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Background: The supraspinatus muscle fatty infiltration (SMFI) is a crucial MRI 
shoulder finding to determine the patient’s prognosis. Clinicians have used the 
Goutallier classification to diagnose it. Deep learning algorithms have been 
demonstrated to have higher accuracy than traditional methods.

Aim: To train convolutional neural network models to categorize the SMFI as a 
binary diagnosis based on Goutallier’s classification using shoulder MRIs.

Methods: A retrospective study was performed. MRI and medical records from 
patients with SMFI diagnosis from January 1st, 2019, to September 20th, 2020, 
were selected. 900 T2-weighted, Y-view shoulder MRIs were evaluated. The 
supraspinatus fossa was automatically cropped using segmentation masks. A 
balancing technique was implemented. Five binary classification classes were 
developed into two as follows, A: 0, 1 v/s 3, 4; B: 0, 1 v/s 2, 3, 4; C: 0, 1 v/s 2; D: 0, 
1, 2, v/s 3, 4; E: 2 v/s 3, 4. The VGG-19, ResNet-50, and Inception-v3 architectures 
were trained as backbone classifiers. An average of three 10-fold cross-validation 
processes were developed to evaluate model performance. AU-ROC, sensitivity, 
and specificity with 95% confidence intervals were used.

Results: Overall, 606 shoulders MRIs were analyzed. The Goutallier distribution 
was presented as follows: 0 = 403; 1 = 114; 2 = 51; 3 = 24; 4 = 14. Case A, VGG-19 model 
demonstrated an AU-ROC of 0.991 ± 0.003 (accuracy, 0.973 ± 0.006; sensitivity, 
0.947 ± 0.039; specificity, 0.975 ± 0.006). B, VGG-19, 0.961 ± 0.013 (0.925 ± 0.010; 
0.847 ± 0.041; 0.939 ± 0.011). C, VGG-19, 0.935 ± 0.022 (0.900 ± 0.015; 0.750 ± 0.078; 
0.914 ± 0.014). D, VGG-19, 0.977 ± 0.007 (0.942 ± 0.012; 0.925 ± 0.056; 0.942 ± 0.013). 
E, VGG-19, 0.861 ± 0.050 (0.779 ± 0.054; 0.706 ± 0.088; 0.831 ± 0.061).

Conclusion: Convolutional neural network models demonstrated high accuracy 
in MRIs SMFI diagnosis.
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Introduction

Rotator cuff tears (RCTs) are among the most critical 
musculoskeletal conditions of the shoulder (1). This prevalence affects 
worldwide (2), resulting in direct and indirect economic burdens for 
patients and healthcare systems (3). Furthermore, this progressive 
degenerative condition (4) affects both sexes, and its incidence in the 
general population increases with age (5).

Image medical analysis plays a significant role in diagnosis and the 
optimal detection of the tear magnitude, allowing therapeutic 
planning resolutions, including physical therapy and surgical repair 
(6). Many imaging techniques have been developed for the detection 
of RCTs. Magnetic resonance imaging (MRI) presents the highest 
diagnostic value (sensitivity and specificity) for detecting any lesion 
(7, 8), especially for evaluating the integrity of the rotator cuff in tear 
size. Another essential radiological aspect of assessing the MRI 
shoulder is atrophy and fatty infiltration. Patients with a low stage of 
fatty infiltration have significantly better outcomes than those with a 
severe condition, since patients who present a re-tear are the most 
affected (9, 10).

For this reason, to determine the magnitude the SMFI, Goutallier 
et al. proposed a classification with five stages ranging from 0 to 4 (11). 
However, the original proposal has been adapted with MRI by Fuchs 
et al. (12) using three stages, combining stages zero and one as normal, 
two as moderate, and three with four as severe fatty infiltration. In the 
MRI adaptation of the classification, there has been controversy 
regarding the ideal technique for grading (13).

One of the most significant challenges in image diagnosis is 
reducing the variability between observers in assessing rotator cuff 
muscle quality on MRI (14). Recent studies have implemented the use 
of Artificial Intelligence (AI), Machine Learning (ML), and 
particularly Deep Learning (DL) techniques to improve the accuracy 
of diagnosis, helping radiologists with the interpretation of imaging 
data (15). This process has been facilitated by developing AI and ML 
tools and incorporating these into the diagnostic support of medical 
images (16). Also, as it is common to have small datasets in medical 
imaging, transfer learning using well-trained non-medical ImageNet 
datasets has shown promising results for medical image analysis in 
recent years. Some of the most used DL architectures in medical 
imaging analysis (17) include Inception-v3 (18), ResNet-50 (19), and 
VGG-19 (20).

