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Evidence of vascular involvement 
in myopia: a review
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United States

The benign public perception of myopia (nearsightedness) as a visual 
inconvenience masks the severity of its sight-threatening consequences. Myopia 
is a significant risk factor for posterior pole conditions such as maculopathy, 
choroidal neovascularization and glaucoma, all of which have a vascular 
component. These associations strongly suggest that myopic eyes might 
experience vascular alterations prior to the development of complications. Myopic 
eyes are out of focus because they are larger in size, which in turn affects their 
overall structure and function, including those of the vascular beds. By reviewing 
the vascular changes that characterize myopia, this review aims to provide an 
understanding of the gross, cellular and molecular alterations identified at the 
structural and functional levels with the goal to provide an understanding of the 
latest evidence in the field of experimental and clinical myopia vascular research. 
From the evidence presented, we  hypothesize that the interaction between 
excessive myopic eye growth and vascular alterations are tipping-points for the 
development of sight-threatening changes.

KEYWORDS

myopia, vascular, structure, function, evidence

1. Introduction

The blinding consequences of myopia are often overlooked (1–7). Myopic eyes are larger in 
size, which alters not only their focusing ability, but also their anatomy and physiology (8). All 
myopes, regardless of degree, are at increased risk of visual impairment (3, 9, 10). This has 
significant implications due to the predicted global increase in myopia prevalence and the 
potential public health crisis it represents (8, 11). As we learn about the role that peripheral 
refraction (12, 13), light intensity (14, 15), time spent outdoors (16, 17), or the on/off pathways 
play in the development of myopia (18, 19), the controversy is no longer whether myopia is 
genetic or environmental, but whether we  can identify the variables that interact in this 
multifactorial condition. Currently, there are no preventive markers for myopic degeneration, 
which is predicted to threaten the eyesight of five billion people by 2050. Myopic eyes have 
thinner choroids and scleras and, if they progress into high myopia, they can have secondary 
macular defects in Bruch’s membrane along with a complete loss of retinal pigment epithelium, 
choriocapillaris, and retinal photoreceptors, which confirms the effect of myopia on the 
ocular vasculature.

The eye’s vascular network comprises a complex grid of supply and drainage structures. The 
retina has a high metabolic rate and oxygen consumption per unit weight in the body (20). In 
humans, the retina is supplied by the central retinal artery (CRA) - directly in charge of the inner 
two thirds by diffusion to rods, cones and outer layers - and the choroid, supplying the outer 
third. The retina is particularly vulnerable to ischemia because of its high oxygen demand and 
low vascularity of the inner layers (21, 22). The choroid has a high flow rate, low oxygen exchange 
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and a fenestrated capillary bed. While the choroidal circulation is 
mainly controlled by sympathetic innervation and thought not to 
be  autoregulated (23), the retinal circulation is ruled by locally 
controlled autoregulatory mechanisms, including mediators released 
by endothelial cells (23). A web-like capillary network spreads 
throughout the retina to provide additional supply (24), connects 
arteries and veins, and allows direct transport of oxygen, water and 
lipids to the tissues by diffusion. Capillaries are most abundant in the 
macula but absent from the fovea (capillary-free zone), which obtains 
its nutrients from the choriocapillaris (25). The superficial optic nerve 
head zone is supplied by the central retinal artery, while the short 
posterior ciliary arteries supply the lamina cribrosa (24, 26).

Until recently, the perfusion features of the human myopic eye 
had only been studied in human pathological myopia (27, 28) and 
experimental models of myopia (29–33). This review aims to 
summarize the latest evidence and controversies in the field of 
experimental and clinical myopia vascular research by addressing the 
structural and functional gross, cellular and molecular vascular 
alterations identified in myopic eyes.

