden termination 
of the cardiac ejection, loss of large arterial pulsations and heart 
sounds, as well as severe ischemia and hypoxia in vital organs (e.g., the 
brain), resulting in the end of life. Post-cardiac arrest brain injury 
(PCABI) is a major cause of death and long-term disability (15). 
PCABI is caused by initial ischemia and subsequent reperfusion of the 
brain after resuscitation. CA causes a cessation of cardiac output and 
oxygen delivery to all vital organs (e.g., brain, etc.). Cerebral blood 
flow (CBF) is then stopped resulting in an immediate interruption of 
brain activity. Whereas brain tissue viability is largely dependent on a 
continuous supply of oxygen and energy substrates (i.e., glucose). Due 
to the lack of intrinsic energy stores, neurons are particularly 
vulnerable to ischemia, and cellular damage begins as soon as CBF is 
lacking. At the cellular level, ischemia leads to a cessation of aerobic 
metabolism and consequent depletion of the high-energy substrate 
adenosine triphosphate (ATP). This ultimately leads to a series of 
pathological processes such as neuronal damage and altered dendritic 
morphology (Figure 1) (15). The early introduction of ECMO can 
significantly improve the prognosis of PCABI and neurological 
function, mainly through improving brain histopathological damage 
and reducing the expression of brain injury biomarkers, reducing the 
inflammatory reaction, anti-Apoptosis of neuronal cells in the 
hippocampal CA1 region, antioxidant stress, and improving cerebral 
metabolism to play a protective role.

VA-ECMO is the main component of ECPR assistance after CA 
and can significantly improve the neurological prognosis of CA 
patients. Ouweneel et al. (16) showed that the use of ECMO for acute 

myocardial infarction combined with refractory cardiac arrest and 
cardiogenic shock was associated with improved survival and an 
increased favorable neurological prognosis in a 3,333 patient meta-
analysis. Another systematic review of the literature on the 
neurological outcomes of 19 studies of in-hospital CA (IHCA) treated 
with ECPR found that the combined percentage of surviving patients 
with a good neurological prognosis (CPC score of 1 or 2) was 84% 
(17). Survival to hospital discharge and good neurological recovery in 
patients treated with ECPR vs. CCPR after out-of-hospital CA 
(OHCA) has also been evaluated, and a trend toward improved 
survival and good neurological outcomes with ECPR was also found 
(18). All of the above suggests that ECPR as a treatment for refractory 
CA is associated with a good neurological prognosis for the majority 
of patients.

3. Mechanisms of ECMO in preventing 
cerebral injury induced by CA

3.1. Reduction of brain injury biomarkers

Lower perfusion pressure after CA-CPR resulted in inhibiting 
brain metabolism and necrosis of neuron cells due to ischemia and 
hypoxia, releasing relevant brain injury biomarkers into the blood, 
such as NSE (neuron-specific enolase) and S100b (present in glial and 
membranous cells) (19). Serum biomarkers such as NSE and S100b 
have been identified as valid predictive markers of neuronal injury 
(20). The use of the biomarker S100b protein to determine 
non-traumatic, traumatic, and tumor-associated brain damage is 
accepted practice (21, 22). Equally, NSE is recognized as a valid 
prognostic biomarker for neurological outcomes after CA (23).

NSE is one of the enolases involved in the glycolysis pathway. NSE 
is most active in brain cells, detected in serum and cerebrospinal fluid, 
and has a half-life of 24–72 h. NSE consists of α, β, and γ subgroups, 
of which γ is specific to neuronal cells (24). The European Resuscitation 
Council and European Society of Intensive Care Medicine Guidelines 
2021 recommend a specific NSE cut-off value of 60 μg/L at 48 and/or 
72 h after the return of spontaneous circulation (ROSC) to accurately 
predict outcomes after CA (25). Petermichl et  al. (26), in a 
retrospective study of 69 patients, resuscitated after CA found NSE 
could be used to identify survivors 24 h after ECPR treatment, and 
neurological outcomes could be assessed as early as 48 h later. High 
serum NSE values at 48–72 h after CA support a poor prognosis of 
neurological prognosis, especially if repeated sampling results in 
consistently high values (27). Additionally, a study showed that the 
prognostic value of serum NSE in the group with severe blood–brain 
barrier disruption was more useful than that in the group without 
severe blood–brain barrier disruption (28), whereas a cut-off value of 
34.6 μg/L in those with severe blood–brain barrier disruption had a 
sensitivity of 86.4% and a specificity of 100.0% (28).

