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ductal adenocarcinoma

Prasanna Srinivasan Ramalingam1, Annadurai Priyadharshini2,

Isaac Arnold Emerson2 and Sivakumar Arumugam1*

1Protein Engineering Lab, School of Biosciences and Technology, Vellore Institute of Technology,

Vellore, India, 2Bioinformatics Programming Laboratory, Department of Biotechnology, School of

Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India

Background: Mutant KRAS-induced tumorigenesis is prevalent in lung, colon,

and pancreatic ductal adenocarcinomas. For the past 3 decades, KRAS mutants

seem undruggable due to their high-a�nity GTP-binding pocket and smooth

surface. Structure-based drug design helped in the design and development

of first-in-class KRAS G12C inhibitor sotorasib (AMG 510) which was then

approved by the FDA. Recent reports state that AMG 510 is becoming resistant in

non-small-cell lung cancer (NSCLC), pancreatic ductal adenocarcinoma (PDAC),

and lung adenocarcinoma patients, and the crucial drivers involved in this

resistance mechanism are unknown.

Methods: In recent years, RNA-sequencing (RNA-seq) data analysis has become

a functional tool for profiling gene expression. The present study was designed

to find the crucial biomarkers involved in the sotorasib (AMG 510) resistance

in KRAS G12C-mutant MIA-PaCa2 cell pancreatic ductal adenocarcinoma cells.

Initially, the GSE dataset was retrieved from NCBI GEO, pre-processed, and then

subjected to di�erentially expressed gene (DEG) analysis using the limma package.

Then the identified DEGswere subjected to protein–protein interaction (PPI) using

the STRING database, followed by cluster analysis and hub gene analysis, which

resulted in the identification of probable markers.

Results: Furthermore, the enrichment and survival analysis revealed that the small

unit ribosomal protein (RP) RPS3 is the crucial biomarker of the AMG510 resistance

in KRAS G12C-mutant MIA-PaCa2 cell pancreatic ductal adenocarcinoma cells.

Conclusion: Finally, we conclude that RPS3 is a crucial biomarker in sotorasib

resistance which evades apoptosis by MDM2/4 interaction. We also suggest

that the combinatorial treatment of sotorasib and RNA polymerase I machinery

inhibitors could be a possible strategy to overcome resistance and should be

studied in in vitro and in vivo settings in near future.
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GRAPHICAL ABSTRACT

Study outcomes and proposed future directions to combat sotorasib resistance in KRAS G12C mutant cells.

1. Introduction

Mutant RAS-harboring cancers are predominant in many
cancers including pancreatic, breast, colon, and lung, which
corresponds to nearly 30% of all cancers (1, 2). Unlike NRAS and
HRAS isoforms of RAS, the KRAS isoform has high mutation
frequencies at mutational hotspots G12 (89%), G13 (9%), and Q61
(1%) residues (3–5). Overall, the G12th residue is the most mutated
position of KRAS with G12D as the most prevalent mutation with
36%, followed by the G12V and G12C mutations with 23 and 14%,
respectively (6). KRAS is a small GTPase that acts as a molecular
switch by GTP-bound (active form) and GDP-bound (inactive
form) states and triggers the downstream signal transduction
pathways (7, 8). The GDP to GTP conversion is mediated by
the guanine nucleotide exchange factors (GEFs), and the GTP
to GDP hydrolysis is mediated by GTPase-activating proteins
(GAPs) (9, 10). The mutant KRASmaintains the GTP-bound active
state and overcomes the GTPase activity and initiates nearly 80
different downstream effector signaling pathways including MAPK
and PI3K-mTOR signaling which further activates JUN and MYC
transcription factors and promotes the cancer cell survival and
proliferation (11–15).