2. Vascular features of the human 
myopic eye

Most of the techniques used to assess ocular hemodynamics in 
vivo are non-invasive imaging systems that assess retinal blood-flow 
velocity directly or indirectly (laser doppler velocimetry, LDV) (34), 
oxygen saturation (oximetry) (35), capillary perfusion (optical 
coherence tomography angiography, OCTA) (36), microvascular 
health (adaptive optics scanning light ophthalmoscope fluorescein 
angiography, AOSLO FA) (37), blood flow (laser speckle contrast 
imaging LSCI) (38), choroidal pulsatile ocular blood flow (POBF) 
(39), retrobulbar blood velocity (color doppler imaging, CDI) and 
retinal blood velocity (laser doppler velocimetry, LDV) (34), amongst 

others. Until recently, the only method providing a measure of 
absolute retinal blood flow was the combination of LDV blood 
velocity with retinal vessel diameter measures from fundus 
photographs (40, 41). This technique is time-consuming and 
impractical in the clinic. The recent development of doppler optical 
coherence tomography (DOCT) provides full quantitative volumetric 
information of blood flow and vascular/structural anatomy (42). Due 
to the variety of techniques available, it is imperative to consider the 
unique technical, anatomical and clinical characteristics of each 
instrument when interpreting outcomes.

It is hypothesized that the compromised hemodynamics observed 
in young healthy myopes is an early feature of the decreased ocular blood 
flow reported in pathological myopia. Such vascular features would 
increase the susceptibility of the myopic eye for vascular and age-related 
eye diseases. For instance, impaired retinal blood flow might increase the 
risk to develop chorioretinal atrophy in high myopia. These changes 
possibly interact with the known effect of aging on the retinal and 
choroidal vasculature, including decreased tissue perfusion, deep 
capillary plexus vessel density, venous, capillary and choroidal blood flow 
and loss of endothelial cells amongst others (43–50). Below we review 
experimental and clinical evidence suggesting the existence of vascular 
alterations in physiological and degenerative myopia (Figure 1).

3. The effect of myopia on the retinal 
vasculature

The retinal vasculature provides metabolic support to neural and 
glial cells while minimally interfering with light-sensing mechanisms 
(51). One of the first pieces of evidence describing an altered retinal 
circulation in myopic eyes was the discovery of delayed filling times 
in the arterial, arterial–venous and venous phases of high myopic eyes 
using fluorescein angiography in the 1970s (52, 53). Subsequently, 
myopic eyes have been found to exhibit narrower vessel diameters 

FIGURE 1

Schematic summary describing key vascular findings identified in myopic eyes to date. CRA, central retinal artery; OCTA, optical coherence 
tomography angiography; BMP2 and BMP4, bone morphogenetic proteins 2 and 4; CD34 and CD55, transmembrane proteins CD34 and CD55; Flt-1, 
vascular endothelial growth factor receptor-1; TGF-β1, transforming growth factor beta receptor; cAMP, cyclic adenosine monophosphate; Ca2+, 
calcium; nNOS, neuronal isoform of nitric oxide; Hif-1α, hypoxia-inducible factor 1-alpha; BP, blood pressure; MAP, mean arterial pressure; OPP, ocular 
perfusion pressure; ChBF, choroidal blood flow.
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(54), altered bifurcation (55) and reduced central retinal artery (CRA) 
diameter and blood flow (56–59). This effect appears localized to the 
CRA once it branches out of the ophthalmic artery (OA), and 
therefore affects the inner retina but not structures supplied by the OA 
such as eyelids, lacrimal gland, conjunctiva, posterior uveal tract or 
extraocular muscles. In degenerative myopia, both choroidal and 
retinal blood flow appear reduced, which has been hypothesized to 
be partly due to increased vascular resistance or adaptive changes the 
myopic eye experiences to cope with its enlargement (27, 28, 60).

At the retinal microvascular level, healthy myopic eyes show 
reduced macular superficial, deep and radial peripapillary capillary 
vessel density, along with increased density inside the disc and 
enlarged foveal avascular zones (61–67). There is controversy, 
however, to whether these reductions in capillary densities actually 
result in altered capillary blood flow (63, 64), since there is evidence 
that reductions in capillary density are not necessarily associated with 
choroidal thickness (66) or retinal nerve fiber layer function (68). In 
terms of anatomy, myopic eyes with greater axial lengths exhibit 
narrower and less tortuous arterioles and venules, and greater 
branching coefficients (69). The lower capillary density observed in 
myopic eyes has been proposed to be a protective mechanism for 
decreased risk of diabetic retinopathy, but the protective effect has not 
been confirmed in later studies (70).