A relative decrease in S100b during the first 24 h indicated a good 
neurological outcome, while an increase in S100b to base level in the 
first 24 h post-cannulation was associated with a worse neurological 
outcome. Good neurological outcome was associated with a continual 
decrease in S100b relative to the first value (measured within 12 h) 
(26). A delayed decrease in S100b or even an increase at 4 and 12 h 
after ECPR was associated with a poor neurological outcome (26). The 
sole decision about the neurological outcome according to CA and 
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ECPR based on the S100b course does not be  reliable, and the 
combination of NSE and S100b can improve the prognostic validity of 
neurological outcomes after CA and ECPR (26).

In addition, the prognostic biomarkers S100b, NSE, lactate, d-dimer, 
and interleukin 6 (IL-6) can be used as indicators of the neurological 
outcome when performing ECPR and TTM at the emergency scene 
(26). High serum lactate level was associated with poor survival and 
poor neurological outcome in CA patients treated with ECMO (29). 
Lactate and d-dimer were the earliest reliable prognostic markers for 
survival in ECPR. At 1 h after ECPR, non-survivors had a significantly 
increased lactate value compared to CPC 1–2 survivors (26). Other 
novel markers neurofilament light (NFL), tau, ubiquitin C-terminal 
hydrolase-L1 (UCH-L1), and glial fibrillary acidic protein (GFAP) are 
currently available as research-level tests (30). These biomarkers may 
show the highest predictive power and are believed to be an important 
addition to clinical tools in the near future.

3.2. Mitigation of the oxidative stress 
reaction

Ischemic–hypoxic damage of CA causes an increase of intracellular 
calcium, thus leading to glutamate release, arising calcium-dependent 
mitochondrial dysfunction, resulting in cellular energy failure and the 

release of pro-apoptotic proteins and reactive oxygen species (ROS), 
further leading to neuronal damage (15). However, the use of ECMO 
can reduce this oxidative stress damage in the brain.

Zhang et al. (31) found that ECMO could improve ATPase activity 
compared to CCPR in a porcine model of CA. It has also been found that 
ECPR treatment of CA in rats has a protective effect on neurons after 
CA, and the mechanism may be related to improved energy metabolism 
in the brain (32). A CA pig model study (33) found increased superoxide 
dismutase activity and decreased malondialdehyde and ROS in the 
ECMO group compared with CCPR. All of the above suggests ECMO 
can exert a neuroprotective effect by the mechanisms of antioxidant stress.

3.3. The alleviation of inflammatory 
reaction

ECMO alleviates the neuro-inflammatory response in brain 
tissue. Zhang et al. (31) in a porcine cardiac arrest model, found 
that IL-1, IL-6, TNF-α, and TGF-β levels were significantly lower 
in the ECMO group than in the CCPR group, while the difference 
in IL-10 levels between the two groups was not statistically 
significant. Pastuszko et al. (34) investigated the effect of ECMO on 
pro-inflammatory signaling in the striatum of piglets after CA and 
found that ECMO significantly reduced pro-inflammatory proteins 

FIGURE 1

The pathophysiological mechanisms of CA brain injury. The picture represents the morphological changes in brain tissue due to ischaemia and hypoxia 
following CA, with increased lactic acid, cerebrovascular endothelial damage, increased inflammatory cells, cerebral micro-thrombosis, neuronal 
damage, dendritic morphological changes, and a range of other pathological processes occurring.
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(IL-12p40, IL-21, IL-15, IL-1α, and β, IL-8, MIP-1β, OPG, PIGF-2, 
RANTES, and TGF-β). Those reductions may lead to disturbances 
in neuronal metabolism and amplify inflammatory cell death (34).