Random forest (RF) and DL techniques, such as convolutional 
neural network (CNN), have been used to identify the segmentation 
of rotator cuff muscles on MRI (21). Also, automatic algorithms have 
been implemented to detect supraspinatus muscle atrophy (22), and 
detection of supraspinatus tears on MRI (23). However, such 
algorithms have not yet been implemented to detect this structure’s 
fatty infiltration level. Incorporating these artificial intelligence tools 
would improve diagnostic precision and patient prognosis. Kim (22) 
demonstrated CNNs’ ability to segment the supraspinatus muscle and 
supraspinatus fossa to calculate their ratio in an MRI dataset. Similarly, 
Ro and collaborators (24) developed a model that analyzes the muscle 
proportion in the supraspinatus fossa and quantifies fatty infiltration 
in MRI through Otsu thresholding (25). The Otsu thresholding is used 
to create pixel clusters from grayscale images and optimizes the pixel 
intensity value to establish foreground and background. In this case, 
the foreground would be fat, and the background would be muscle. 
This method is highly influenced by the difference in pixel intensity 

due to fatty infiltration level. This was addressed by computing a 
standard deviation for every Goutallier level. Using this method, Otsu 
thresholding showed 0.06; 4.68; 20.10; 42.86; and 55.76 for grades 0, 
1, 2, 3, and 4, respectively. Finally, in the context of RCT and fatty 
infiltration imaging analysis, Taghizadeh (26) developed a 
convolutional neural network model to automatically quantify and 
characterize the degeneration of rotator cuff muscles from CT images. 
The backbone of this model is the U-Net architecture, which can 
segment muscle fossa into a pre-morbid state. Most convolutional 
neural network models have been used to segment regions of interest, 
including supraspinatus, infraspinatus, and subscapular muscles. 
Since Goutallier’s grade scale is a qualitative method and diagnoses 
are highly influenced by clinicians’ and experts’ intuitive judgment, 
literature has claimed that classification of Goutallier’s grade via DL 
methods is not an easy task (24).

To assess this hypothesis, this study aims to build a DL architecture 
to classify patients as “risky” or “not risky” based on the Goutallier’s 
supraspinatus fatty infiltration classification from shoulder MRI to 
help clinicians and medical staff in decision-making. Results 
demonstrate that DL models provide high accuracy and classification 
accuracy (discriminatory capacity) for Goutallier’s supraspinatus fatty 
infiltration levels.

Materials and methods

Study design

This study was designed as a retrospective and one site study. It 
was written following the Strengthening the Reporting of Observation 
studies in Epidemiology (STROBE) guideline. All patients record were 
obtained from a MRI exam at MEDS Clinic in Santiago, Región 
Metropolitana, Chile. This study started on September 25th, 2020.

Datasets characteristics

The dataset used in this work comprises MRI and medical records 
from patients with an SMFI diagnosis who underwent examinations 
from January 1st, 2019, to September 20th, 2020. MRI images were 
saved in DICOM format, a widely used file format in medical imaging 
contexts. This format can save images, patient information, and study 
characteristics in one file. Each MRI image in the data set is obtained 
from a shoulder T2-weighted Y-view. The patient data were 
anonymized before being analyzed descriptively.

The initial dataset contained 900 MRI studies. But 669 images had 
valid annotations. Then, a musculoskeletal radiologist labeled the 
images based on Goutallier’s fatty infiltration level. Two labeled images 
were excluded due to missing label records, and one was excluded 
because it was not conclusive for fatty infiltration analysis. After this 
process, 666 images were selected to perform manual segmentation. 
Sixty images had pixel configuration errors, and thus no segmentation 
could be done. The final dataset consists of 606 images, Figure 1.

To perform the labeling process, we developed a simple Python 
software, Figure  2, that reads a folder with all the images to 
be  annotated and then shows the MRI image one at a time. The 
radiologist selects the diagnosis for that MRI image. The program 
creates a two-field JSON file with the decision made for the 
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professional for each image. One field is the image ID, and the other 
is the label record selected by the radiologist. These labels are our 
study’s ground truth.

Statistical analysis

Dataset was analyzed and statistical tests were computed. For the 
analysis, python (with libraries such scipy) were used. Normality tests 
were performed. Statistical differences between groups were computed 
using the Mann–Whitney U test or t-test. A value of p of 0.05 was used 

to measure statistical significance. Descriptive analysis over the age of 
the patients was also performed and presented as mean and standard 
deviation (m ± sd). Percentages and frequencies are presented as 
statistical description for categorical.

Models’ performances were computed and compared using 
accuracy, sensitivity, specificity, and AU-ROC. A binary classifier 
outputs one of two possible values for a given input, 0 or 1. For every 
input there is an actual expected output, which is also 0 or 1. Table 1, 
also known as confusion matrix, shows the four possible 
outcome situations.