The alterations observed in healthy myopic eyes may be precursors 
of changes seen in pathological myopia and possibly involved in the 
pathophysiology of myopic degeneration: decreased density of the 
deep radial capillary plexus and a reduction in OA blood flow that 
relates to the severity of the retinal degeneration (27).

4. The effect of myopia on the 
choroidal vasculature

Choroidal thickness is a marker of myopia development first 
identified in experimental myopia in avian eyes (32, 71). In fact, gross 
anatomical changes in choroidal appearance from myopic chick eyes 
led to a series of publications confirming bidirectional choroidal 
thickness changes in response to defocus (72). These changes have been 
observed in mammal, non-human and human primate eyes (72–80). 
In addition, during childhood the choroid thickens with normal eye 
development, but to a lesser extent in children developing myopia, 
which confirms the role the choroid may play during myopia 
development (81, 82). There is also evidence of a three-dimensional 
reduction in choroidal vascular and stromal components in myopic 
eyes, mainly in the nasal and subfoveal region (83), although this 
vascular thinning remains controversial (84). The ocular pulsatile 
blood flow, thought to be mainly choroidal (85), also appears reduced 
in myopic eyes (39). This reduction, however, might be an artefact of 
enlarged eye volume (56, 86), since ocular pulsatile calculations depend 
on intraocular volume (87). In experimental models of myopia, 
choroidal flow reductions relate to thickness changes, suggesting an 
altered choroidal supply and thickness changes that might 
be responsible for choroidal flow changes or vice versa (88). However, 
this relationship has not been confirmed in humans - choroidal blood 
flow might remain constant in eyes with non-pathological myopia (89). 
There is also evidence that moderate, but not high myopes, exhibit 
greater ocular perfusion pressure as the choroid thins (90), and 
choriocapillaris flow deficits are greater in high myopes with no 
pathology (91). This suggests that early vascular anatomical and 

functional differences between moderate and high myopes need to 
be evaluated longitudinally and might represent clinically applicable 
biomarkers of early pathologic myopia.

A major cause of visual impairment in pathological myopia is loss 
of photoreceptors, which are nourished by the choroid. Therefore, any 
choroidal dysfunction can have detrimental consequences in myopic 
eyes. In fact, eyes with degenerative myopia exhibit lower posterior 
ciliary artery blood flow, which supply the choroid (27). Choroidal 
structure measures such as thickness, luminal and stromal area, and 
choroidal vascularity index are also significantly reduced in pathological 
myopia. In addition, thickness and vascularity index appear associated 
with degeneration severity and visual acuity, highlighting the role the 
choroid represents for degenerative myopia (92, 93).

5. Retinal oxygen saturation in myopia

The retina is characterized by its high metabolic rate and considered 
one of the tissues with the largest oxygen consumption per unit weight in 
the body (20). Retinal oximetry performed using commercially available 
systems like the Oxymap has identified a lower arterio/venous oxygen 
saturation ratio in myopic eyes that points towards a possibly lower retinal 
oxygen consumption (94). However, a significantly larger cross-sectional 
study with 1,461 participants found that when age, gender, body mass 
index (BMI), intraocular pressure (IOP) and axial length (AL) were 
corrected for, longer and more myopic eyes did not exhibited a lower, but 
a greater oxygen and arterio-venous ratio saturation (95). These findings 
suggest that as eyes grow larger, they might be  able to maintain an 
adequate oxygenation profile for its growing size, until they reach a 
degenerative state and the oxygenation profile is affected (96). There is 
also work suggesting that myopic choroidal thinning and reduced 
choroidal blood flow might affect scleral oxygenation (97). If this is 
correct, manipulating hypoxia signaling pathways might be a myopia 
control alternative in the future (98). Recent evidence suggests that, in 
fact, anti-hypoxia drugs reducing Hif-1α levels can slow axial elongation 
(99), which points towards a possible relationship between myopia, 
hypoxia and Hif-1α. This relationship has also been described in genetic 
analyses revealing a moderate involvement of the Hif-1α signaling 
pathway in myopia (98, 100), However, tree shrews induced with myopia 
do not exhibit changes in scleral Hif-1α mRNA expression (101, 102), and 
guinea pigs with induced myopia show reduced scleral Hif-1α mRNA, 
highlighting the need for additional work in this field (102).

