
TYPE Review

PUBLISHED 15 February 2023

DOI 10.3389/fmed.2023.1086097

OPEN ACCESS

EDITED BY

Mamoru Kato,

National Cancer Centre, Japan

REVIEWED BY

Amin Emad,

McGill University, Canada

Duc-Hau Le,

Thuyloi University, Vietnam

*CORRESPONDENCE

Alexander Partin

apartin@anl.gov

SPECIALTY SECTION

This article was submitted to

Precision Medicine,

a section of the journal

Frontiers in Medicine

RECEIVED 01 November 2022

ACCEPTED 23 January 2023

PUBLISHED 15 February 2023

CITATION

Partin A, Brettin TS, Zhu Y, Narykov O, Clyde A,

Overbeek J and Stevens RL (2023) Deep

learning methods for drug response prediction

in cancer: Predominant and emerging trends.

Front. Med. 10:1086097.

doi: 10.3389/fmed.2023.1086097

COPYRIGHT

© 2023 Partin, Brettin, Zhu, Narykov, Clyde,

Overbeek and Stevens. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in this

journal is cited, in accordance with accepted

academic practice. No use, distribution or

reproduction is permitted which does not

comply with these terms.

Deep learning methods for drug
response prediction in cancer:
Predominant and emerging trends

Alexander Partin1*, Thomas S. Brettin1, Yitan Zhu1,

Oleksandr Narykov1, Austin Clyde1, Jamie Overbeek1 and

Rick L. Stevens1,2

1Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL, United States, 2Department

of Computer Science, The University of Chicago, Chicago, IL, United States

Cancer claims millions of lives yearly worldwide. While many therapies have been

made available in recent years, by in large cancer remains unsolved. Exploiting

computational predictive models to study and treat cancer holds great promise in

improving drug development and personalized design of treatment plans, ultimately

suppressing tumors, alleviating su�ering, and prolonging lives of patients. A wave

of recent papers demonstrates promising results in predicting cancer response to

drug treatments while utilizing deep learning methods. These papers investigate

diverse data representations, neural network architectures, learning methodologies,

and evaluations schemes. However, deciphering promising predominant and

emerging trends is di�cult due to the variety of explored methods and lack of

standardized framework for comparing drug response prediction models. To obtain

a comprehensive landscape of deep learning methods, we conducted an extensive

search and analysis of deep learning models that predict the response to single

drug treatments. A total of 61 deep learning-based models have been curated,

and summary plots were generated. Based on the analysis, observable patterns

and prevalence of methods have been revealed. This review allows to better

understand the current state of the field and identify major challenges and promising

solution paths.

KEYWORDS

deep learning, drug sensitivity, multiomics, neural networks, precision medicine, precision
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1. Introduction

Cancer treatment response prediction is a problem of great importance for both clinical

and pharmacological research communities. Many believe it will pave the way to devising more

efficient treatment protocols for individual patients and provide insights into designing novel

drugs that efficiently suppress disease. Currently, however, cancer treatment remains extremely

challenging, often resulting in inconsistent outcomes. For example, tumor heterogeneity

contributes to differential treatment responses in patients with the same tumor type (1, 2).

Nevertheless, conventional tumor type-dependent anticancer treatments such as chemotherapy

often lead to suboptimal results and substantial side effects, and therefore, are notoriously

regarded as one-size-fits-all therapies (3, 4). Alternatively, targeted therapies and certain

immunotherapies are prescribed based on known biomarkers, observable within individual

patients (5). Cancer biomarkers refer to abnormalities in omics data (genomic, transcriptomic,

etc.) which can be predictive of treatment response (3). Biomarker-driven treatment plans,

either standalone or in combination with chemotherapies, are the mainstream of nowadays

personalized (or precision) oncology. Discovery of biomarkers and their subsequent utilization
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in clinical settings are attributed to advances in tumor profiling

technologies and high-throughput drug screenings (3, 4).

An alternative direction to leverage large-scale screenings and

high-dimensional omics data in the cancer research community

is to build analytical models designed to predict the response of

tumors to drug treatments. Typically, such models use tumor and

drug information without explicitly specifying biomarkers (6). These

models, often referred to as drug response prediction (DRP) models,

can be used to prioritize treatments, explore drug repurposing, and

reaffirm existing biomarkers. Artificial intelligence (AI) is the core

methodology in designing DRP models, demonstrating encouraging

results in retrospective evaluation analyzes with pre-clinical and

clinical datasets. Many DRP models use classical machine learning

(ML) and deep learning (DL), i.e., multi-layer neural networks (NNs).

While DL is generally considered a subset of ML, we differentiate

between the two terms, where ML is referred here to learning

algorithms that do not involve the use of NNs.

Papers in this field are being published constantly, exploiting

learning algorithms for DRP. To cope with increasing rate of

publications, a recent special issue in Briefings in Bioinformatics

was dedicated to DRP in cancer models (7). Collectively, at least 18

review-like papers have been published since 2020 in an attempt to

summarize progress and challenges in the field, as well as provide

discussions on promising research directions. Each paper aims

to review the field from a unique perspective but certain topics

substantially overlap as shown in Table 1 which lists some of the

major topics and associated references. Common topics include data

resources for constructing training and test datasets, prevalent data

representations, ML and DL approaches for modeling drug response,

and methods for evaluating the predictive performance of models.

Following the revival of artificial neural networks (NNs) more

than a decade ago (29), DL methods have become a promising

research direction across a variety of scientific and engineering

disciplines (30–33). This trend is also observed in cancer research,

including the prediction of tumor response to treatments, as shown

in Figure 1. In 2013, Menden et al. demonstrated that a single hidden

layer NN predicts drug response with comparable performance to

random forest (RF) (34). The authors used genomic and response

data from the Genomics of Drug Sensitivity in Cancer (GDSC)

project which was published in 2012 (35). Despite the accelerated

popularity of DL and the availability of substantial screening and

omics data, it was not until the emergence of open-source frameworks

dedicated for building and training NNs (36–38) that DL has become

an integral part of DRP research (note the gap between 2013 and 2018

in Figure 1). Owing to the abundance of omics and screening data,

the availability of DL frameworks and the unmet need for precision

oncology, we have been witnessing a growth of scientific publications

exploring NN architectures for DRP.

Dozens of DL-based models have been published, exploring

diverse feature representations, NN architectures, learning schemes,

and evaluation methods. However, only three out of the many

existing reviews explicitly focus on modeling DRP with DL (10, 11,

18). These reviews present a categorized summary of methods, citing

and discussing a limited number of examples from each category.

As a result, only a selective overview of methods is provided and

limited aspects of published DRP models are considered, exhibiting a

primary limitation of these reviews. In addition, the scope of existing

reviews does not require a comprehensive search for models which

TABLE 1 Categorization of topics covered in existing review papers on drug

response prediction (DRP).

Category Topic References

Data resourcesa Characterization of

cancer tumors

(8–18)

Characterization of

drugs

(15, 17, 19–21)

Monotherapy screenings (9, 10, 12–16, 18, 19)

Drug combination

screenings

(6, 9–11, 19, 22)

Complimentary

resources

(6, 8, 10, 11, 19, 20, 22,

23)

Data representation

methodsb
Representation of cancer

tumors

(8, 9, 12, 18, 24)

Representation of drugs (17, 21, 24)

Representation of

treatment response

(8, 9, 14, 18, 24)

Feature selection and

extraction

(6, 8, 13, 16, 25)

Prediction modelsc DL models for

monotherapy

(6, 10, 14, 16–19, 21, 23,

26)

DL models for drug

combination therapies

(6, 10, 11, 16, 19, 21, 22)

ML models for

monotherapy

(6, 8, 12–16, 18, 21, 24,

27)

ML models for drug

combination therapies

(6, 16, 21, 22, 28)

Assessment and

evaluationd
Experimental validation

of prediction models

(14, 24–28)

Evaluation methods of

model performance

(8, 10, 12, 14, 18, 22, 26)

aCharacterization of cancer tumors: resources of cancer omics data; Characterization of drugs:

tools for generating drug feature representations; Monotherapy screenings: resources of single-

drug response data; Drug combination screenings: resources of drug-combination response

data; Complimentary resources relevant to DRP: additional data resources and computational

methods relevant to the DRP problem such as drug-target interactions, pathway information,

etc.
bRepresentation of cancer tumors: gene expressions, copy-number variations, and other

representations of tumors; Representation of drugs: drug molecular descriptors, fingerprints,

molecular graph structures, etc.; Representation of treatment response: drug efficacy metrics

such as IC50, AUC, sensitive/resistant, and others; Feature selection and extraction: methods for

feature selection and dimensionality reduction.
cModels for monotherapy: discussion of models predicting single-drug response; Models for

drug-combination therapies: discussion of models predicting drug-combination response.
dExperimental validation of prediction models: assessment studies that conduct experiments to

assess performance of DRP models; Evaluation methods of model performance: discussion of

methods for evaluating performance of DRP models.

could reveal predominant and emerging trends. Considering the

current rate of publications, the diversity of approaches, and the

limitations of existing reviews, a comprehensive review is necessary

and timely.