However, other studies in a rat model of CA showed that the 
pro-inflammatory factor TNF-α was elevated in the CCPR group 
compared to the Sham group (p < 0.05), and the pro-inflammatory 
factor TNF-α was significantly elevated in the ECPR group (p < 0.001) 
and IL-6 was elevated in the ECPR group (p < 0.05), and the expression 
of pro-inflammatory factors was more severe in the ECPR group than 
in the CCPR group (32). Pastuszko et al. (34) found that ECMO could 
significantly reduce the expression of anti-inflammatory factors 
(ANG-1, FGF-21, IFN-α and β, IGF-2, IL-10, IL-13, IL-1ra, IL-22, IL-4, 
IL-6, NCAM-1, SCF, TGF-α, TIMP-1 and 2, VECF) in the striatum of 
piglets. A plausible explanation for the significantly increased plasma 
inflammatory cytokine (IL-6, TNF-α, CRP) and anti-inflammatory 
cytokine (IL-10) levels following ECMO treatment is the bacterial 
translocation following ECMO disconnection due to the contact of 
blood with the surface of the artificial line during ECMO (35), the 
non-pulsatile pulsation caused by the pump (36) and the non-laminar 
flow (37), which causes an inflammatory response activation of the 
immune response and its possible simultaneous activation of the anti-
inflammatory response through stimulation of the vagus nerve (38). 
Therefore, ECMO may alleviate the neuro-inflammatory response in 
brain tissue after CA by restoring adequate blood flow promptly.

3.4. Anti-apoptosis of neuronal cells

Neurons in the central nervous system differ in their sensitivity to 
ischemia–reperfusion injury (I/R). The striatum is involved in all 
aspects of motor behavior control and behavioral plasticity and is 
highly sensitive to hypoxia/ischemic injury in different brain regions 
(34). Neurons in the CA1 region of the hippocampus are most 
sensitive to I/R injury in the central nervous system (39).

ECMO reduced apoptosis in the striatum of the brain and the CA1 
region of the hippocampus after CA. Xue compared the efficacy of ECPR 
and CCPR for CA rats and found that the expression of the apoptosis-
regulating protein Bcl-2 and the Bcl-2/Bax ratio was reduced in the 
hippocampus of the ECPR group compared with the CA group 
(p < 0.05), suggesting that the neurons in the ECPR group are more 
resistant to apoptosis (32). Pastuszko et al. (34) investigated the effect of 
ECMO on pro-apoptotic signaling in the striatum of piglets after CA and 
found that the pro-apoptotic proteins (Bax, cytoC, IGFBP-6, TNF-β, and 
TRAIR 1 and 3) were significantly lower in the ECMO group compared 
to the CA group and the Bcl-2 to Bax ratio was increased by 30% in the 
ECMO group. But the expression of anti-apoptotic proteins (Bcl-2, 
Bcl-w, HSP27, HSP60, HSP70, IGFBP-1, IGFBP-3, Livin, Survivin) 
between the CA and ECMO groups are no different. Suggesting a 
protective effect of ECMO against striatum cell injury. In a piglet model 
of CA, ECMO significantly reduced the levels of pro-apoptotic proteins 
without altering the levels of anti-apoptotic proteins (34).

3.5. Improvement of cerebral metabolic 
function

The lack of energy after CA ischemia causes a series of subsequent 
neuronal injuries. As the increased release, reduced re-intake, and 

massive release of excitatory amino acids cause neurotoxic effects, 
arousing a subsequent series of neuronal injuries. The use of ECMO 
can ameliorate this injury.

Schober et al. (40) in the 8 min CA rat model, found that ECMO 
application elevated central nervous blood glucose levels and 
reduced lactate/pyruvate (L/P) ratio and glutamate levels. Pingfei 
(32) also in a CA rat model found that aspartic acid, glycine, and the 
lactate/pyruvate ratio were significantly elevated in both the CCPR 
and ECPR groups compared with the sham group. But both aspartic 
acid and glycine were decreased in the ECPR group compared to the 
CCPR group (32). However, glutamate concentrations were not 
significantly elevated in the ECPR and CCPR groups, which may 
be  related to the transfer of astrocytes through the glutamate-
glutamine cycle during the acute phase of injury (32). Another 
result of the ECPR low-flow model developed by Putzer et al. (41) 
showed that the use of epinephrine improved cerebral perfusion 
pressure, local CBF, cerebral oxygenation, cerebral metabolism and 
that the target means arterial pressure (MAP) of 60 mmHg during 
ECMO can improved metabolism. All the above suggest that ECMO 
can improve cerebral metabolic function.

In conclusion, the mechanism of the cerebral protective effect of 
ECMO may be  through alleviating brain cell necrosis, improving 
energy metabolism in the brain, inhibiting neuronal cell apoptosis, 
brain tissue inflammatory response, and anti-oxidant stress, thereby 
effectively improving various physiological functions and brain injury 
in CA. The mechanism of cerebral protective effect after ECMO 
treatment is shown in Figure 2.