6. Vascular reactivity in myopia

The presence of structural and hemodynamic changes in the 
retinal vasculature in myopia suggests that myopic eyes might 
be suffering from an abnormal vascular function before degenerative 
changes occur (1, 54, 103–108). However, assessing ocular blood flow 
under normal conditions is not sufficient to detect vascular 
dysfunction. Retinal vascular function is assessed using provocation 
tests, indispensable to evaluate retinal reactivity and autoregulation 
(109–115). Autoregulation is the inherent local mechanism that 
ensures sufficient and stable blood flow under changing conditions to 
preserve adequate function of the surrounding tissues (116). Vascular 
regulation or vasoreactivity can be assessed by quantifying blood flow 
or vessel diameter changes that occur in response to flicker light 
(metabolic autoregulation), variations in the concentration of 

https://doi.org/10.3389/fmed.2023.1112996
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Benavente-Perez 10.3389/fmed.2023.1112996

Frontiers in Medicine 04 frontiersin.org

breathing oxygen (metabolic), or changes in systemic and intraocular 
pressure (shear-dependent and myogenic) (113, 117–120). Both the 
ocular and cerebral circulation exhibit an autoregulatory capacity 
(110, 117, 121–124). Three studies have evaluated the vascular 
reactivity profile of myopic eyes to date, and they used hypercapnia 
(increased pCO2) and hyperoxia (increased p02) as provocation tests 
to assess the response from the retinal vasculature under stress 
conditions (125–127). Under room-air conditions prior to the 
provocation test, myopic and non-myopic eyes exhibited comparable 
systemic and ocular perfusion pressures –myopes exhibiting lower 
central retinal artery and choroidal blood flow. After inducing 
hypercapnia, myopic but not emmetropic eyes showed an increase in 
mean arterial pressure, along with a greater choroidal blood flow 
response, suggesting that myopes had a significantly lower resting 
choroidal flow that was highly responsive to CO2 (125, 126). These 
results insinuate an altered autoregulation ability in myopic eyes that, 
due to the increase mean arterial pressure observed, may lie in an 
autonomic dysregulation. Interestingly, there is evidence that eyes 
with pathological myopia eyes have comparable retinal vascular 
reactivity, suggesting that the retinal oxygen consumption, but not the 
choroidal, is altered in high-myopic eyes (128).

7. Molecular and cellular evidence of 
vascular changes in myopia

In order to understand the nature of the architectural and 
functional vascular described in myopia, it is important to 
comprehend the molecular and cellular changes taking place. The 
most extensive genetic myopia pathway analyses to date are clinical 
studies (meta-GWAS from 23andMe and the Consortium of 
Refractive Error And Myopia, CREAM) (129–134) and studies in 
common marmosets (Callithrix jacchus), a well-established 
non-human primate model of myopia (18).

Genetic meta-GWAS studies using human specimens have identified 
several signaling pathways involved in myopia, many of which were 
previously known, such as the extracellular matrix and ion channel 
pathways, while others were new, like those involved in angiogenesis. The 
following genes have been recently identified in meta-GWAS studies and 
found to have a role in vascular homeostasis: BMP2 and BMP4, CD34, 
CD55, Flt-1 and TGF-β receptor 1. BMP2 and BMP4 bone morphogenetic 
proteins (BMPs), named for their bone and cartilage formation ability 
(135, 136), are increasingly recognized as multifunctional regulators of 
angiogenesis. BMP2 has a pathological role in the development of 
vascular inflammation (137, 138), and induces retinal endothelial cell 
barrier dysfunction in diabetic macular edema and pathological retinal 
neovascularization (135). Over-expression of BMP4 inhibits experimental 
choroidal neovascularization by modulating VEGF and MMP-9 (139). 
CD34 is a transmembrane protein expressed in endothelial cells that 
promotes the formation of invasive vessels during neovascularization 
(140). The membrane-bound complement regulator CD55 is highly 
expressed in the retinal vascular endothelium (141), and significantly 
decreased in hyperoxic retinas (142). VEGF receptor–1 (also known as 
Flt-1) is needed for adequate blood vessel patterning on retinal astrocytes 
and can modulate VEGF-A activation of endothelial cells (143, 144). Flt-1 
has unique and important roles in coordinating endothelial sprouting 
(145, 146), blood vessel anastomosis (147), and genetic loss of flt-1 leading 
to vascular overgrowth and reduced network complexity (148). TGF-β 
receptor 1 inhibits and deep vascular plexus formation (149, 150), and its 

endothelial loss leads to aberrant contractile pericyte differentiation and 
hemorrhagic vascular malformations, and is essential for maintaining the 
integrity of mature vessels (151).