This review is the first one to conduct a comprehensive search

to include all relevant papers that utilize NNs for DRP. As of

the time of completing this paper, a total of 61 peer-reviewed

publications have been identified. Only models predicting response

to single-drug treatments are included in the current review,

excluding models that make predictions to combination therapies.

We identified three major components involved in developing
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FIGURE 1

(A) A snapshot of Supplementary Table 1 that lists peer-reviewed papers proposing monotherapy drug response prediction (DRP) models (the full list can

be found in the Supplementary material). The papers have been curated to identify various properties (shown in table columns), such as deep learning

(DL) methods, feature types, evaluation methods, etc., as discussed in detail in this paper. Multiple plots in this paper have been generated using the data

from Supplementary Table 1 [(B), Figures 4–7C, D]. (B) Distribution of papers by year that use DL methods for DRP. The neural network models are

designed using popular computational frameworks which include both proprietary and open-source software. The bar plots are color-coded by the

di�erent computational frameworks. TensorFlow/Keras and PyTorch are the most popular frameworks based on this plot. Data were collected until

August 2022, considering only peer-reviewed publications.

DRP models, including data preparation, model development, and

performance analysis. These components have been used to guide

the curation of papers with special focus on representation methods

of drugs, cancers, and measures of treatment response, DL related

methods including NN modules and learning schemes, and methods

for evaluating the prediction performance. This information is

summarized in Supplementary Table 1. Summary plots have been

generated, revealing the prevalence of methods used in these

papers. Observing the prevalence of methods will assist in revealing

approaches that have been investigated in multiple studies as well

as emerging methods which are rather underexplored for DRP. We

believe this review would serve as a valuable reference for new and

experienced researchers in this field.

Section 2 formulates the DRP as a DL problem. Sections 3–

5 provide a detailed review of the drug, cancer, and response

representations used in papers listed in Supplementary Table 1.

Existing design choices are summarized in Sections 6.1, 6.2 in

terms of fundamental NN building blocks and learning schemes,

respectively. Section 7 compiles existing approaches for evaluating

model performance. In Section 8, we discuss the current state of DRP

field, determine primary challenges, and propose further directions.

2. Deep learning-based drug response
prediction workflow

A DRP model can be represented by r = f (d, c), where f is

the analytical model designed to predict the response r of cancer

c to the treatment by drug d. The function f is implemented

with a NN architecture in which the weights are learned through

backpropagation. This formulation is for pan-cancer andmulti-drug1

prediction model where both cancer and drug representations are

needed to predict response. A special case is drug-specific models

designed to make predictions for a drug or drug family [e.g., drugs

with the same mechanism of action (MoA)] (39). These models learn

1 Sometimes referred as pan-drug.

from cancer features only and can be formulated as r = fD(c).

Another type of models is multi-task learningmodels which take only

cancer representations as inputs and generate multiple outputs where

each output produces predictions for a specific drug. As compared

to drug-specific models, the multi-task formulation enables learning

from larger amounts of drug response data while exploiting common

characteristics among drugs, thereby allowing to further improve

generalization of the entire model (further discussed in Section 6.2.3).

The general workflow for developing DRP models is not

much different from developing supervised models for other

applications (Figure 2). The challenges come in the specific

details typical to predicting treatment response. The process

can be divided into three components: (1) data preparation,

(2) model development, and (3) performance analysis (10, 12).

The choice of methods associated with each one of these

components can have a significant impact on the overall

workflow complexity and the potential application of the

final model.

2.1. Data preparation

Data preparation is generally the initial step in designing

a prediction model, requiring expertise in bioinformatics and

statistical methods. During this step, heterogeneous data types are

aggregated from multiple data sources, preprocessed, split into

training and test sets, and structured to conform to an API of

a DL framework. The generated drug response dataset with N

samples, denoted by S = {d, c, r}Ni=1, includes representations for

drug (d), cancer (c), and response (r). Prediction generalization

is expected to improve with a larger number of training samples

as demonstrated with multiple cell line datasets (40–42), normally

creating preference for larger datasets when developing DL models.

Recent research focusing on data-centric approaches suggests that

efficient data representations and proper choice of a training set are

at least as important as the dataset size for improving predictions,
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FIGURE 2

General components of a drug response prediction (DRP) workflow. (A) Data preparation: requires generating representations of features and treatment

response, partition the dataset into development set (for training and hyperparameter (HP) tuning) and test set (for performance analysis), and any

additional preprocessing such feature selection/engineering. (B) Model development: the process of generating a deep learning model which involves

the design of a neural network (NN) architecture (choice of NN modules and learning schemes) and model training including HP optimization. (C)

Performance analysis: assessment of prediction generalization and other metrics allowing to evaluate the utility of the DRP model for di�erent

applications in oncology such as personalized recommendation of treatments, drug repurposing, and drug development. The performance is

benchmarked against one or more baseline models which should ultimately be chosen from available state-of-the-art models for the investigated

application.

and further emphasize the importance of the data preprocessing

step (43).

2.2. Model development

Model development refers to NN architecture design and

optimization of model hyperparameters (HPs). To design NNs,

developers often resort to common heuristics which rely on intuition,

experimentation, and adoption of architectures from related fields.

This process involves choosing the basic NN modules, the

architecture, and learning schemes. Diversity of data representations

for cancers (9) and drugs (21) and potential utilization of DRPmodels

in several pre-clinical and clinical settings have led researchers to

explore a wide range of DL methods.

2.3. Performance analysis

Adesirable outcome of amodel development workflow is a robust

model that produces accurate predictions across cancers and drugs

as evaluated by appropriate performance metrics. DRP models can

be used in various scenarios such as personalized recommendation

of treatments, exploration of drug repurposing, and assisting in

development of new drugs. Therefore, both performance metrics

and appropriate evaluation schemes (e.g., design of training and test

sets) are critical for proper evaluation of prediction performance.

The abundance of DRP papers in recent years (Figure 1) and lack of

benchmark datasets (10), strongly suggest that a rigorous assessment

of model performance is required where state-of-the-art baseline

models serve as a point of reference.

2.4. Source and target domains

A vital characteristic that affects the entire workflow is the source

domain data used to develop the DRP model, and the target domain

data representing the biological domain on which the model is

expected to operate. Data suitable for modeling DRP (Sections 3–5)

come from multiple biological domains, such as cell lines, organoids,

xenografts, and patients (9). Most models utilize data from a single

domain (usually cell lines, Section 3.1, due to the abundance of

response data). Certain models exploit data from a mix of domains

with the goal to improve predictions in a target domain which

suffers from insufficient data. Since a primary goal is to make DRP

models useful in improving patient care, the biological domains can

be further categorized into clinical (human patient data) and pre-

clinical (cell lines, etc.). Considering this distinction, models can

exploit data in different ways: train and test on preclinical (44–46),

train and test on clinical, train on preclinical and test on clinical

(47–49), and models that leverage both preclinical and clinical data

during the training process and then test on clinical (50–54). Models

that use data from mixed domains are generally more challenging

to develop because they require extra steps in data preparation,
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advanced modeling techniques, and robust performance evaluation

analysis (Section 6.2.2).

3. Representations of treatment
response

Drug screening platforms enable testing the sensitivity of cancer

samples in controlled lab environments, ultimately producing data

for predictive modeling (Figure 3). A major objective is a discovery of

potential anticancer treatments through the screening of compound

libraries against diverse cancer panels. Systematic drug screening

platforms have been established for in vitro cancer models such as cell

lines (55–57) and organoids (58), and in vivomodels such as patient-

derived xenografts (PDXs) (59). An overview of preclinical cancer

models and the corresponding methods for sensitivity profiling is

available in a recent review article (9). Drug sensitivity data can be

transformed into continuous or categorical variables, representing

the treatment response. Accordingly, prediction models have been

designed to solve regression, classification, and ranking problems.

This section reviews methods for representing treatment response

and the corresponding prediction tasks.

3.1. Cell lines

Cell line studies constitute the most abundant resource of

response data. High-throughput drug screenings with cell lines

is performed with a compounds library, where each cell-drug

combination is screened at multiple drug concentrations. The

response of in vitro cells at each concentration is assessed via a

cell viability assay which quantifies the surviving (viable) cells after

treatment vs. the untreated control cells. Performing the experiments

over a range of concentrations results in a vector of non-negative

continuous dose-response values for each cell-drug pair. Those data

points are summarized via a dose-response curve obtained by fitting

a four parameters logistic Hill equation.

3.1.1. Continuous measures of response
The cell line dose-dependent responses lack a direct translation

into the space of in vivo cancer models. A common approach is

to extract from the dose-response curve a single-value summary

statistic which represents the response for a cell-drug pair. Several

methods exist allowing to calculate continuous response values which

serve as the prediction target with supervised regression models.

The two most common metrics are IC50 and AUC, with IC50 being

substantially more prevalent (Figure 4).

Observing such predominance of IC50, an immediate question

is whether IC50 exhibits substantial benefits over other measures.

The half-maximal inhibitory concentration, i.e., IC50, is the

concentration at which the drug reaches half of its maximal inhibition

power on the fitted dose-response curve. Alternatively, measures such

as AUC (area under the dose-response curve), AAC (area above

the dose-response curve or activity area), and DSS (drug sensitivity

score), are obtained by aggregating the cell viability values across a

range of concentrations of the dose-response curve, providing what

is considered a more global measure of response. Arguments in favor

of these global measures are available, discussing the benefits of AUC

(41, 60) and DSS (61) as opposed to IC50. In addition, empirical

analyzes suggest better prediction generalization in the case of using

AAC values as opposed to the alternative of using IC50 (14).