Several strategies have been carried out to inhibit the mutant
KRAS signaling such as targeting the upstream effectors (EGFR
inhibitors, FGFR1 inhibitors, and IGF1R inhibitors); targeting
the inhibitors of KRAS regulators (SOS1 inhibitors and SHP2
inhibitors); direct targeting of KRAS (KRAS on state and off-
state inhibitors); downstream effector inhibitors (PI3K inhibitors,
mTOR inhibitors, and MEK inhibitors); and cell cycle arrest
(CDK4/6 inhibitors) (16–19). Moreover, targeting the other
mediators and effectors in the MAPK pathway result in the
signaling crosstalk such as MEK-PI3K, RAF-AKT, RAS-SKF,

RAS-YAP, and SHP2-dependent MAPK reactivation and SHP2-
independent PI3K reactivation (20–22). All the strategies have
shown significant outcomes, but the complete inhibition of KRAS
was promising in the direct targeting strategy. In general, the
intracellular levels of GTP are in micromolar (µM) ranges, and
its binds with picomolar (pM) affinity to the GTP-binding pocket
of the KRAS, which challenges it as undruggable to the medicinal
chemistry and drug discovery researchers to design and develop a
potent KRAS mutant small molecule inhibitors (23–25). Finally,
the undruggable became druggable by the successful discovery
and FDA approval of KRAS G12C inhibitor sotorasib (AMG 510)
for the treatment of non-small-cell lung cancer (NSCLC) and
other solid tumors (26–28). The sotorasib specifically targets the
cryptic pocket of the KRAS G12C (H95/Y96/Q99) and forms the
covalent bond with the reactive cysteine at the 12th position,
which also limits its ability to target other KRAS mutants such
as G12D and G12V that lacks reactive cysteine (29). Recently,
in December 2022, FDA granted the accelerated approval for
adagrasib (MRTX849) for the treatment of KRAS G12C-mutated
NSCLC (30).

Accumulating pieces of evidence report that sotorasib
is becoming resistant among NSCLC, pancreatic ductal
adenocarcinoma, and colorectal adenocarcinoma patients
bearing KRAS G12C mutation and even resulting in hepatotoxicity
(31, 32). The understanding of this resistance mechanism is
challenging due to the intracellular heterogeneity and variability
of KRAS G12C-mutated cancer cells (33). Hence, to identify
the crucial biomarkers involved in the sotorasib resistance, we
have retrieved the RNA-seq data from the NCBI GEO database
of AMG 510 treated (resistant) and untreated in KRAS G12C-
mutant MIA-PaCa2 pancreatic ductal adenocarcinoma cells.
The differentially expressed genes (DEGs) were identified by the
linear model, and then, the DEGs were subjected to protein–
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protein interaction (PPI), cluster analysis, and hub gene analysis.
In addition to this, the resulting probable biomarkers were
also subjected to gene ontology (GO), pathway enrichment,
and survival analyses to find the crucial biomarker in the
sotorasib resistance.

2. Materials and methods

2.1. Data collection and pre-processing

The RNA-seq dataset retrieved for this study was accessed
through NCBI Gene Expression Omnibus (GEO) database (http://
www.ncbi.nlm.nih.gov/geo/). The keywords used for filtering the
dataset include “KRAS mutated Pancreatic cancer” and “Homo

sapiens” (organism). The datasets were screened, and “GSE178479”
was retrieved for this study in which the sotorasib (AMG 510)
resistance in the KRAS G12C-mutant MIA-PaCa2 pancreatic
ductal adenocarcinoma cells was reported (34). The sequencing
platform and the platform ID of the sample were “Illumina HiSeq
4000” and “GPL20301,” respectively. The number of samples used
in this study was two, which includes RNA-seq profiles of AMG
510 treated (rep1 and rep2) and AMG 510 untreated (rep1 and
rep2)MIA-PaCa2 cells. The present study was carried out to predict
the crucial biomarkers involved in the AMG 510 resistance in
pancreatic ductal adenocarcinoma cells.

The count matrix of the samples was prepared based on the
matrix file information provided in the GEO database (35). The
lowly expressed genes were filtered based on their counts using
the counts per million (CPM) function in the edgeR package with
the threshold of 0.5. Box plots were used to check the distribution
of the read counts on the log2 scale (36). The CPM function
provided the log2 counts per million which are then corrected for
different library sizes. The CPM function also adds a small offset to
avoid taking a log of zero. The trimmed mean of M-value (TMM)
normalization was performed to eliminate composition biases
between the libraries (37). This generates a set of normalization
factors, where the product of these factors and the library sizes
define the effective library size. The calcNormFactors function
calculated the normalization factors between libraries.