4. Neurological complications of 
ECMO

Although ECMO offers a promising approach to the treatment of 
critically ill patients, there is a high incidence of neurological 
complications during ECMO treatment, due to high oxygen 
consumption, low oxygen reserve capacity, and poor tolerance to 
hypoxia of brain tissue being the organs most vulnerable to damage 
(15). Despite this technical success, ECMO is associated with high 
morbidity and mortality rates due to the invasive nature of the treatment 
and the technical complexity of the system (42). Complications 
associated with ECMO can be considered in two categories; patient-
related and technical complications or failures. These complications 
include but are not limited to hypoxic–ischemic brain injury, cerebral 
I/R injury and impaired intracranial vascular autoregulation, cerebral 
embolism, and intracranial hemorrhage (14, 42, 43).

4.1. Hypoxic–ischemic brain injury

The primary conditions such as the no and low blood flow state 
after CA and during CPR could cause initial hypoxic–ischemic 
damage to the brain (44), and inappropriate ECMO cannulation can 
exacerbate this pathological damage.

Migdady et  al. (45) performed a comprehensive systematic 
review and meta-analysis to identify specific neurologic 
complications of ECMO when it is deployed for purposes of 
refractory CA. They found a high frequency of ECPR-associated 
brain injury (27%), the most common of which was a 
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hypoxic–ischemic brain injury. The mechanism of hypoxic–
ischemic brain injury after ECPR is complex, as it relates to the 
underlying condition that prompts ECMO treatment (i.e., CA) as 
well as complications associated with ECMO use (i.e., 
Harlequin syndrome).

Harlequin Syndrome (also known as North–South Syndrome) is 
a complication of V-A ECMO that can occur when the left ventricular 
function starts to recover. When VA-ECMO is using femoral artery-
venous cannulation, the cardiac output consists of blood from both 
the ECMO system and the patient’s left heart. If the patient has 
inadequate lung function or ventilator support, the blood ejected 
from the left heart has a low oxygen content. The ECMO cannula 
retrograde input of oxygenated blood from the femoral artery is 
competition for deoxygenated blood from the natural circulation 
(46–48). Which results in inadequate coronary and head oxygenation 
and severe bilateral cerebral hypoxia (44, 49). In addition, the clinical 
experience shows that the reduced “protective” lung ventilation used 
in ECMO patients may further contribute to varying degrees of 
hypoxemia (50). All of those may cause hypoperfusion of brain tissue 
and ischemia, leading to ischemic and hypoxic brain damage.

4.2. Cerebral IR injury

CA patients are in a state of severe ischemia, and although the use 
of ECMO offers hope for life, it is undeniable that ECMO may also 
increase the risk of organ reperfusion injury, particularly in the brain, 
with potentially more serious consequences for the patient. The 

mechanism of I/R injury in the brain is related to the activation of 
ROS and the production of free radicals after reperfusion, among 
others. This because the adequate blood supply leads to the formation 
of ROS, altered microvascular blood flow, endothelial disruption, and 
increased permeability of the blood–brain barrier, which may develop 
into a “sepsis-like” syndrome with a systemic cytokine response (45, 
51–55). As well as CA patients treated with ECPR after ROSC usually 
accompanied with hyperoxia (usually defined as mild PaO2 > 100 or 
120 mmHg and severe PaO2 > 300 mmHg) can also lead to acute 
cerebral IR injury. The underlying mechanism is that hyperoxia 
increases the production of ROS, which causes damage to lipid 
membranes, deoxyribonucleic acid and proteins (44), and neuronal 
damage. It also causes reactive vasoconstriction, leading to impaired 
cerebral microcirculation, and platelet dysfunction, which increases 
the risk of thrombosis and hemorrhage (56, 57). In addition, the 
de-cannulation of ECMO can also induce a systemic inflammatory 
response syndrome response, leading to further ROS production and 
increasing the likelihood of secondary acute brain injury (58).