3.1.2. Categorical measures of response
Despite the prevalence of IC50 and AUC, there are arguments

suggesting that continuous measures of response (blue in Figure 4)

lack a straightforward interpretation in the context of decision-

making purposes. Alternatively, a categorical output representing

a discrete level of response such as sensitive vs. resistant is more

comprehensible for humans, and thus, better supports actionable

outcomes. Two primary approaches were used to produce categorical

responses with DRP models.

In the more common approach, continuous responses were first

categorized usually using one of the available methods such as

waterfall algorithm (55, 62), LOBICO (56, 63), or a histogram-based

method (64, 65). DL classifiers were trained on the transformed

values to predict class probability, which is subsequently translated

into a discrete response label (orange in Figure 4). The predicted

probability can also be utilized as a quantitativemeasure of prediction

uncertainty, an essential aspect in decision-making. Most models

were trained to predict a binary response, representing that cancer

is either sensitive or resistant to treatment. A multi-class classifier

with three classes corresponding to low, intermediate, and high

responsiveness, was also explored (66). The second approach is to

train regression models to predict one of the continuous responses

and then categorize it into two or more classes (green in Figure 4).

Only a few papers explored this approach, including binary (67–70)

and multi-class labels (71). This approach naturally allows assessing

model performance using both regression and classification metrics,

possibly offering a more robust generalization analysis.

3.1.3. Ranking
In addition to producing continuous or categorical predictions,

models can be trained to learn a ranking function with drug

response data. In the context of clinical precision oncology, the

clinician might be interested in obtaining a ranked list of the

top-k drugs that are likely to be most beneficial for the patient.

In our search, we obtained three ranking models, all of which

targeting personalized treatment recommendation. By framing the

problem as a ranking task, the authors proposed models that learn

to produce a ranked list of drugs per cell-line that are most likely

to inhibit cell viability. Prasse et al. (72) transformed IC50 into drug

relevance scores and derived a differentiable optimization criteria to

solve the ranking problem which can be combined with different

NN architectures. By combining their ranking learning method

with the PaccMann architecture (73) and a fully-connected NN

(FC-NN), they significantly improved the ranking performance as

compared to baseline models. SRDFM used a deep factorization

machine (DeepFM) with pairwise ranking approach which generates

relative rankings of drugs rather than exact relevance scores (74).

PPORank generates drug rankings using deep reinforcement learning

which enables to sequentially improve the model as more data

becomes available. SRDFM and PPORank rankings outperform

non-DL models.
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FIGURE 3

Drug screening experiments are performed with various cancer models such as cell lines, organoids, and xenografts, where cancer samples are screened

against a library of drug compounds. The screening data is transformed into a drug response dataset that can be used for developing drug response

prediction models, including regression, classification, and ranking.

FIGURE 4

Cell-line drug response data is usually represented with continuous or categorical values. Drug response prediction (DRP) models use the di�erent drug

response representations to train regression, classification and ranking models. The histogram illustrates the prevalence of the di�erence representations

and learning tasks. Certain papers exploit several representations of response and learning tasks, and therefore, these papers contribute more than one

item to the histogram. The label categorical means that the continuous response was first categorized and then a DRP classifier was trained, while

continuous to categorical means that a DRP regressor was trained and then the predicted response was categorized (in both cases, classification metrics

were used for performance analysis).

3.2. Patient derived xenografts and patient
tumors

Whereas, cell line data serve as the primary resource for training

DL models, several papers proposed methods for predicting response

in PDX and patient tumors. PDX is a contemporary cancer model

that was developed to better emulate human cancer in medium-

scale drug screenings, providing a controlled environment for

studying the disease and systematically testing treatments in pre-

clinical settings. While systematic drug screenings with patients is

practically impossible (6), public data containing treatment response

in individual patients are available.

Frontiers inMedicine 06 frontiersin.org

https://doi.org/10.3389/fmed.2023.1086097
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Partin et al. 10.3389/fmed.2023.1086097

Tumor response in humans is obtained via a standardized

evaluation framework called Response Evaluation Criteria in Solid

Tumors (RECIST) (75). RECIST involves non-invasive imaging

followed by evaluation of change in tumor size. Four categories

used for grading tumor change include Complete Response (CR),

Partial Response (PR), Progressive Disease (PD) and Stable Disease

(SD). Tumor change in PDXs is evaluated by monitoring tumor

volume over time using more traditional methods (e.g., calipers) as

opposed to using RECIST, primarily due to cost. The main data

resource formodeling drug response with PDXs, provides continuous

response values calculated based on tumor volume (59). To create

a counterpart to RECIST, they also set cutoff criteria allowing to

transform the continuous response values into the four categories.

Because discrete response labels are available in patient and PDX

datasets, DRP models are primarily designed as classifiers, where the

four-label RECIST categories are transformed into sensitive (CR and

PR) and resistant (PD and SD) labels. Small sample size, however, is

a major challenge in developing DL models with these datasets. This

issue is generally addressed by incorporating abundant cell line data

and transfer learning schemes to improve predictions in PDX and

patients (discussed in Section 6.2.2).

4. Cancer representations

As personalized oncology treatments rely on omics biomarkers,

progress in high-throughput tissue profiling plays an important

role in existing and future cancer therapies. Pharmaco-omic studies

conduct multiomic profiling of cancer models and drug screening

experiments (9). Advances in sequencing technologies allowed

to substantially scale the experimental studies by increasing the

throughput rate and reducing the cost of profiling. The algorithms

for processing the raw data evolve as well, thereby providing more

reliable representations of the underlying cancer biology and allowing

projects to update their repositories with refined versions of existing

data while utilizing improved processing techniques (e.g., DepMap

portal2).

Dedicated bioinformatics pipelines for transforming raw data

depend on the omic type and the profiling technology, where

common steps include alignment, quantification, normalization,

and quality control. Profiling at each omic level produces high-

dimensional representation of cancer that can be used as features

in the downstream modeling of drug response. Existing prediction

models utilize features that were obtained primarily at four omic

levels including genomic [mutation, copy-number variation (CNV)],

transcriptomic (gene expression microarrays, RNA-Seq), epigenomic

(methylation), and proteomic [Reverse Phase Protein Arrays (RPPA)]

(9). Figure 5A shows the prevalence of these representations in

DRP models. Many models use these omic features directly as

inputs to NNs while others optimize representations via additional

preprocessing with the goal of increasing predictive power (76, 77).

In 2014, the NCI-DREAM challenge was a community effort that

assessed performance of various classical ML models in predicting

drug response in breast cancer cell-lines (27). It was reported that

for most models participated in the challenge, gene expression

microarrays provided greater predictive power than other data types.

2 Cancer Dependency Map Portal. Last accessed: January (2023). https://

depmap.org/portal.

Results of this challenge seem to set the tone for future research in this

field as gene expression was used in approximately 90% of the models

either alone or in combination with other feature types, including

mutation, CNV, methylation, and RPPA. Mutation and CNV are also

common but rarely used without gene expression (with only 12% of

such models).

Learning from multiple omic types have shown to improve

generalization, and as consequence, integration of multiomics have

been a recent trend (Figure 5C). A straightforward approach is to

concatenate the multiomic profiles to form a feature vector and pass

it as an input to a NN model, a method commonly referred to as

early integration. It has been shown, however, that late integration

significantly improves predictions where the different omic profiles

are passed through separate subnetworks before the integration

(39, 40, 78). Yet, caveats related to data availability hinder the

pertinence of multiomics as opposed to using single-omics. Not

having all omics available for all samples is a common occurrence

in pharmaco-omic projects. A common approach to address this

issue is filtering the dataset to retain a subset of cancer samples that

contain all the required omic types as well as drug response data.

The multiomics data is closely related to multimodal learning which

refers to prediction models that learn jointly from multiple data

modalities (i.e., representations). It was demonstrated that leveraging

multimodal data generally improves predictions.

5. Representations of drug compounds

Contemporary cancer treatment often involves administering

therapeutic drugs to patients to inhibit or stop growth of cancer

cells, destroy tumors, or boost cancer-related immune system. Drug

molecules are 3-D chemical structures consisting of atoms and

bonds with complex atomic interactions. Developing numerical

representation of molecules is an active research area in several

related disciplines, including in silico design and discovery of

anticancer drugs.

Ultimately, drug representations should be able to encode

essential physical and chemical properties of molecules in compact

formats. Alternatively, when using these representations as drug

features for DRP, the model should be able to properly ingest these

features and extract information predictive of treatment response.

Therefore, the inherent information encoded with numerical drug

representations and the model capability to learn from that specific

representation are closely related and mutually important for

producing efficient DRP models.

Neural networks provide substantially more flexibility than

classical ML in learning from unstructured data such as strings,

images, and graphs. This flexibility facilitates a noticeable trend of

exploring various drug representations as features in DL-based DRP

models (21). Primary types of drug representations include SMILES,

fingerprints, descriptors, and graph-based structures (Figure 5B).