2.2. Di�erential gene expression analysis

The limma package (38, 39) with the voom function was used,
which transforms the read counts into logCPMs while taking
account of the mean–variance relationship in the given data
(40, 41). After vooming, we applied a linear model to the voom
transformed data to test for differentially expressed genes (DEGs)
using standard limma commands.

The voom transformed data have been used in limma to test for
differential gene expression. The linear model fit was designed for
each gene using the lmFit function in limma which estimates the
groups and gene-wise variances. The contrast between the groups
was then analyzed based on the makeContrasts function. Then
the contrasts matrix was fitted to the object to get the statistics
and estimated parameters. Here, we called the contrasts.fit function
in limma. Furthermore, we called the eBayes function to perform

the empirical Bayes shrinkage on the variances and estimated the
logFC of 0.05 and their associated p-values. Finally, to increase
the significance and reduce the false discovery rates, we used the
TREAT function to predict specific genes (42–44).

2.3. Network analysis

The differentially expressed genes (DEGs) filtered through the
TREAT function were then subjected to the STRING database
(https://string-db.org/) to predict the protein–protein interactions
(PPIs) with a confidence level of 0.004 and higher, and the first
shell of 10 interactions was used as a filter (45). The MCODE and
CytoHubba were used to analyze the probable marker genes among
the DEGs (46).

2.4. Enrichment and survival analysis

The hub genes resulting from the network analysis were
then subjected to gene ontology using the enrichGO function in
the clusterProfiler package (47). The enriched biological process
(BP), cellular components (CC), and molecular functions (MF)
were analyzed using the enrichGO function. The KEGG pathway
analysis was also carried out using the enrichKEGG function to
analyze the enriched terms.

The Kaplan–Meier (KM) survival analysis was carried out
based on the Spearman correlation using the Kaplan–Meier plotter
online tool employing the median patient splitting mode (48, 49).
Hazard is the defined slope for the survival curve which measures
the incidence of death, and the hazard ratio (HR) compares the
two treatment groups. If HR is 2.0, then the rate of death in
one treatment group is twice the other group (50). A statistical
hypothesis test was calculated based on a log-rank test. The
schematic representation of the workflow of the study is shown in
Figure 1.

3. Results

3.1. Identification of di�erently expressed
genes

Through limma analysis, we have tested the difference between
the sotorasib (AMG 510) treated and untreated samples to analyze
the genes responsible for the AMG 510 resistance in the treated
group. The voom transformation of adjusting the library size
with the normalization factors was analyzed through a mean–
variance trend. The comparative boxplot analysis of unnormalized
logCPM with the voom transformed logCPM is shown in Figure 2
which represents the precision of normalization. The CPM plot of
count data after filtering the lowly expressed genes is provided in
Supplementary Figure 1. The mean–variance relationship helps to
analyze whether the low counts are filtered adequately and variation
in the data by estimating the relationship of the log counts, which
generates a precision weight for each observation and enters these
into the limma empirical Bayes analysis. The voom mean–variance
trend curve is shown in Supplementary Figure 2.
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FIGURE 1

Schematic representation of the workflow of the study.

The empirical Bayes function was used to analyze the DEGs
with the linear model fit. The linear model fit resulted in the
identification of upregulated and downregulated genes from the

DEGs. In this study, it resulted in the differentially expressed genes
among the AMG 510 treated (resistant) and untreated groups,
which are repressed through the MA plot as shown in Figure 3 and
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FIGURE 2

Boxplot analysis of unnormalized logCPM with the voom transformed logCPM.

the volcano plot as shown in Figure 4. Initially, the raw RNA-seq
data were retrieved, pre-processed, and the differentially expressed
genes (DEGs) were predicted using a cutoff on the log fold change
threshold of 0.5. The p-value threshold of 0.05 resulted in the
identification of 330 upregulated genes and 499 downregulatory
genes as shown in Figure 4, and the complete list of DEGs is
provided in Supplementary Table 1. To reduce false discovery rates,
we further applied TREAT (t-tests relative to a threshold) function
in the limma package, which resulted in the identification of six
upregulated DEGs and 12 downregulated DEGs.