4.3. Impaired autoregulation of intracranial 
blood vessels

Cerebral autoregulation is the ability to keep CBF almost 
constant for some range of changing the MAP. When VV-ECMO is 
used in patients with severe hypercapnia due to respiratory failure, a 
sudden drop in arterial blood carbon dioxide partial pressure levels 
leads to cerebral vasoconstriction and a dramatic reduction in CBF 

FIGURE 2

Schematic representation of the cerebral effects of ECMO. The number of brain neurons and nissls was elevated after ECMO resuscitation compared 
to CA. The number of lactate and d-dimer was decreased after ECMO resuscitation compared to CA. and other inflammatory, metabolic, necrotic, 
oxidative stress, apoptotic and other cytokine trends are shown in picture.
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(59). The rapid transition from hypercapnia to a normal or 
hypercapnic state may lead to impaired cerebral self-regulation, 
further increasing the risk of complications such as cerebral ischemic 
injury (59, 60).

Another possible neurological risk factor specific to 
VA-ECMO is the loss of pulsatile systemic blood flow. Loss of 
pulsatile blood flow is a consequence of ECMO’s continuous blood 
flow system and is also associated with endothelial dysfunction, 
increased sympathetic tone, reduced local oxygen consumption, 
and increased systemic vascular resistance (36, 61, 62). In patients 
with impaired cerebral autoregulation, the use of potent sedatives 
during ECMO can reduce MAP due to peripheral vasodilation, 
and then lead to cerebral perfusion deficit (63). These may lead to 
intracranial vascular hyper- or hypo-responsiveness, which 
increases the risk of cerebral edema (64). In addition, several 
other factors such as irregular use of high doses of vasoactive 
drugs may also lead to impaired intracranial vascular 
autoregulation (45, 49).

4.4. Cerebral embolism or 
anticoagulation-related hemorrhage

Dysregulation of anticoagulation during ECMO can lead to 
intracranial hemorrhage or thrombosis. VA-ECMO has a high risk of 
embolic stroke because of the direct return of oxygenated blood to the 
aorta (usually the aorta or femoral artery), mostly due to solid and/or 
gaseous microemboli and thrombus formation in the catheter (65). In 
contrast, in VV-ECMO, the pulmonary circulation acts as a filter for 
emboli from the ECMO circuit (65, 66). In addition, the oxygenator 
membrane may be  pro-thrombotic and requires systemic 
anticoagulation. These phenomena lead to thrombosis, hemolysis, and 
thrombocytopenia, increasing the risk of ischemic and hemorrhagic 
craniocerebral injury (44).

Factors that may lead to the risk of cerebral hemorrhage also 
include a systemic inflammatory response to ECMO circuits. Contact 
between blood and ECMO circuits can cause a systemic inflammatory 
response, including disruption of the blood–brain barrier and direct 
damage to neurons (43). Uptake of plasma proteins, activation of 
factor X, and thrombin production may further lead to an imbalance 
between the intrinsic procoagulant and anticoagulant regulatory 
systems, which increases the risk of abnormal bleeding and/or 
thrombosis (67). The triggered inflammatory cascade also leads to 
increased cytokine release, which in turn leads to thrombocytopenia 
and diffuse activation of the coagulation system, resulting in the 
depletion of blood clotting function (68, 69). In addition, the positive 
and negative pressures generated by the ECMO pump itself and within 
the circuit can lead to mechanical damage, dysfunction, and lysis of 
blood cells and platelets. As well as loss of von Willebrand factor, 
which may further predispose to bleeding (69, 70).

5. Methods to avoid or treat cerebral 
complications during ECMO

The cerebral complications during ECMO can be  treated by 
treating the primary disease of the patient or by adjusting the mode of 
ECMO cannulation. ECMO can also combine with blood flow 

regulation, targeted blood pressure management, and EEG utilizing, 
as well as a combination of target temperature management (TTM), 
intra-aortic balloon pump (IABP), continuous renal replacement 
therapy (CRRT) and gas therapy [hydrogen (H2) and carbon 
monoxide (CO)] to achieve further improvements in brain function. 
This reduces the incidence of complications and brain damage and 
provides a solution for better brain protection in critically ill patients 
using ECMO.

5.1. Appropriately regulating ECMO 
ventilation/flow mode

Generally, the north–south syndrome, arising in VA-ECMO 
patients, is clinically addressed by increasing ECMO flow, ventilator-
inspired oxygen concentration, and positive end-expiratory 
pressure, or by changing VA-ECMO to VAV-ECMO mode (49). 
VA-ECMO using central or axillary arterial cannulation may also 
be considered if severe differential hypoxia is present (46, 71, 72). If 
the patient has largely recovered cardiac function but not fully 
recovered respiratory function, he may be switched to VV-ECMO 
assistance to maintain his right upper extremity arterial oxygen 
saturation to 90–95% (49). For the impaired cerebral self-regulation 
produced by VV-ECMO patients, low gas flow may be adopted at 
the start of ECMO to avoid rapid correction of hypercapnia. At the 
initiation of either VA-ECMO or VV-ECMO, it would be prudent to 
limit the rate of CO2 reduction to avoid over-anticoagulation (59, 
73). Because of the body’s pulmonary oxygenation in VA-ECMO 
mode, so intelligent regulation between ventilation and perfusion is 
very crucial.