5.1. SMILES

Perhaps the most common format for querying, handling and

storing molecules when working with modern chemoinformatics

software tools and databases is a linear notation format called

SMILES (simplified molecular-input line-entry system). With this
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FIGURE 5

Feature representations in drug response prediction (DRP) models. Various representations can be used to represent cancers and drugs in DRP models, as

described in Sections 4, 5, respectively. Each DRP model usually exploits one or multiple feature types (Supplementary Table 1 lists the feature types that

each model have used). (A) The prevalence of omics (cancer) feature representations in DRP models. (B) The prevalence of drug feature representations

in DRP models. (C) The distribution of papers that utilized single-omics and multiomics features in DRP models. We used Supplementary Table 1 to

generate these figures, where we considered only peer-reviewed publications, collected until August 2022. CNV, copy number variations; RPPA, reverse

phase protein arrays.

data structure, each molecule is represented with a string of

symbolic characters generated by a graph traversal algorithm (21, 79).

Although the use of SMILES in DRP is quite limited as compared to

other applications (e.g., molecule property prediction, QSAR), this

format provides several benefits.

Following common text preprocessing steps (e.g., tokenization,

one-hot encoding), SMILES can be naturally used with common

sequence-aware modules such as RNN (72, 73, 80) and 1-

D CNN (81). Moreover, each molecule can be represented

with different strings depending on the initial conditions

when applying the SMILES generating algorithm (i.e., starting

node of graph traversal). The resulting strings are referred

to as randomized or enumerated SMILES and have been

reported to improve generalization when utilized for drug

augmentation (82, 83). SMILES are less prevalent in DRP

models but remain a popular notation for describing molecules

because it often serves as an intermediate step for generating

other representations such as fingerprints, descriptors, and

graph structures.

5.2. Descriptors and fingerprints

Fingerprints (FPs) and descriptors are the two most common

feature types for representing drugs in DRP papers (Figure 5B).

Unlike with SMILES, where the string length varies for different

molecules, we can specify the same number of features for all

drugs in a dataset with either FPs or descriptors. The consistent

feature dimensionality across drugs makes descriptors and FPs

easy to use with NNs and classical ML. With FPs, a drug is a

binary vector where each value encodes presence or absence of a

molecular substructure with a common vector size of 512, 1,024,

or 2,048. Multiple algorithms for generating FPs are available,

implemented by several chemoinformatics packages. For example,

Morgan FPs refers to Extended Connectivity Fingerprints (ECFPs)

generated via the Morgan algorithm. ECFP is a class of circular

FPs where atom neighborhoods are numerically encoded with

binary values. The open-source package RDKit provides an API for

generating these FPs which are often used for DRP.3 Descriptors

are a vector of continuous and discrete values representing various

physical and chemical properties, usually containing hundreds or

a few thousands of variables. Both open-source and proprietary

software tools are available for generating descriptors, where

PaDEL (84), Mordred (85), and Dragon (86) being particularly

used for DRP. A systematic assessment of various features and

HPs suggests that DRP with DL exhibits no significant difference

when utilizing ECFP, Mordred, or Dragon representations as drug

features (87).

3 RDKit: Open-source cheminformatics. Last accessed: January (2023).

https://www.rdkit.org.
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5.3. Graph structures

Graphs are powerful representations where complex systems

can be represented using nodes and edges. Recent advancements in

GNNs have opened promising research directions allowing efficient

learning of predictive representations from graph data (88–90),

and contributing to the widespread interest in GNN among AI

researchers and application domain experts (91, 92). Graph-based

representations have emerged as a new trend in computational drug

development and discovery (93, 94). In graph notation, eachmolecule

is described with a unique graph of nodes and edges, where each

atom (i.e., node) and each bond (i.e., edge) can be represented with

multiple features characterizing physical and chemical properties.

Resources and examples for constructing graphs are well documented

in popular chemoinformatics toolkits, as well as software packages

dedicated for GNNs (95–97).

By borrowing methodologies from related fields such as drug

property prediction and drug design, developers of DRP models

exploit graph molecular structures for representing drugs combined

with GNN-based architectures. We observe concordant results

among those papers investigating molecular graphs with GNNs,

reporting superior performance of their models compared to

baselines that use non-graph representations. Based on these recent

results and the assumption that graphical description is arguably

a more natural way to represent drugs as compared to the

aforementioned alternatives, molecular graphs combined with GNNs

should be a default modeling choice. However, only few papers

actually report results with rigorous ablation analysis with extensive

HP tuning comparing molecular graphs with other representations

such as SMILES, FPs, and descriptors for the application of DRP.

6. Deep learning methods for drug
response prediction

We review existing approaches for modeling DRP with DL in

terms of two perspectives: (1) NN modules that are used as building

blocks for constructing DRP architectures, (2) learning schemes

that are used to train models with the goal to improve prediction

generalization. The diversity of methods is highlighted in Figure 6.

6.1. Neural network modules

Constructing a NN architecture requires choosing appropriate

components, their properties, and the way these components are

organized and connected (i.e., network topology). These components

are often available as modules in DL frameworks and range

from simple dense layers to more advanced structures such as

attention. Certain structures, however, are not generally available as

is and should be constructed manually using the available modules

(e.g., residual connections). While there is an absence of rigorous

methodologies for designing network topology, the choice of certain

modules can be driven by the characteristics of input data.

6.1.1. Dense layers
Menden et al. (34) is a pioneering work where cell line and

drug features were used to train an FC-NN with a single hidden

layer to predict IC50. Recently, FC-NN models with multiple dense

hidden layers have been proposed to predict response in cell lines

(71) and humans (67). Several other models with only dense layers

were explored, combining advanced NN attributes. MOLI utilizes

triplet loss function and late integration of multiomic inputs to

generalize across cancer models by training with cell lines and

predicting in PDXs and patients (39). DrugOrchestra is multi-task

model that jointly learns to predict drug response, drug target, and

side effects (98). RefDNN explores data preprocessing techniques

to generate more predictive cell line and drug representations (99).

For cell line representation, multiple ElasticNets produce a vector

representing drug resistance of a cell line to a set of reference

drugs, while for drug representation, a structure similarity profile is

computed for each input drug with respect to the set of reference

drugs. Another model with late integration of multiomic data

is proposed for predicting drug response and survival outcomes

which also uses neighborhood component analysis for feature

selection of multiomic data (69). PathDSP utilizes multi-modal data

preprocessed via pathway enrichment analysis and integrated into an

FC-NN for DRP (45). All the aforementioned models demonstrate

promising prediction performance while utilizing dense layers only

in their architectures.

6.1.2. Convolutional layers
Due to state-of-the-art performance in various applications (100)

and fewer learning parameters required as compared to dense layers,

1-D CNNs are a popular choice in DRP models, particularly for

processing omics data. DRP models utilizing CNNs have been

published every year since 2018.

DeepIC50 is a multi-class classifier exploiting an early integration

of cell line mutations and drug features (descriptors and FPs)

passed to a three-layer CNN and followed by an FC-NN prediction

module (66). tCNNs exploits late integration of two parallel CNN

subnetworks with three layers each (101). Binary features of cell lines

(mutations and CNV) and drugs (one-hot encoded SMILES) are

propagated through the respective subnetworks, concatenated, and

passed through an dense layer for the prediction of IC50. GraphDRP

is very similar to tCNNs in terms of CNNutilization, with the primary

difference being the utility of molecular graphs and GNN layers

for learning drug representations. CDRScan is an ensemble of five

different architectures with varying design choices (late and early

integration, shallow and deep NNs, with and without dense layers)

which all contain CNNs and learn to predict IC50 frommutation and

FP data (102).

DeepCDR takes the design further by exploiting late integration

of drug and multiomic features, including genomic mutation, gene

expression, and DNA methylation, where only the mutations are

passed through a CNN layers (103). Following DeepCDR, two similar

models were published, GraTransDRP (104) and GraOmicDRP

(105) which both use late integration of multiomics and molecular

graphs for drug representation. While DeepCDR uses CNNs only for

genomic features, all three subnetworks for multiomic inputs consist

of CNNs in GraTransDRP and GraOmicDRP. SWNet is another

model utilizing late integration of cell lines and drugs with three CNN

layers in the cell-line subnetwork and one such layer in the prediction

subnetwork (106).

We may gather that 1-D CNNs carry substantial benefits in

the context of DRP, considering their prevalence (Figure 6). Based
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FIGURE 6

Prevalence of deep learning methods in drug response prediction (DRP) papers. Various methods have been used to build DRP models which can be

categorized into neural network (NN) modules (Section 6.1) and learning schemes (Section 6.2). The prevalence of NN modules and learning schemes

across papers (from Supplementary Table 1) is shown, respectively, in (A, B). 1D-CNN and 2D-CNN, one- and two-dimensional convolutional NN; GNN,

graph NN; DeepFM, deep factorization machine.

on our search, however, only two papers explicitly report their

empirical findings assessing CNNs vs. alternative learning modules.

Interestingly, both papers suggest that CNNs underperform dense

layers in their respective architectures. Zhao et al. (71) reports that

in a twelve-layer model predicting response from gene expression,

dense layers outperform CNNs or RNNs. Manica et al. (73) present

extensive analyzes exploring various architectures for encoding drug

representations directly from SMILES, including CNNs, bidirectional

RNNs (bRNNs), and various attention modules. Their results suggest

that a combination of convolutional and attentionsmodules produces

the most predictive model while a CNN-only encoding subnetwork

performs the worst as compared to the explored variants.