We computed accuracy, sensitivity, specificity as follows:

 • Accuracy: (TN + TP)/(TN + FP + FN + TP)
 • Sensitivity (True positive rate): TP/(TP + FN)
 • Specificity: TN/(TN + FP).

Area under the receiver operator curve or (AU-ROC) is a measure 
of the performance of the classifier regardless the threshold defined to 
translate probability scores to class decision. The horizontal axis 
corresponds to recall, or sensitivity, and the vertical axis corresponds 
to the precision, computed as TP/(TP + FP). As both axes are limited 
to 1, the maximum value of the area under the curve inside the square 
is 1, therefore, the closer to 1 the better the classifier. A random 
classifier will have an AU-ROC equal to 0.5.

In the case of the model performance, 95% confidence interval 
over the mean for the metrics, such as accuracy, sensitivity, specificity, 
and AU-ROC.

Data preparation

The data preparation consisted of two main steps. First, the correct 
labeling of each image and the manual segmentation of the region of 

FIGURE 1

Flowchart for dataset selection.

FIGURE 2

Custom software interface.
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FIGURE 4

Data preparation.

interest (ROI). All data in DICOM file format was processed with the 
MicroDICOM software to export images to PNG format. This allowed 
us to use fewer computational resources, as extracting images on the 
fly was unnecessary. Also, some Python libraries, such as 
PySimpleGUI, used to create the custom labeling software, only accept 
PNG format as input. We set the exported image resolution to the 
same as the original to avoid further mismatches between the image 
and its segmentation mask.

Regarding the segmentation of the ROI, the original DICOM files 
were used to create manual segmentation (identify the ROI in each 
image). The segmented areas were the supraspinatus fossa and the 
supraspinatus muscle. Figure 3 shows a sample segmentation. Panel 
(a) displays the original image, panel (b) the manually created 
segmentation masks, and panel (c) the segmented area masks. Each 

MRI image was segmented using the ITK-Snap software (27). At the 
end of the data preparation process, we obtained the original MRI 
images in PNG format, the segmentation masks, and label 
information for every image. The data preparation workflow is shown 
in Figure 4.

The definition and fatty infiltration criteria

We based our criteria on Goutallier’s fatty infiltration definitions. 
The original paper proposed five levels of fatty infiltration (zero to 
four) about the qualitative presence of fat in the muscle. A level of zero 
means there is no fat in the muscle. As fatty infiltration increases, 
Goutallier’s scale assigns a greater value. A level four means that there 
is more fat than muscle present. Figure 5 shows a representative MRI 
for every Goutallier’s fatty infiltration level.

As shown in Table 2, we studied DL techniques’ discriminatory 
(binary classification) power using five cases. In each case, we defined 
a positive and negative class composed of different Goutallier levels. 
Samples that belonged to the positive class were labeled as 1. Samples 
that belonged to the negative class were labeled as 0. The base case 
(case A) was used to assess the classification accuracy of no or low 

TABLE 1 Confusion matrix.

Classifier
Predicted

0 1

Actual
0 True Negative (TN) False Positive (FP)

1 False Negative (FN) True Positive (TP)

FIGURE 3

Manual segmentation process. Original, manual segmentation from ITK-Snap, and mask result, in figures (A–C), respectively.
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fatty infiltration (Goutallier 0 and 1) against high fatty infiltration 
(Goutallier 3 and 4). Goutallier level 2 is not considered in this case. 
This allowed us to assess whether the DL techniques can differentiate 
between no-fatty and high-fatty infiltration cases. Cases B to E is used 
as a sensitivity analysis of the classification capacity of the 
DL techniques.

Based on the above definition of cases, a sample that belonged to 
class 1 (positive) was considered “risky.” A sample that belonged to 
class 0 (negative) was considered “no risky.” A few random samples 
from class 0 and class 1 are shown in Figure 6 for the case A. This 
classification is used since we aimed to help clinicians make decisions 
about proper treatment for patients based on the quality of the 
supraspinatus muscle. In every case, the positive and negative classes 
were different.

Model development and training

Three models based on well-known architectures were trained: 
VGG-19, Inception-v3, and ResNet-50, and compared their 
performance in terms of classification accuracy. For every model, the 
learning rate and average time were processed. Figure 7 shows the 
general training workflow. In terms of the architecture, the 
convolutional layers for every model remained the same as in the 
original, and only the classifier was modified. We replaced the last 
layer of every model with a 1,000-unit wide and SoftMax activation 
function with a single neuron with a sigmoid activation function 
because our problem was binary classification. In the case of VGG-19, 
we also reduced the size of the most outer fully connected layer from 
4,096 neurons to 2048, which helped to avoid overfitting, Figure 8. 
We used transfer learning from ImageNet weights to train the models. 
The backbone of the original architecture was used as a feature 
extractor, and its layers were frozen. Then, only the fully connected 
layer parameters were optimized. In addition, every model architecture 
was created to admit three-channel images (RGB) as input. 
We simulate an RGB image from a gray-scale MRI by copying the 
same channel two times. Then, the three versions of the same single 
channel were stacked into a three-channel image.