5.2. TTM

TTM is the management of the body’s temperature to a target 
temperature to reduce organ tissue damage. The American Heart 
Association recommends a target temperature of 32–36°C for use in 
comatose adult patients after ROSC (27). The current advantage of 
ECMO is that it enables rapid cooling of the blood and maintain due 
to the heat exchangers (74), which has been demonstrated in an adult 
pig model within minutes (75, 76). Several studies have found that 
early TTM (subfreezing ~34.0°C) after ECMO can improve survival 
and neuroprognosis (77–79), as well as reduce cerebral injury (80, 81). 
Otherwise, another consideration for TTM in this population is that 
ECMO-related coagulation disorders may be exacerbated by lower 
temperature targets and the need for systemic anticoagulation.

Numerous clinical and animal studies have shown that 
hypothermia has an important neuroprotective effect on brain I/R 
injury after CA. Hypothermia can reduce CBF, reduce cerebral edema, 
decrease brain metabolism, reduce the production of ROS, reduce the 
release of excitatory amino acids and pro-inflammatory mediators, 
and inhibit apoptosis (82–84). TTM reduces endoplasmic reticulum 
stress-induced neuronal apoptosis, and changes in temperature within 
a certain sub-cold range do not diminish this protective effect (85, 86). 
In a study in CA rats, it was shown that both TTM alone and inhaled 
molecular H2 alone inhibited neuronal degeneration and microglia 
activation in vulnerable brain regions, with the combination of TTM 
and H2 inhalation being the most effective treatment (87).
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5.3. Small molecule gases with 
anti-oxidative stress properties

I/R injury is an important cause of rapid, acute oxidative stress in 
post-cardiac arrest syndrome (PCAS), and ECMO administered with 
different concentrations of H2 can inhibit cerebral oxidative stress injury. 
H2 attenuates oxidative stress (87) leading to a variety of effects, including 
anti-inflammatory and anti-apoptotic responses through changes in 
gene expression (88), signal transduction (89, 90), and mitochondrial 
membrane potential (91, 92). H2 reacts with strong oxidants (e.g., -OH) 
in cells, but remains sufficiently mild to neither interfere with metabolic 
redox reactions nor signal ROS (92). Furthermore, H2 diffuses rapidly 
into tissues and cells, and it may also be suitable as a defense against 
acute oxidative stress induced by I/R injury (91, 93). Study shows that 
inhalation of therapeutic doses of H2 has no adverse effects on arterial 
oxygen saturation (SpO2) or hemodynamic parameters (including blood 
pressure, heart rate, and left ventricular pressure) (93). ECMO 
Administered with 2% H2 decreased mortality in ECPR-resuscitated CA 
rats and helped to restore electrical brain activity (94), the underlying 
mechanism may be related to the protective effect on endothelial injury 
(95). Therefore, ECMO administered with different concentrations of H2 
can be used as an effective to avoid or treat cerebral oxidative stress injury.

Notably, ECMO combined with the endogenous gas-transmitter 
CO has attracted attention in reducing brain injury. In a porcine ECPR 
model, the addition of low doses of CO targeting 7–13% 
carboxyhemoglobin (CO-Hb) using a new in vitro CO delivery 
method reduced brain injury and improved neurological function 
(44). In addition, there are several gases (xenon, hydrogen sulfide, 
nitrogen monoxide, nitrogen dioxides), drugs, and, filter adsorption 
devices for ROS scavenging can also improve cerebral I/R injury, thus 
exerting a protective and reparative effect on neurological damage.

5.4. Other methods

The improvement of ECMO-related brain complications cannot 
be achieved without monitoring and early warning of problems of 
brain function. Several advanced devices (bedside transcranial 
doppler, CT, MRI, EEG, and near-infrared spectroscopy) can be used 
for monitoring and prognosis of brain function in critically ill patients 
(49, 96). Some blood markers [NSE, S100b (20), GFAP, lactate, among 
others] can also be used in the prediction of brain injury (26). All 
these standardized multimodal neuromonitoring methods, together 
with clinical neurological assessment and neurological consultation, 
may contribute to the early detection of brain injury associated with 
ECMO and thus allow early intervention.