3.2. Network analysis

The interaction network was visualized using Cytoscape using
molecular complex detection (MCODE) to find the significant
clusters between each node representing a gene while edges
represent the interaction of the molecules. The default parameters
were set including the degree cutoff of 2, node score cutoff of
≥0.2, K-score of ≥2, and max depth from seed of 100. Finally, the
MCODE resulted in six clusters with the highest nodal score of 22
as shown in Figure 5.

The probable marker genes have been identified based on
the highly connected nodes using CytoHubba in Cytoscape.

It uses 12 scoring methods to identify the markers, namely,
betweenness, bottleneck, closeness, clustering coefficient (CC),
degree, the density of maximum neighborhood component
(DMNC), eccentricity (EcC), edge percolated component (EPC),
maximal clique centrality (MCC), maximum neighborhood
component (MNC), radiality, and stress. The top 10 genes from
each scoringmethodwere isolated. Genes that are common inmore
than five scoring methods and also have an impact on MCODE
were considered hub genes.

3.3. Enrichment analysis

The enrichment analysis was performed with the GO
terms: biological process (BP), cellular components (CC), and
molecular functions (MF). The biological process includes
cytoplasmic translation, ribosomal small subunit assembly,
ribosome assembly, ribosomal small subunit biogenesis, non-
membrane-bounded organelle assembly, negative regulation
of protein ubiquitination, and negative regulation of protein
modification by small protein conjugation or removal. Cellular
components include cytosolic ribosome, ribosomal subunit,
ribosome, cytosolic small ribosomal subunit, cytosolic large
ribosomal subunit, small ribosomal subunit, large ribosomal

Frontiers inMedicine 05 frontiersin.org

https://doi.org/10.3389/fmed.2023.1107128
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Ramalingam et al. 10.3389/fmed.2023.1107128

FIGURE 3

MA plot used to represent log fold change vs. mean expression between the two groups (AMG 510 treated and untreated). A scatter plot depicts the

normalized mean expression on the x-axis and base-2 log fold change on the y-axis. The red dots represent the upregulated genes, the blue dots

represent the downregulated genes, and the black dots represent the non-significant genes.

subunit, focal adhesion, cell–substrate junction, polysome,
polysomal ribosome, rough endoplasmic reticulum, cytoplasmic
side of endoplasmic reticulum membrane, rough endoplasmic
reticulum membrane, and euchromatin. Molecular functions
are structural constituents of the ribosome and rRNA binding.
The enriched GO terms of biological process (BP), cellular
components (CC), and molecular functions (MF) are shown
in Figure 6 and Table 1. Then the KEGG pathway analysis
was also carried out, and the enriched term was observed
as “hsa03010:Ribosome.”

3.4. Survival analysis

The Kaplan–Meier (KM) survival analysis plot was created
based on Spearman’s correlation, using the hazard ratio (HR) and
log-rank test of the genes. In general, HR > 1 represents that the
low-expression group has a higher chance of survival than the high-
expression group, and HR < 1 represents that high-expression
groups have a higher chance of survival than the low-expression
group. The survival analysis of probable genes showed that the
low expression of RPL4, RPL32, RPLP1, and RPS3 would have a
higher probability for survival, and the high expression of RPS28,
RPS15, RPS9, RPL15, and JUN would have a higher probability for
survival. Based on the log-rank test, the significance level was set to
0.05, and if the calculated p-value is >0.05, the null hypothesis is
retained. Based on these criteria, the ribosomal protein RPS3 was
identified as a probable biomarker that showed high survival rates

and p < 0.05 as shown in Figure 7. In addition, the HR of RPS3 is
almost near two which indicates that it has twice the rate of death
when compared to the others. The KM survival plots of RPL15,
RPS15, RPS28, RPL4, RPL32, RPLP1, RPS9, and JUN are shown
in Supplementary Figure 3.