The analysis of retinal transcriptomes in marmosets induced with 
myopia has identified major molecular pathways activated during 
myopic eye growth (18). Some of the key pathways described are 
involved in vascular signaling and include the beta-adrenergic pathway, 
cyclic adenosine monophosphate (cAMP), Ca2+, relaxin (152), G 
protein-coupled receptor and nNOS. Beta-adrenergic signaling, for 
instance, is involved in hypoxia (153); there is a 90% increase in 
noradrenaline levels during hypoxia (154, 155), and beta-adrenorceptor 
activation is followed by an upregulation of hypoxia-inducible 
factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF), 
both involved in neovascularization (156, 157). The cAMP pathway 
regulates neuronal, vascular, and inflammatory components of diabetic 
retinopathy (158). Calcium signaling is involved in capillary - but not 
arteriole - retinal blood flow as seen by the active dilation observed 
following astroglial Ca2+ signaling (159, 160). Relaxin, a peptide found 
at high concentrations during pregnancy, is found in endothelial and 
smooth muscle cells in arteries and veins, supporting its vasodilating 
role (161–163). G protein-coupled receptors 91 and 81 (GPR91and 
GPR81), localized in ganglion cells and Muller cells respectively, are 
involved in the pathogenesis of diabetic retinopathy (DR) and hypoxic 
retinal diseases such as retinopathy of prematurity (ROP), inner 
vascular network development and restoration of the vasculature in 
response to injury (152, 164). The neuronal isoform of nitric oxide 
(nNOS) is present in the vascular endothelium and contributes to the 
maintenance of homeostasis in the cardiovascular system. NO 
contributes to both retinal and choroidal neovascularization (165).

In terms of vascular cellular anatomy, the neurovascular interplay 
between neuronal, vascular, and glial cells, which is crucial for retinal 
structural and nutritional support and ion and neurotransmitter 
homeostasis, appears to be  affected by myopia. Marmosets with 
induced myopia show a lower astrocyte density, increased GFAP-
immunopositive staining, lower peripheral capillary branching, and 
increased numbers of string vessels compared to controls. These 
changes suggest an activation and reorganization of the astrocyte and 
vascular templates during myopia development and progression (166). 
Whether or not these adaptations are beneficial or harmful to the 
developing retina remains to be investigated.

8. Myopia-associated conditions 
showing vascular alterations

Myopic macular degeneration, glaucoma, choroidal 
neovascularization, retinal detachment, posterior staphyloma and 
cataract amongst the most prevalent myopia complications (167). In this 
section we  review the vascular features of these myopia-associated 
conditions to help understand the vascular nature of myopia.

8.1. Myopic macular degeneration

Myopic maculopathy is the most common cause of vision loss in 
myopic eyes (5, 168), but its etiology remains unclear. The distinctive 
elongation and deformation of the myopic eye, along with its 
characteristic neovascularization, suggest that vascular pathways likely 
contribute to the degenerative process. Evidence for a vascular etiology 

https://doi.org/10.3389/fmed.2023.1112996
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Benavente-Perez 10.3389/fmed.2023.1112996

Frontiers in Medicine 05 frontiersin.org

of myopic maculopathy include a significant choroid thinning, 
enlarged foveal avascular zone, smaller choriocapillaris flow area, 
vascular dropout, lower fractal dimension, and a more profound 
decrease in deep but not superficial retinal capillary plexus density, 
suggesting that microvascular alterations appear crucial for myopic 
maculopathy (169–171). In addition, choroidal watershed zones, which 
are areas situated at the edge of end-arteries usually exhibiting a 
delayed choroidal filling, have been proposed to play a vascular role in 
the etiology of myopic maculopathy (172).