The IABP and CRRT can also be used in combination with ECMO 
for the treatment of critically ill patients with different disease types. The 
IABP is a mechanical cardiac assist device that increases the blood and 
oxygen supply to the myocardium by inflating the balloon during diastole 
and deflating it before systole to decrease myocardial oxygen consumption 
(97). IABP was thought to provide left ventricle unloading and improve 
survival and good neurological outcomes in VA-ECMO (98). CRRT is a 
technique for the continuous, slow removal of water and solutes using 
extracorporeal circulation blood purification. CRRT was found to 
maintain hemodynamic stability, and high solute clearance, remove 
inflammatory mediators as well as safeguard the patient’s fluid balance and 
provide favorable conditions for total intravenous nutrition. Fang et al. 

(99) reported a 22-year-old prolonged CA patient who was resuscitated 
for over 75 min and treated with CRRT due to anuria, mixed acidosis, and 
hemodynamic instability. The results found that in hemodynamically 
unstable patients, administration of hypertonic saline solution and CRRT 
to maintain blood sodium levels within a therapeutic range of 
148–150 mEq/L may mitigate the adverse effects of hypoxic brain injury.

Neurosurgical interventions are also available for complications 
such as cerebral embolism and cerebral hemorrhage. Neurosurgical 
interventions such as hematoma removal and/or decompression can 
be used for major intracerebral hemorrhage following the use of ECMO 
(100, 101). In patients with embolic stroke during ECMO, systemic 
thrombolysis should be avoided and catheter-directed thrombolysis and 
mechanical retrieval should be used (43, 102–104). Thromboelastography 
can also be used to accurately assess coagulation and reduce the risk of 
embolism and bleeding. Other tools such as flow regulation, targeted 
blood pressure management, and EEG utilized in ECMO are also 
beneficial for good neurological outcomes (97). Figure 3 summarizes the 
means of treatment for ECMO-related neurological complications.

6. Conclusion

As the use of ECMO has gradually increased, its indications have 
also expanded. ECMO can save time and give hope to critically ill 
patients, provide adequate cerebral perfusion and thus improve 
neurological prognosis. However, due to improper cannulation and 
other accidents, brain complications associated with ECMO often occur, 
including but not limited to hypoxic–ischemic brain injury, cerebral I/R 
injury and impaired intracranial vascular autoregulation, cerebral 
embolism, and intracranial hemorrhage. How to avoid complications 
during ECMO is a serious issue for every life support team.

The review is identifying the mechanisms of brain injury from 
previous studies and improves these mechanisms of injury, which may 
be effective for the prevention and treatment of ECMO-related brain 
complications. ECMO is convenient for a combination of blood flow 
regulation, targeted blood pressure management, and EEG utilization, 
as well as TTM, IABP, CRRT, and gas therapy (H2, CO) as modifiable 
parameters for the prevention and treatment of cerebral protection. 
Therefore, more research should be  done on the prevention and 
treatment of ECMO-related brain complications.

In addition, the prognosis for brain injury is poor once it has 
occurred, so it is important to have multimodal monitoring and early 
warning of problems of brain function. The measurement of brain oxygen 
partial pressure will provide insight into changes in brain injury. For 
patients with brain injury who requires differentiated treatment, the 
treatment plans should be  developed after individual assessment for 
different disease characteristics. Several advanced devices (bedside 
transcranial doppler, CT, MRI, EEG, and near-infrared spectroscopy) can 
be used for monitoring and prognosis of brain function in critically ill 
patients. Some blood markers (NSE, S100b, GFAP, lactate, among others) 
can also be used in the prediction of brain injury. All these standardized 
multimodal neuromonitoring methods, together with clinical 
neurological assessment and neurological consultation, may contribute to 
the early detection of brain injury associated with ECMO and thus allow 
early intervention. More research should be done on the monitoring and 
early warning of ECMO-related brain injury.

It is believed that with improved management, fewer 
complications, easier percutaneous manipulation, further experience 
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of the ECMO team, implementation of effective means of multimodal 
monitoring of the brain, combined with optimized treatment of the 
appropriate complications, the future of ECMO for neuroprotection 
will have a bright prospect.
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