4. Discussion

KRAS mutations are prevalent in many cancers including
pancreatic, breast, colon, and lung with mutational hotspots at
G12 (89%), G13 (9%), and Q61 (1%) residues (1, 2). The G12D,
G12C, and G12V are frequent mutations with 36, 23, and 14%
expressions, respectively (6). Of note, the KRAS G12C mutation
is relatively high in lung adenocarcinoma than in pancreatic
adenocarcinoma patients. The direct inhibition of the mutant
KRAS is very prominent over other strategies but challenges the
small molecule inhibitor development due to their high-affinity
GTP-binding pocket and smooth surface (16, 51). Structure-based
drug design guided the development and FDA approval of first-
in-class potential KRAS G12C inhibitor sotorasib (AMG 510) that
has changed the scenario in which the mutant KRAS became
undruggable (26). Recently, in December 2022, FDA granted the
accelerated approval for Adagrasib (MRTX849) for the treatment
of KRAS G12C-mutated NSCLC (30). In addition to this, several
pharma industries have initiated to design and develop novel
KRAS mutant inhibitors (mutant specific/pan-KRAS). Several
KRAS G12C (GDP-bound off state) inhibitors, such as sotorasib
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FIGURE 4

Volcano plot of the DEGs depicts the logFC on the x-axis and –log10 (p-value) on the y-axis. The red dots represent the upregulated genes, the blue

dots represent the downregulated genes, and the black dots represent the non-significant genes.

(AMG 510), adagrasib (MRTX849), GDC-6036, JNJ-74699157,
D-1553, JDQ443, LY3537982, LY3499446, ARS1620, and KRAS
G12C (GDP-bound off state) inhibitors such as RMC-6291, RMC-
6236, and RM-018, and Pan KRAS Switch I/II inhibitors such
as BI-2852, are being studied in preclinical and clinical studies
(18, 52–55). Recent pieces of evidence report the resistance to
AMG 510 among KRAS G12C-mutant cancer patients (31, 33).
Moreover, Adagrasib (MRTX849) and ARS1620 were reported
to have acquired resistance in KRAS G12C-mutant cells (33,
56). Amplification of the mesenchymal epithelial transition factor
receptor (MET); activating mutations of downstream effectors,
such as BRAF, and dual specificity mitogen-activated protein
kinase kinase 1 (MEK1); oncogenic fusion with fibroblast growth
factor receptor 3 (FGFR3) and CCDC6-RET; and loss-of-function
mutations of phosphatase and tensin homolog (PTEN) and
neurofibromin 1 (NF1) were reported to be the key elements
involved in the resistance mechanisms to KRAS mutant inhibitors
in lung adenocarcinoma and colorectal adenocarcinoma (56, 57).
Unlike the abovementioned resistance mechanisms, our results

revealed a significant correlation between the sotorasib resistance
in KRAS G12C-mutant cells and ribosomopathies.

Recently Chan et al. (34) reported an interesting study on
the identification of sotorasib (AMG 510) resistance in the KRAS
G12C-mutant MIA-PaCa2 pancreatic ductal adenocarcinoma
cells when treated with increasing dosage (0.1–5µM) for
60 days and found that MIA-PaCa2 showed resistance at
5µM treatment of AMG 510 (34). This interested us to
identify the crucial biomarkers involved in the AMG 510
resistance in the KRAS G12C-mutant MIA-PaCa2 pancreatic
ductal adenocarcinoma cells. In addition to MIA-PaCa2 cells,
they have also tested the AMG 510 resistance in SW1463
human Caucasian rectum adenocarcinoma, LU99 lung giant cell
carcinoma, and LU65 lung carcinoma cell lines which have KRAS
G12C mutations.