With the objective to leverage 2-D CNNs, two algorithms

were recently published for converting tabular data into images

and utilizing CNNs for predicting drug response. Both algorithms,

REFINED (76) and IGTD (77), convert gene expressions and drug

descriptors into images as a preprocessing step, and then learn to

predict drug response with late integration of 2-D CNN subnetworks.

The papers report superior performance of proposed algorithms as

compared to various baseline models.

6.1.3. Attention mechanism
Presenting PaccMann (80), Oskooei et al. were the first to report

the use of attention-based NN for DRP, exploiting late feature

integration with attention mechanisms incorporated both in the cell

line and drug subnetworks. On the cell line path, gene expressions

are encoded with self-attention producing a gene attention (GA)

vector. On drug path, SMILES embeddings are combined with GA

via contextual-attention, where the GA vector serves as the context.

This design which was further described in Manica et al. (73)

improves generalization as compared to baselines as well as facilitates

interpretability via attention weights.

Attention-based designs have been further explored in recent

years. CADRE is a collaborative filtering model with contextual-

attention and pre-trained gene embeddings (gene2vec), designed to

recommend treatments based on cell line gene expressions (107).

Ablation analyzes against simpler models suggest that CADRE’s

attributes yield improved generalization. Moreover, the authors show

how attention weights could be used to identify biomarker genes,

partially addressing the notorious black-box property associated with

many DL models. In AGMI, attentions are used for aggregating

heterogeneous feature types, including raw multiomics as well

as engineered features via protein-protein interaction (PPI), gene

pathways, and gene correlations with PCC (Pearson correlation

coefficient), contributing to improved generalization. Overall, papers

report the predictive benefits of attentions (106–111), while a few

papers also explore attention weights for interpretability (107, 110).

Transformer is an attention-based architecture that have recently

been explored in DRP models for encoding drug representations

(70, 104). In GraTransDRP (104), the authors propose to extend

an existing model, GraOmicDRP (105), by modifying the drug

subnetwork to include graph attention network (GAT), graph

isomorphism network (GIN), and a graph transformer which learns

from graph data. In DeepTTA (70), a transformer module encodes

drug information represented as text data [ESPF substructures (112)].

Both models report significant improvement in generalization thanks

to transformer modules. Transformers have shown immense success

first in language and later vision applications, and expected to gain

further attention from the DRP community.

6.1.4. Graph neural network layers
Designed to efficiently learn from graph data, GNNs have

been extremely popular in applications where information can be

represented as graphs. With at least 15 GNN-based DRP models

published since 2020 (Supplementary Table 1), it is apparent that
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the use of GNNs with graph data becomes an emerging alternative

to some of the more traditional approaches discussed above. In

DRP papers, a graph, G = (V ,E), is often characterized by a

set of nodes V (a.k.a. vertices), a set of edges E (a.k.a. links), an

adjacency matrix W which contains values representing associations

between the nodes, and an attribute matrix A containing feature

vectors representing node attributes (113). A primary challenge that

researchers are facing when designing GNN-basedmodels lies in how

to transform components of the DRP problem into graphs. Luckily,

accumulated knowledge and methodologies allow viewing biological

and chemical systems as networks.

Due to substantial progress in applying GNNs to drug discovery

and development (94, 95), it was relatively straightforward to adopt

similar techniques to DRP. Papers propose models that convert drug

SMILES into graphs and utilize modern GNN layers to encode latent

drug representations (49, 103–106, 114). The common approach

is constructing a unique graph per drug with nodes and edges

representing atoms and bonds, respectively, where node features are

the properties of each atom. The subnetworks consist of several

(usually 3–5) GNN layers such as GCN and GIN.

Another approach is constructing graphs using biological

information of cancer samples, where genes are the graph nodes

and gene relationships are the edges. There is slightly more diversity

of approaches in this space as compared to drugs partially due

to the use multiomic data which allow constructing graphs with

heterogeneous node attributes. The multiomics can be utilized to

encode gene relationships and attributes using one or more data

modalities, including correlations between genes (109, 111, 115, 116),

known protein interactions (i.e., PPI) (109, 111, 117, 118) using

STRING database (119), and relationships based on known gene

pathways (109) using GSEA dataset (120). Recently, novel approaches

have been explored such as heterogeneous graphs where both cell

lines and drugs are encoded as graph nodes (108, 116, 118, 121), and

a model that utilizes diverse data types for building graphs, including

differential gene expressions, disease-gene association scores and

kinase inhibitor profiling (111). Despite the diversity of the different

approaches, most papers report superior performance as compared

baseline models.

6.2. Learning schemes

Various learning schemes have been proposed to improve drug

response prediction in cancer models. These techniques can be used

in different configurations, usually regardless of the fundamental NN

building blocks that are used to construct the architecture.

6.2.1. Autoencoders
When considering the large feature space of cancer and drug

representations (Sections 4, 5) and the size of drug response datasets,

the number of input features outnumbers the number of response

samples which potentially leads to model overfitting (6). Learning

predictive representations with high-dimensional data manifests a

primary strength of multi-layer NNs. A prominent example are

autoencoders (AEs) which are NNs that are trained to compress

and then reconstruct data in an end-to-end unsupervised learning

fashion. Given that an AE can reliably reconstruct the input data,

the compressed latent representation is characterized by reduced

data redundancy which improves the feature to sample ratio and

can be subsequently used as inputs in downstream drug response

prediction task.

The primary application of AEs in DRP models is dimensionality

reduction. The compressed representation is used as input to a DRP

model which is usually a NN or in some cases a classical ML model.

DeepDSC reduces gene expressions from about 20,000 genes down

to 500 and concatenates the downsampled data with drug FPs as

inputs to a FC-NN (122). VAEN exploits variational AEs (VAEs) to

learn a low-dimensional representation of gene expressions which

are fed into ElasticNet (48). DEERS compresses cancer features (gene

expression, mutation, and tissue type) and drugs features (kinase

inhibition profiles) into 10 dimensions which are concatenated for

a FC-NN (44). Dr.VAE learns pre- and post-treatment embeddings

of gene expressions and leverages those embeddings for DRP

(123). AutoBorutaRF combines AEs with a feature selection method

followed by Boruta algorithm and RF (124). Ding et al. (125) utilized

learned representations of multiple hidden layers of the encoder as

input features, rather than using just the latent representation.

AEs have also been utilized with external datasets as part of model

pretraining. DeepDR uses gene expressions and mutations from the

TCGA database to train separate AEs for each omic type (126).

The pre-trained encoders are extracted from the individual AEs,

concatenated, and passed as inputs to a FC-NN. The combinedmodel

was trained to predict drug response in cell lines. Another model uses

separate AEs to encode cancer and drug features (127). A GeneVAE

encodes gene expressions from CCLE dataset, and a Junction-

Tree VAE (JT-VAE) (128) encodes drug molecular graphs from the

ZINC database. Similar to DeepDR, the pre-trained encoders are

concatenated and combined for DRP.

Dimensionality reduction and model pre-training are common

applications of AEs. Yet, AEs have also been utilized in less

conventional ways. Xia et al. (41) proposed UnoMT, a multi-task

learning (MTL) model that predicts drug response in cell lines

via late-integration of multiomic features and drug representations.

In addition to the primary DRP task, the model predicts several

auxiliary tasks, where one of them is a decoder that reconstructs

gene expressions. TUGDA exploits advanced learning schemes such

as domain adaption and MTL to improve generalization in datasets

with limited sample size (51). Each prediction task in the MTL

corresponds to a different drug. With the goal to mitigate the

influence of unreliable tasks and reduce the risk of negative transfer,

a regularization AE takes the model output and reconstructs an

intermediate hidden layer.

6.2.2. Transfer learning
Transfer learning refers to learning schemes designed to improve

generalization performance in a target domain T by transferring

knowledge acquired in a source domain S (129). The most common

scenario is to transfer learned representations from a source domain

with large amounts of data into a target domain which suffers from

insufficient data. Transfer learning with DL have shown remarkable

success in various applications (130) and have recently been applied

to DRP (14, 42, 50, 51, 78, 131).

Zhu et al. proposed an ensemble transfer learning (ETL) that

extends the classical transfer learning by combining predictions from

multiple models, each trained on a cell-line dataset and fine-tuned on

a different cell-line dataset. Considering three application scenarios,
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a NN with late-integration of gene expression and drug descriptors

outperformed baselines in most cases, while the LightGBM showed

superior performance in certain experimental settings. AITL was

proposed to improve generalization across biological domains (50).

The model was trained using gene expressions and drug responses

from source and target domain data, where abundant cell line data

serve as source and the relatively scarce data from either PDXs or

patients serves as target. A primary component for accomplishing

knowledge transfer is a feature extractor subnetwork that learns

shared representations using source and target features, which

are passed to multi-task subnetwork for response prediction of

source and target samples. Ma et al. (131) proposed TCRP, a two-

phase learning framework with meta-learning as a pre-training step

followed by a few-shot learning for context transfer. With the goal to

obtain transferable knowledge, a meta-learning is applied iteratively

by training a simple NN with different subsets of cell lines. The same

NN was trained to predict drug response in both phases but with

different data. With a few samples from the target context, the pre-

trained NN was further trained for a single iteration, demonstrating

performance with patient-derived cell line (PDTC) and PDXs.