8.2. Glaucoma

Glaucoma is a complex neuropathy that preferentially affects the 
ganglion cell complex (GCC) (173) and exhibits features of vascular 
etiology and dysfunction (174). The relationship between myopia and 
glaucoma has been confirmed by several large population-based studies 
(175–180). Yet, the nature of the myopia-glaucoma relationship remains 
unknown. Low ocular perfusion has been identified as a risk factor for 
glaucoma progression independent of intraocular pressure (181–183). 
Both glaucomatous and myopic eyes show parallel vascular changes: 
retinal microvasculature attenuation (184), decreased capillary density 
(63, 66, 184–186), and reduced retinal and ONH blood flow and vascular 
dysregulation (56, 57, 65, 68, 89, 91, 187–189). In fact, the longer the 
axial eye length and the thinner the ocular wall in glaucoma patients, the 
greater the retinal microcirculation reduction (190). In addition, when 
the vascular features of glaucomatous patients with and without myopia 
were compared, myopic glaucomatous eyes exhibited greater vascular 
changes than non-myopic glaucomatous eyes: larger reductions in 
choroidal blood flow and velocity (191), lower macular and peripapillary 
capillary density (184, 192), and impaired peripapillary vasoreactivity 
(127). Therefore, it has been hypothesized that the relationship between 
myopia and glaucoma might partly be vascular in nature, specifically 
microvascular, and may be  present before the glaucomatous 
degeneration is evident. In addition, the study of vascular reactivity in 
glaucomatous patients with and without high myopia has confirmed that 
the retinal vasoreactivity of the peripapillary capillaries is compromised 
in glaucomatous eyes with high myopia (127).

8.3. Choroidal neovascularization

Choroidal neovascularization (CNV) is characterized by an atypical 
choroidal vasculature growth into the retinal pigment epithelium 
potentially leading to fluid and blood accumulation in the macula (50). 
Eyes with lower foveolar choroidal blood volume and flow have been 
identified to be  at a higher risk of developing CNV. This reduced 
choroidal blood supply appears greater than any changes observed in 
eyes without CNV, suggesting that alterations in the foveal choroidal 
circulation might precede be part of CNV etiology (193). In addition, 
the choroidal thinning and capillary density reduction observed in 
degenerative pathological myopia is believed to trigger RPE and glial 
cells hypoxia, resulting in an upregulation of VEGF expression (194).

8.4. Retinal detachment

The most prevalent form of neurosensory retina separation from 
the retinal pigment epithelium (RPE) is the rhegmatogenous retinal 

detachment. This type of detachment disrupts the retinal vasculature 
leading to smaller vascular diameters, tortuosity, and vascular density 
(195). Capillary dilatation, hyperpermeability and fluorescein leakage 
have also been observed with fluorescein angiography on the detached 
retina, and have been proposed to originate from tissue hypoxia 
(196, 197).

8.5. Posterior staphyloma

Peripapillary posterior staphyloma (PPS) is one of six types of 
posterior staphylomas identified in degenerative myopia (198). Eyes 
with PPS have an increased macular vessel density in the deep plexus, 
reduced macular choriocapillaris and radial peripapillary capillary 
density, and thinner choroids (199). In addition, a retrospective study 
also identified reduced choriocapillaris flow and thinner subfoveal 
choroidal thickness, confirming that eyes with posterior staphyloma 
have thinner choroids and lower perfusion (200).

8.6. Cataract

A relationship between lens opacity and hypertension was 
identified in the initial cross-sectional phase of the Beaver Dam Eye 
Study (201). However, this relationship was not confirmed once the 
longitudinal 5-year Beaver Dam Eye Study was completed (202). 
There is, however, evidence of lower ocular blood velocity in cataract 
patients that requires further evaluation to understand the nature of 
the changes (203).

9. Conclusion

Adequate blood flow is fundamental for tissue homeostasis 
(204). In view of the findings described in the literature and 
discussed in this review, studying the haemodynamics and 
vascular autoregulation features of healthy myopic eyes may 
be crucial to identify early markers of associated degeneration and 
help develop novel vascular interventions to preserve the health 
of myopic eyes.
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