The main aim of the present study was to identify the
key biomarker genes involved in the AMG 510 resistance.
Initially, the raw RNA-seq data were retrieved, pre-processed,
and the differentially expressed genes (DEGs) were predicted
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FIGURE 5

Protein–protein interaction (PPI) network of DEGs obtained from the STRING database.

which resulted in the identification of 330 upregulated genes
and 499 downregulatory genes as shown in Figure 4 and
Supplementary Table 1. The t-tests relative to a threshold (TREAT)
function reduced the false discovery rates of DEGs (42), which
further resulted in the identification of six upregulated and
12 downregulated genes. These filtered DEGs were studied for
the protein–protein interaction network using STRING which
resulted in four MCODE clusters, and the MCODE cluster 1
showed the highest nodal density among the other clusters as
shown in Figure 5. In addition, cluster analysis and hub gene
analysis were carried out which resulted in probable biomarkers
as shown in Figure 6, and the enriched GO terms of biological
process (BP), cellular components (CC), and molecular functions
(MF) are shown in Table 1. In general, HR > 1 represents
that the low-expression group has a high chance of survival
than the high-expression group, and HR < 1 represents that
the high-expression group has a high chance of survival than

the low-expression group (58). Finally, the survival analysis
based on the hazard ratio and log-rank test resulted in the
identification of RPS3 as the probable biomarker with high
survival rates and p < 0.05 as shown in Figure 7. Based on
the log-rank test, the significance level was set to 0.05, and if
the calculated p-value is >0.05, the null hypothesis is retained.
Moreover, the HR of RPS3 is nearly 2 which indicates that
it has twice the rate of death when compared to the others.
The KM survival plots of RPL15, RPS15, RPS28, RPL4, RPL32,
RPLP1, RPS9, and JUN are shown in Supplementary Figure 3.
In addition, the GO of all the 330 upregulated genes and 499
downregulatory genes shown in Supplementary Table 1 reveals
that the myc transcriptional targets, such as E2F transcription
factor 6 (ENSG00000169016), are upregulated and the CDK10
(ENSG00000185324) is downregulated. Generally, the E2F6
regulates the gene expression of proteins involved in cell
proliferation and the CDK10 acts as a tumor suppressor.
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FIGURE 6

Bar plot of the enriched GO terms analyzed using enrichGO function using cluster profiler.

Furthermore, the CDC25B (ENSG00000101224) expression has a
p53-dependent tumor suppressive effect, which is downregulated.
The anti-apoptotic BCL-6 (ENSG00000113916) is downregulated.
The abovementioned targets are also involved in the RAS
signaling pathway. These data suggest that the resistance
could be a result of RNA pol I machinery hyperactivation
and apoptosis evasion. The present study revealed that the
small unit ribosomal protein RPS3 is known to be only
expressed in the AMG 510 resistant MIA-PaCa2 cells and

identified as a significant biomarker involved in the resistance
of AMG 510. These novel identifications resulted from the
emergence and accumulation of RNA-Seq data of drug-resistant
cancer cells.

Ribosome biogenesis starts from the nucleolus and ends
in the cytoplasm with the formation of the mature ribosome
from rRNA and ribosomal proteins (59). In normal cells, the
RNA pol I initiates the Pol I transcription followed by the
pre-rRNA processing and modification and then assembled
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TABLE 1 Gene ontology analysis of the enriched terms.

GO term and GO ID DEGs p-value Adjusted
p-value

Genes

Cytoplasmic translation (GO:0002181) BP 1.13E-16 2.91E-14 RPL4/RPLP1/RPS28/RPS9/RPL32/RPL15/RPS15/RPS3

Ribosomal small subunit assembly
(GO:0000028)

BP 3.50E-05 0.004512 RPS28/RPS15

Ribosome assembly (GO:0042255) BP 0.00037 0.029458 RPS28/RPS15

Ribosomal small subunit biogenesis
(GO:0042274)

BP 0.00053 0.029458 RPS28/RPS15

Non-membrane-bounded organelle
assembly (GO:0140694)

BP 0.000575 0.029458 RPS28/RPS15/RPS3

Negative regulation of protein
ubiquitination (GO:0031397)