ETL and AITL can be categorized as inductive transfer learning,

where labels from both the source and target data are used to improve

generalization on target data (130). However, abundance of per-

clinical and clinical data are not labeled, and therefore, remain unused

with classical transfer learning. Velodrome is a semi-supervised

model that exploits labeled cell lines and unlabeled patient data

to improve out-of-distribution (OOD) generalization on datasets

that remained unused during training. Generalization has been

demonstrated with PDX, patient, and cell lines from non-solid tissue

types. TUGDA is an MTL and domain adaptation model which

relies on cell line data and advanced learning schemes to improve

predictions in data-limited cancer models (51). The model takes

gene expressions and learns a latent shared representation that is

propagated to predict drug response in a multi-task fashion with

each task corresponding to a different drug. To enable domain

adaptation from cell lines to other cancer models such as PDXs

and patients, adversarial learning is used where a discriminator is

branched from the shared layer to classify the type of cancer model.

The discriminator is employed in supervised and unsupervised steps,

with source- and target domain samples, respectively.

6.2.3. Multi-task learning
As transfer learning and multi-task learning (MTL) are related

approaches (129, 130), several models have integrated both methods

in their DL-based DRP models (41, 50, 51). However, utilizing

MTL without transfer learning is also common. DrugOrchestra is

an original work where multiple heterogeneous data sources were

curated to develop a multi-task model for simultaneously learning

to predict drug response, drug target, and side effects while utilizing

advanced weigh sharing approaches (98). SWnet proposed a gene

weight layer which scales the contributions of mutations when

combined with gene expressions as a multiomic input (106). In its

simplest form, the weight layer is trained for the entire dataset.

The authors also explored a weight matrix where each vector is

determined for a single drug. Considering N drugs in the dataset,

the model was trained in an MTL fashion with N prediction tasks,

one task for each drug, outperforming the single weight layer

configuration. Zhu et al. (118) used MTL in a pre-training step

to accumulate chemical knowledge by training a GNN to predict

more than a thousand biochemical properties of molecules, a strategy

adopted from another work (132). The pre-trained model was

integrated into the complete DRP model called TGSA.

7. Model evaluation and comparison

Papers proposing DRP models explore advanced approaches for

data representation, NN architecture design, and learning schemes.

To motivate the increasing complexity of methods, it is essential to

demonstrate their utility for cancer medicine and advantages against

existing approaches (i.e., baseline models). Model performance in

these papers is primarily assessed via prediction generalization,

i.e., prediction accuracy on a test set of unseen data samples,

with several common metrics used for regression, classification,

and ranking. The choice of the test set is critical as it may

illustrate the potential utility of the model for a given application in

cancer medicine and significantly affect the observed performance.

To make a comparison between proposed and existing models

compelling, consistent evaluations should be utilized in terms of

drug response datasets, training and test sets, evaluation metrics, and

optimization efforts (e.g., HP tuning). This section presents common

evaluation approaches used for prediction generalization in terms of

drug screening datasets (single or multiple datasets), data splitting

strategies (train and test), and baselines models (Figure 7).

7.1. Single-dataset evaluation

A single drug screening study is most commonly used to develop

and assess performance of DRP models. Regardless of specific cancer

models, the screening data space can be characterized by the involved

drugs and cancers. The 2-D matrix in Figure 3 illustrates such a

space composed of a finite number of known cancer cases and drugs,

where the marked coordinates symbolize that treatment responses

are available for these combinations. Considering this 2-D space,

four data splitting strategies are commonly used, where each can

imitate a different application scenario of drug response prediction

(Figure 7A).

7.1.1. Known cancer and drugs (mixed-set)
To ensure a valid assessment of prediction generalization,

training and test sets should contain unique cancer-drug pairs

without overlap. The overlap may occur, however, on cancer or drug

(but not both) in which case a model encounters drug or cancer

features during testing that also showed up during the training phase.

For example, consider two drug response samples r11 = {d1, c1}

included in the training set and r12 = {d1, c2} in the test set. While

the pairs are unique, the drug features of d1 show up during both

training and testing. The cancers or drugs that show up in test and

training set are deemed as known or seen. This splitting strategy is also

known as mixed-set, where drugs and cancers are mixed in training

and test sets. Randomly splitting cancer-drug pairs naturally results

in a mixed-set analysis, where drug and cancer features can show

up in both training and test sets. Due to the overlap on both feature

dimensions, this analysis naturally leads to the highest performance,

and it is also the most common and straightforward to implement.
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FIGURE 7

Evaluation and comparison of drug response prediction (DRP) models. (A) Data splitting strategies for evaluating performance with a single drug

screening study include mixed-set, cancer-blind, drug-blind, and disjoint-set. (B) Cross-dataset evaluation where drug response data that is used for

training and evaluation come from di�erent studies. (C) Prevalence of common evaluation methods across studies (from Supplementary Table 1). The

methods include mixed-set, cancer-blind, drug-blind, disjoint-set, and cross-dataset, as described in Sections 7.2, 7.1. (D) Histogram of the top fifteen

most popular baseline models that were used to benchmark prediction performance of DRP models. The baselines are color-coded as either deep

learning (DL) or classical machine learning (ML). The label Simpler-NNs refers to simpler versions of proposed models, where ablation analysis was usually

conducted. The label None refers to cases where this type of baseline (i.e., ML or DL) was not used in performance analysis at all (e.g., the blue bar for

None shows that 16 of the papers have not used DL-based baselines in their analysis).

Because of the simplicity of this strategy, almost all papers include

it in their analysis. An application of prediction models developed

with the mixed-set validation is repurposing of known anticancer

drugs for unexplored cancer conditions that have not been treated

with these drugs. When considering the 2-D space of known cancer

cases and drugs in a given dataset, not all cancer cases and drugs
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have been screened against each other. If a DRP model exhibits high

generalization, it can be deployed as a virtual screening tool which

helps in identifying highly sensitive cancer-drug pairs and thereby

assisting in the design of experiments or treatments.

7.1.2. Unknown cancers and known drugs
(cancer-blind)

When a dataset is split such that an overlap occurs only on drugs

but not on cancer cases, it is said that drugs are known but the cancer

cases are unknown with respect to the test set. This splitting strategy

is also sometimes referred to as cancer-disjoint, cancer-blind, unseen-

cancer, and a special case called leave-n-cancers-out where a certain

number of cancers is excluded from the training set. Splitting a drug

response dataset this way requires extra work which is, therefore,

less common than random splitting but still prevalent, especially in

recent years. The performance is usually worse than in the mixed-

set analysis due to increased complexity in generalizing across the

omics feature space of cancers. Alternatively, this type of analysis is

perhaps the most adequate in simulating the utility of DRP models

for the design of personalized cancer treatment. When considering a

potential workflow of utilizing a DRP model for personalized cancer

treatment, the patient tumor data is not expected to be included in the

training set that was used for model development. However, the drug

treatments would be chosen from a collection of known compounds

(approved or investigational) that may have been screened against

other cancer cases, the drug features of which were used to train

the predictionmodel during model development. Models that exhibit

high generalization in this scenario are considered more suitable for

designing personalized cancer treatment.

7.1.3. Known cancers and unknown drugs
(drug-blind)

Analogously to cancer-blind analysis, the drug-blind refers to

data partitioning where an overlap between the training and test

sets may occur on cancers but not on drugs. This data splitting

strategy is also sometimes referred to as drug-disjoint, unseen-

drugs, and a special case called leave-n-drugs-out where a certain

number of drugs is excluded from the training set. Interestingly,

the generalization in drug-blind analysis as evaluated by common

performance metrics is significantly worse than in mixed-set and

cancer-blind analysis and, in some cases, models completely fail to

make effective predictions. The worse performance can be attributed

to the immense chemical space of drug compounds which imposes

a challenge on predictive models of learning generalizable feature

embeddings with just a few hundreds of drugs that were screened

in typical drug screening studies. In addition, it has been shown

empirically that drug diversity contributes to a majority of response

variation (41, 133), which can explain the performance drop in drug-

blind analysis. Models that excel in generalizing for unknown drugs

can be useful for repurposing of non-cancer therapies to cancer

indications and development of novel drugs for cancer treatment.

Existing drugs approved for non-cancer diseases can be repurposed

for cancer treatment, thereby decreasing expenses and speeding up

the time to market. A DRP model, exhibiting high performance in

drug-blind scenario, can be utilized for in silico drug screening across

cancer types and libraries of approved compounds.

7.1.4. Unknown cancers and drugs (disjoint-set)
By extending the drug-blind and cancer-blind analysis to both

dimensions, generalization analysis can be performed where both

drugs and cancers remain disjoint between training and test sets.

This analysis exhibits the worst generalization performance. It is

primarily used to assess the capacity of models to generalize in this

challenging scenario where the application of such model in clinical

or preclinical setting is not essentially obvious. Models exhibiting

significantly better performance as compared to baselines could be

interesting cases for further exploration of the model architecture to

scenarios more relevant in pre-clinical and clinical settings.