BP 0.000685 0.029458 RPS15/RPS3

Negative regulation of protein
modification by small protein
conjugation or removal (GO:1903321)

BP 0.000896 0.033031 RPS15/RPS3

Cytosolic ribosome (GO:0022626) CC 3.72E-18 1.34E-16 RPL4/RPLP1/RPS28/RPS9/RPL32/RPL15/RPS15/RPS3

Ribosomal subunit (GO:0044391) CC 3.95E-16 7.10E-15 RPL4/RPLP1/RPS28/RPS9/RPL32/RPL15/RPS15/RPS3

Ribosome (GO:0005840) CC 4.09E-15 4.91E-14 RPL4/RPLP1/RPS28/RPS9/RPL32/RPL15/RPS15/RPS3

Cytosolic small ribosomal subunit
(GO:0022627)

CC 2.30E-09 2.07E-08 RPS28/RPS9/RPS15/RPS3

Cytosolic large ribosomal subunit
(GO:0022625)

CC 8.69E-09 6.26E-08 RPL4/RPLP1/RPL32/RPL15

Small ribosomal subunit (GO:0015935) CC 1.98E-08 1.19E-07 RPS28/RPS9/RPS15/RPS3

Large ribosomal subunit (GO:0015934) CC 1.30E-07 6.71E-07 RPL4/RPLP1/RPL32/RPL15

Focal adhesion (GO:0005925) CC 5.12E-07 2.23E-06 RPL4/RPLP1/RPS9/RPS15/RPS3

Cell-substrate junction (GO:0030055) CC 5.56E-07 2.23E-06 RPL4/RPLP1/RPS9/RPS15/RPS3

Polysome (GO:0005844) CC 3.04E-06 1.10E-05 RPS28/RPL32/RPS3

Polysomal ribosome (GO:0042788) CC 9.28E-05 0.000304 RPS28/RPL32

Rough endoplasmic reticulum
(GO:0005791)

CC 0.000614 0.001842 RPL4/RPS28

Cytoplasmic side of endoplasmic
reticulum membrane (GO:0098554)

CC 0.006886 0.019069 RPS28

Rough endoplasmic reticulum
membrane (GO:0030867)

CC 0.011453 0.029451 RPS28

Euchromatin (GO:0000791) CC 0.017363 0.039066 JUN

A band (GO:0031672) CC 0.017363 0.039066 RPL15

Structural constituent of ribosome
(GO:0003735)

MF 7.11E-16 3.34E-14 RPL4/RPLP1/RPS28/RPS9/RPL32/RPL15/RPS15/RPS3

rRNA binding (GO:0019843) MF 0.000478 0.011236 RPS9/RPS3

with ribosomal proteins (RPs) to form mature 60s and 40s
subunits and ultimately takes part in protein synthesis. Unlike
normal cells, the RNA pol I is hyperactivated leading to the
altered rRNA modifications and altered RPs extraribosomal
functions, thus forming the onco-ribosomes and translating the
oncogenic mRNAs and ultimately ending with ribosomopathies
(59). Some large subunit ribosomal proteins, such as RPL5,
RPL9, RPL10, RPL11, RPL15, RPL21, RPL22, RPL23A, RPL27,
RPL31 RPL34, RPL35, RPL36, and large subunit ribosomal
proteins, such as RPS7, RPS15, RPS15A, RPS17, RPS19, RPS20,

RPS24, RPS27, and RPSA, are reported to have significant roles
in the progression of various types of cancers including lung,
colon, breast, and pancreatic cancers (60–62). Generally,
the ribosomal proteins (RPs) directly/indirectly interact
with the Mdm2/Mdm4 E3 ubiquitin-protein ligases, which
in turn regulate the degradation of p53 tumor suppressor
protein resulting in the tumor progression (62, 63). An
interesting study reports that the WD repeat-containing
protein 74 (WDR74) alters the RPL5 levels and promotes
metastasis by degrading p53 via the RPS15-Mdm2 axis in
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FIGURE 7

The Kaplan–Meier plot for survival analysis of key biomarkers RPS3.

The x-axis represents the time in months, while the y-axis represents

the probability of survival. The red and black colors represent the

high expression and low expression of the biomarkers, respectively.

lung carcinoma (64). The ribosomal proteins were upregulated
in KRAS mutant Panc-1 cells, and their inhibition results in
cell cycle arrest, apoptosis induction, and antiproliferation
(65, 66).

RPS3 knockdown in Caco-2 colon cancer cells showed
decreased cancer progression and increased apoptosis via p53
upregulation and reduced activity of lactate dehydrogenase
(LDH) (67). RPS3 was also reported to induce apoptosis
by disrupting its interaction with E2F1 and also upregulates
the expression of pro-survival genes in NSCLC (68). On
this note, the mutations in the ribosomal proteins are also
highly involved in tumorigenesis. The RPs were reported to
interact with MDM2/4 and inhibit p53, and overexpression was
observed as a result of the hyperactivation of RNA polymerase
I machinery. The inhibition of RNA polymerase I machinery
by inhibitors, such as CX-3543 and CX-5461, promotes p-53-
dependent apoptosis in several cancers (69, 70). The clinical
trials of RNA polymerase I machinery by inhibitors CX-
5461 (NCT02719977) and CX-3543 (NCT00955786) resulted
in the identification of safety, tolerable dosage, and effective
dosage regimes and also resulted in less toxicity in patients
(71). The potential of individual RNA polymerase I machinery
inhibitors was studied, and combination strategies have to be
studied in near future from the successful interventions from
preclinical studies. Chan et al. (34) reported that the sotorasib
resistance was offered by the PAK/PI3K pathway in KRAS
G12C-mutant MIA-PaCa2 cells, and our bioinformatics analysis
showed that RPS3 was the crucial biomarker. Recent reports
show that RPS3 mediates the PI3K-Akt signaling axis in cancer

cells, which correlates with our findings from the study (72,
73).

From the above understandings, we observe and conclude
that the small unit ribosomal protein RPS3 is the crucial
biomarker of the AMG 510 resistance in KRAS G12C-mutant
MIA-PaCa2 cell pancreatic ductal adenocarcinoma cells. The
study outcomes and the possible future directions to combat the
Sotorasib resistance in KRAS G12C mutant cells were shown
in the Graphical Abstract. Co-targeting of ribosomal proteins
along with the target-specific inhibitors (here KRAS G12C-
mutant inhibitor) will pave way for the development of precision
treatment, such as using CRISPR-Cas and T-cell immunotherapy,
in cancer.

5. Conclusion

The current study was performed to evaluate the crucial
biomarkers involved in the KRAS G12C inhibitor, sotorasib
(AMG 510). From the analysis, we finally conclude that the
ribosomal protein RPS3 is the crucial biomarker involved in
the AMG 510 resistance in the KRAS G12C-mutant MIA-
PaCa2 cell pancreatic ductal adenocarcinoma cells. From
the study results and previous literature, we also report
that resistance could result from the degradation of p53 via
the RPs-MDM2/MDM4-p53 axis. Thus, the combinatorial
treatment strategy of (i) KRAS G12C-mutant inhibitors
and (ii) RNA polymerase I machinery inhibitors, such as
CX-3543 and CX-5461, could be a possible strategy to
tackle resistance and has to be studied in in vitro and in

vivo settings, which promotes the increased therapeutic
treatment of KRAS G12C-mutated cancers in the era of
precision medicine.
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CPM plot of count data after filtering the poorly expressed genes.

SUPPLEMENTARY FIGURE 2

Voom mean–variance trend curve. It depicts that the lowly expressed genes

are filtered properly. t. Counts nearly 0 (plot x-axis value −1) have low

standard deviations. This rises immediately for low counts and then

gradually decreases.
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Kaplan–Meier plot for survival analysis of RPL4 (A), RPL32 (B), RPLP1 (C),

RPS9 (D), JUN (E), RPL15 (F), RPS15 (G), and RPS28 (H). The x-axis

represents the time in months, while the y-axis represents the probability of

survival. The red and black colors represent the high expression and low
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