7.2. Cross-dataset evaluation

Another validation scheme is to assess generalization across

datasets, where response data for model development and model

testing are derived from different drug screening studies (Figure 7B).

The source dataset (DS), used for model development, and the target

dataset (DT), used for evaluation, can be of the same or different

cancer models. Several selected works have been summarized in

Sharifi-Noghabi et al. (14), showing that cell lines constitute the

primary cancer model for DS while cell lines, PDX, and patient

response data are all common options for DT . Cross-dataset

analysis is less prevalent as compared to single-dataset analysis.

Primary challenges are related to data preparation and arise when

standardizing metadata across datasets, including annotations of

drugs, cancer samples, and omics features, as well as utilizing

consistent data preprocessing steps for feature normalization (e.g.,

addressing batch effect) and computation of response metrics.

Inconsistencies in drug screening data across cell line studies,

partially due to different experimental setups, are an acknowledged

reality which impedes naive integration of data frommultiple sources

into a single dataset (62, 134). A large-scale empirical study focused

on assessing generalization of DL and ML models across five cell

line datasets suggests that generalization may depend on multiple

attributes of DS and DT datasets, including the number of unique

drugs and cell lines in DS and DT , the drug and cell line overlap

between DS and DT , and the sensitivity assays used for measuring

drug response. Although this type of analysis requires adequate

knowledge and substantial effort in data preparation and model

development, demonstrating the ability to make accurate predictions

across datasets or cancer models can be essential for a DRP model to

become a favorable candidate for preclinical and clinical studies.

7.3. Baselines

Proposing novel DRP models could be seen unnecessary unless

it leads to better performance as compared to existing models. In

predictive modeling, baseline models usually refer to models that

serve as a point of reference. Figure 7D shows the number of times

each model was used as a baseline across papers, where ML-based

and DL-based models are color-coded to distinguish between the two

types. The label None refers to cases where this type of baseline (i.e.,

ML or DL) was not used in performance analysis at all (e.g., the blue

bar for None shows that 16 of the papers have not used DL-based

baselines in their analysis).
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The most popular choice for a baseline is to use a simpler

version of a proposed model, where simplicity is defined in the

context of a given model. For example, in the case of MOLI which

advocates for multi-omics late integration with triplet loss function,

simpler versions include combinations of single- instead multi-

omics, early instead of late integration, and binary cross-entropy

loss function instead of triplet loss function (39). Using simpler

versions of a model as baselines can be both straightforward and

insightful. In many cases, modifying a model to construct a baseline

involves minor changes of little complexity where model attributes

are replaced with simpler alternatives followed by ablation analysis

demonstrating the necessity of the proposed attributes. However,

the actual baselines and ablation experiments that are chosen to

benchmark models are a critical aspect that affects credibility. Some

DL models explore alternative data representations, such as images

(76, 77) or graphs (105, 118). In these cases, ablation studies with

common vector-based representations (e.g., FPS, descriptors) should

be considered. Certain models incorporate structural biological

information such as pathways into NN architectures with the goal

to produce interpretable DRP models. With these models, a baseline

may need to incorporate random pathway information to serve as a

reference point to any claimed pathway interpretability, as discussed

in Li et al. (135).

The second most popular baseline model is random forest (RF)

presumably due to its availability, simplicity, and predictive power.

Boosting algorithms such XGBoost and LightGBM are less prevalent

although poses similar characteristics as RF yet faster and often more

predictive. Tree-based models and boosting algorithms have shown

tremendous success in various prediction tasks and data science

competitions. HP tuning is often an essential step to squeeze the

maximum performance from these algorithms. When these models

are used as baselines in DRP papers, very little (if any) HP tuning

is performed. When the focus of proposed models is on prediction

performance, extensive HP tuning should be performed with the

baselines the reported.

Another common approach to demonstrate model performance

is to compare it with other community models. The main problem

with this approach is that many papers extract reported performance

scores from original publications without actually implementing

the models or using the same dataset. Model performance is likely

to depend on feature types and specific samples allocated for

training and testing. Thus, this approach makes sense in cases where

benchmark datasets have been established with clearly designated

training and testing samples. However, this is not yet the case

with DRP tasks. Reproducing results from papers is challenging,

time-consuming, and often contradicts the reported scores (26).

Alternatively, there are papers that diligently reproduce models and

use these as baselines. So long as benchmark datasets have not been

established, reproducing models and benchmarking with consistent

datasets should be considered the standard if one decides to compare

a model with another published community model.

Oftentimes, simple analysis can lead to useful insights. For

example, in the same study that analyzed baselines for interpretable

pathway-based architectures (135), the authors also explored a naïve

baseline which simply reports the average of drug response values

across all samples. While very easy to implement, this baseline

performed surprisingly well. This simple andmodel-agnostic baseline

can be very informative not only with respect to a specific model,

but more generally for the entire prediction task. Despite the extra

amount of work which may require the design of appropriate

baselines, rigorous and comprehensive benchmark analysis is likely

to establish fidelity and attract the community.

8. Discussion

8.1. Practices

Development of DRP models is a comprehensive task, success

of which depends on multiple factors, such as prepossessing

and representation of data, model training, and performance

evaluation. Good design choices related to each component

of the DRP workflow (Section 2) can positively contribute to

model performance, while bad practices can result in adverse

effects, leading to poor performance. Here, we provide a short

summary of practices that can guide researchers in developing

DRP models.

Feature scaling is a common preprocessing step, usually applied

to both cancer and drug features. However, when the dataset contains

omics data from multiple sources or batches, active measures should

be considered for mitigating systematic differences between the

batches, which otherwise are likely to bias the downstream ML

analysis (51, 136, 137). Possible measures include batch-correction

(51) and architectures that are specifically designed to address

discrepancies in the input feature space (50, 52). Notice that models

can also benefit from standardizing data in the output space.

For example, in order to combine response data from multiple

sources, the drug response AUC values shall be calculated based

on the same dose range (41). Still in the context of in vitro

drug response, there is a consensus that the global measures

of response such AUC and AAC are more robust and produce

more predictive models as compared to models trained with

IC50 (14, 41, 61).

Due to the diversity of NN architectures and learning

schemes (Sections 6.1, 6.2), it is challenging to decipher best

practices for DRP model development. Yet, some consensus

seems to exist regarding several design principles. Late feature

integration exhibits better generalization as compared to early

integration approaches (39, 40, 78). Transfer learning and

domain adaption significantly improve generalization across

datasets and biological cancer models (50, 51). Similar to other

application domains, DL for DRP usually requires extensive

tuning of HPs to boost performance and integration of early

stopping during the training process to avoid model over-fitting.

Further comprehensive and systematic studies are required to

produce unbiased conclusions regarding DL design methodologies

for DRP.

Cross-validation with a DRP model can be performed through

different data partitioning schemes, each simulating a different

application of the model (Section 7). For example, if authors

target the application of precision oncology, then cancer-blind

analysis should be considered for model evaluation (Section 7.1.2).

Alternatively, if mixed-set analysis is used (Section 7.1.1), the model

will produce inflated scores, exhibiting overoptimistic results in

the context of precision oncology. Similarly, drug-blind analysis

should be used with models targeting drug development applications
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which commonly leads to significantly lower performance scores

as compared to mixed-set and cancer-blind analysis (Section 7.1.3).

Whenever possible and regardless of the chosen evaluation scheme,

extensive cross-validation should be performed with multiple data

splits (e.g., k-fold cross-validation repeated several times) that

would generate enough data points for statistical significance

analysis and comparison with baseline models (i.e., mean and

standard deviation).

The choice of adequate baseline models is critical for objectively

assessing the true capabilities of proposed methods, where ablation

analysis plays a central role. Claims made about the predictive

power of promising data representations such as molecular graphs

(Section 5.3) should be benchmarked against common alternatives

such as descriptors and FPs (Section 5.2). Another reasonable

baseline is a model trained on one-hot encoded labels of drugs,

which utilize only drug identities while ignoring the features (133,

138). Similar one-hot encoding strategies can be applied to cancer

features (138) as well as ablation analysis exploring various omics

cancer representations (105). Novel NN modules that aim to better

leverage DRP data should be benchmarked against alternative and

generally less complex modules (e.g., attention modules vs. dense

layer). For models integrating cancer pathway data, randomly

generated pathways can be used to evaluate the gain obtained

by leveraging the pathway information (135). Another baseline is

to take the average of sample response values. While very easy

to implement, this naïve baseline often exhibits surprisingly good

results and can put the model performance into the appropriate

perspective, allowing to control for inflated performance scores

(135).

Finally, there are two more practices that could be highly

beneficial for increasing visibility, but are often neglected. First,

many papers finalize their performance analysis by demonstrating

performance scores using various validation schemes. Instead, it

would be highly beneficial to discuss how the proposed DRP

model could be integrated in a larger patient care or drug

development workflow and what are the primary challenges

preventing these type of models from being deployed in real-world

applications. Use case scenario could be highly relevant in this

context. The second practice relates to software implementation.

Many papers are accompanied by software and data that were

used to build their models. However, the code repositories often

miss certain pieces of information required to reproduce the

paper results. Instead, it is recommended for papers to publish

well-documented repositories with reproduce code, including

data preprocessing scripts and installation instructions of the

computational environment. This practice will improve the usability

of models, their adoption as baselines, and visibility within

the community.

8.2. Challenges

In recent years, AI approaches have taken a notable place

in health care (139). Their promise of utilizing large data arrays

to improve treatment protocols, aid drug development efforts,

and increase diagnostic precision is attractive to the clinical

research community. However, navigating a complex landscape

of factors affecting clinical outcomes is a challenging task. We

can see it in the number of emerging papers on the DRP

problem (140). The research community put in monumental

efforts to develop methods that leverage multiomics and drug

data, explore the applicability of the existing methods, and bridge

the gap between results on ubiquitously used cell lines and

patient-derived models. However, this area is facing multiple

challenges related to the lack of unified evaluation framework,

generalizability, interpretability as well as challenges relating to

computational representations of omic data, biological response, and

drug representations.

8.2.1. Unified framework for model evaluation and
comparison

Currently, there is no standard or accepted framework for

evaluation or comparison of cancer drug response models. Model

development and performance comparison against baselines is

frequently accomplished with different compositions of datasets,

inconsistent training and testing splits, and diverse scoring metrics,

using varying protocols for hyperparameter optimization or none

at all. Yet, the majority of papers report to outperform current

state-of-the-art (SOTA) in the task of drug response prediction.

In ML, SOTA refers to the best model for a specific task as

evaluated by concrete performance criteria on a benchmark dataset

of predetermined test set samples. Thousands of benchmark datasets

and prediction tasks are publicly available for different applications

ranging from vision and language to drug discovery and tumor

segmentation. Whereas, most papers follow the same general model

development workflow (Figure 2), benchmark datasets and agreed-

upon evaluation criteria have yet been established and adopted in

the community. It makes identifying the most promising research

areas challenging and impedes the research community from

making directed efforts to breach them. Creating an ImageNet

moment for DRP via established benchmark datasets, consistent

test sets, robust evaluation criteria, and a platform for publishing

and monitoring SOTA models should be on the critical path for

our community.

8.2.2. Generalizability
Despite the breadth of methods, the majority of papers have

focused on improving predictions in cell lines, often demonstrating

only a marginal improvement in prediction generalization. While

cell lines remain a primary biological media to study cancer and

conduct drug screenings, the potential utility of prediction models

for improving patient care is not immediately evident, and several

questions naturally arise. How well models trained with cell lines

would generalize to xenografts or patients? Howmuch one could rely

on any given model prediction in a decision-making process? What

are the potential clinical application for these models? Addressing

questions important from the user perspective and suggesting use

case scenarios have not been the driving mechanism behind the

majority of published models. Yet, certain trends aiming to respond

to these challenges emerge: transfer learning that utilize abundant

cell line datasets to improve predictions in PDX and patients,

uncertainty quantification allowing to estimate the confidence

for each model prediction (51), and ranking learning models

principally suitable for personalized treatment recommendation (72,

74, 141). Demonstrating the utility of DRP models, integrated
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in a larger patient care workflow, could provide the needed

user-centric view and navigate the community toward developing

application-aware models.

8.2.3. Interpretability
Despite the demonstrated success of the DL on expansive

datasets, delegating the decision-making process on patient well-

being to the black box is widely contested (142). Thus, providing not

only precise but also salient results is a task of paramount importance

for the clinical community. To address this challenge, model-

agnostic methods such as Integrated Gradients (143) and SHAP

(144), designed to explain model predictions, have been applied

post-training to DRP models (42, 45, 145), where the explanation

is provided in the form of most important features attributing

to model predictions. However, it has been shown that these

methods can lead to highly misleading information in applications

more comprehensible to humans such as image classification, and

therefore, attempting to explain black boxes with post-hoc methods

is perceived as dangerous in high-stakes decision-making domains

(146). Instead of explaining predictions, the alternative is to design

interpretable models that are understandable by domain experts

or provide insights into the decision-making process (147, 148).

Unfortunately, no single definition exists, and identifying a model as

interpretable is considered domain-specific (146, 147). Several papers

referring to their DRP models as interpretable integrate domain

structural knowledge into the model form (145, 149–151). Currently,

no clear definition of an interpretable DRP model yet exists, nor

the extent to which it might improve cancer treatment is known.

Therefore, it is challenging to evaluate whether existing efforts in

this direction are in line with the views of the clinical community

at large on this important matter. Addressing the interpretability

issue will perhaps require better framing of what interpretable DRP

models are and how much performance drop could be tolerated,

if any, for improved interpretability. As discussed in Section 7.3,

baseline models that can assess the quality and robustness of model

interpretability can serve to bolster the claim regarding the benefits

and usability of interpretablemodels (135). Collaboration with cancer

biologists and clinical oncologists would be essential to advance

this direction. And, as discussed in Section 7.3, baseline models

which compare the quality and robustness of interpretability can

serve to bolster claims regarding the improvement or introduction

of model interpretability.

8.2.4. Variability and high dimensionality associated
with omics data

Omics values differ substantially depending on the underlying

biological model (e.g., cell line, organoid, xenograft), experimental

protocols and selected platforms (e.g., Illumina, Nanopore), technical

variations (batch effect), and computational pipeline for processing

raw data. Identifying the potential sources of variation and taking

directed measures to mitigate the undesired differences is critical,

especially in cross-domain generalization scenarios where the

similarity between the source and target domains is a fundamental

assumption (50–52, 67). A major conclusion of the NCI-DREAM

challenge was that gene expression modality provides most of

the predictive power for cell line drug sensitivity prediction with

additional improvement when combined with other omics types

(27). This collaborative effort contributed to the adoption of gene

expression (GE; e.g., microarrays or RNA-Seq) or combining them

with other omics in DRP models. Integrating multiomics into

the learning process further exacerbates the already problematic

feature size of single omics data. A few papers indeed demonstrate

significant performance boost with multiomics (45, 49, 108) but

the majority report only marginal improvement (104, 108, 118,

126, 141, 152). As opposed to DREAM participators which utilized

agreed-upon datasets and scoring metrics, the DRP models in

Supplementary Table 1 substantially differ among them as discussed

earlier, largely contributing to discrepancies and mixed conclusions.

Analysis across multiple models and omics types is required

to evaluate the predictive capabilities of individual data types

and their subsets and make unbiased and coherent conclusions.

Such analysis should incorporate recent trends which encode

biological information such as protein-protein interactions (PPI),

gene correlations, and pathway information (45, 49, 109, 111).

8.2.5. Representation of biological treatment
response

In vitro response data (e.g., cell line and organoid) is usually

derived from a series of inherently noisy cell viability experiments

and subsequent curve fitting. However, these curves do not always

have a good fit, and usage of a single point on the fitted curve may

result in a substantial information loss. While the use of IC50 as a

prediction variable has been the most prevalent in regression models

(Figure 4), recent assessment studies could shift this trend toward the

use of global and generally more robust measures such as AUC and

AAC (14, 41). With the objective of utilizing prediction models in

decision-making situations, another option is converting continuous

into discrete values. This is particularly common in cross-domain

generalization from in vitro to in vivo, where in vivo response is

generally encoded as discrete values. The third option is generating

a rank list of items. This has been applied to a personalized treatment

recommendation given cancer information. Surprisingly, despite the

success of recommendation algorithms and the direct relevance to

precision oncology, only few methods have been explored (72, 74,

141).

8.2.6. Vastness of chemical space and its
representations

Reviewed papers consistently report the response prediction

accuracy drop for compounds, previously unseen by the model.

Inability to reliably overcome this limitation severely limits the

practical value of DRP models to virtual drug screening or drug

design applications. Representing drug molecules with graphs and

using GNN for learning response prediction has recently inspired

many DRP architectures. The use of graph structures is motivated

by the proposition that molecular graphs better capture intrinsic

chemical properties of molecules (49, 108, 153). Whereas, this

is presumably expected to produce a better prediction of drug

response, we have not found a comprehensive study that could assert

this hypothesis. In fact, in a related field of molecular property

prediction, a comparison with multiple datasets and prediction

tasks suggests that on average models that use FPs or descriptors

outperform graph-based models (154). We have found only one

study comparing side-by-side the added value of molecular graphs
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against SMILES, reporting <0.5% improvement as evaluated by

Pearson correlation coefficient (155). As in the case of cancer

representation, further studies are required across various models

and datasets to assess the predictive capabilities of molecular graphs

and other drug representations to DRP. Several underexplored but

interesting directions include SMILES combined with transformer-

based models, kinase inhibition profiles representing kinase inhibitor

therapies (44), and 2D-CNNs that learn from FPs or descriptors

transformed into images (77).

This list of challenges is in no way conclusive, as we refrained

from studying even more complicated scenarios emerging in

polypharmacy, even though the treatment of patients in the

clinic often involves combination therapy. Meanwhile, most of

the prediction models to date focus on single-drug treatments.

This highlights a significant disconnect between the modeling

community and the current patient standard of care. However,

even this simplified problem raises many obstacles, and making

progress in overcoming themwould significantly benefit the scientific

community because they are relevant to a much wider domain of

AI-driven biological research. Each of the highlighted problems has

multiple potential solutions, and we hope to see subsequent progress

in the near future, allowing AI to deliver on its grand promise.
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