Stratified k-fold cross validation

As we had a small dataset, stratified k-fold cross-validation was 
performed (28, 29). This method allowed us to use most of the data 

FIGURE 5

Representative MRI for each Goutallier’s fatty infiltration scale. Level 0,1, 2, 3, and 4, are shown in sub-image (A–E), respectively.

TABLE 2 Class designation in every case for fatty infiltration levels.

Case

Fatty infiltration levels 
in

Set size

Negative 
class

Positive 
class

Negative 
class

Positive 
class

A 0, 1 3, 4 517 38

B 0, 1 2, 3, 4 517 89

C 0, 1 2 517 51

D 0, 1, 2 3, 4 568 38

E 2 3, 4 51 38
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FIGURE 7

Training workflow.

for training and reduce the impact of the data selection in the 
results as would happen in a 20/80 random split, for example. 
We choose k equals to 10 and thus, 10 subgroups from the original 
data were created. That the cross-validation process is stratified 
means that every subgroup maintains the same class distribution of 
the original dataset. In each of the 10 training runs nine groups 
were used for training and one group for validation. We repeat three 

times the complete process of creating the 10 subgroups and 
running the training process. The performance of the model is 
calculated as the average of 30 training runs, and the confidence 
intervals for each were also found. The training and validation 
process based on stratified k-fold cross-validation follows the 
methodology described in (28, 29) when models are trained using 
small datasets.

FIGURE 6

Random samples from class 0 and class 1 for the case A.
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Random data split

Additional to the assessment of the DL models using stratified 
K-fold cross validation, we evaluate the DL architectures using a new 
data set which has not been used during the training process. To do 
so, we trained the DL architectures using a random train/validation/
test (70%/20%/10%, respectively) split. Downsampling of the majority 
class is performed over the training data only. The learning rate was 
set to 1e-06, 1e-04 and 1e-03 for VGG-19, Resnet50, and Inception 
V3, respectively. We train the model for 30 epochs and compute its 
accuracy, specificity, and sensitivity using the external new test data 
set (10% of the existing data) not used in training.

Augmentation and data balancing 
techniques

The data was highly imbalanced. This could lead the model to 
learn better from the most represented class than the minority class or 
lead to a highly overfitted model. We performed a balancing technique 
on the minority class to avoid or minimize these problems. In every 
10 cross-validation processes, we over-sample the minority class on 
the training set until both classes have approximately the same 
number of samples. The validation set in the K-fold cross validation 
process remains imbalanced to validate the model similar to the real-
world collection of images. Data augmentation was also performed on 
every image from the training set that was fed to the model. 
Augmentation is accomplished by rotating any grade value in ±35° 
and horizontally flipping with a probability of 0.5.

Training and optimization of 
hyper-parameters

All the DL models were trained using the Adam optimizer in 
standard configuration (weight decay = 0.9; beta = 0.999) for 50 

epochs. The training process was stopped if there were no 
improvements in the last 10 epochs, and the best performance was 
saved. We only optimized the learning rate.

Before we fed the DL model with data, the region of interest was 
obtained from the segmentation mask for every image. This process is 
carried out automatically by the algorithm. It took the original image 
and the corresponding mask and cropped the region of interest. Then, 
only the ROI was fed to the DL models. The size of the input image 
was determined by the model’s architecture requirements, which are 
224 [px] squared images for the VGG-19 and the ResNet-50 
architectures, and 299 [px] squared images for the InceptionV3. The 
cropped image was resized to meet those requirements.

Results

Statistical analysis results

A total of 606 patients (55% were males) with 606 MRI with RCTs 
were included in our analysis. The patient’s average age was 
55.1 ± 13.2 years. Data demonstrated the presence of all different 
Goutallier levels in imagological exams. An asymmetrical Goutallier 
distribution was found. More than 82% of the images belong to the 0 
and 1 grades, showing an imbalance toward low fatty infiltration, as 
follows: Goutallier 0 (66.50%); Goutallier 1 (18.81%), Goutallier 2 
(8.42%), Goutallier 3 (3.96%), and Goutallier 4 (2.31%). Also, the 
female group has more samples in higher grades than the male 
without statistical significance. The distribution of patient data is 
shown in Table 3.

Model performance

The learning rate used in every case and model and the average 
processing time were identified in Table 4. The shortest time was 
registered in the E case, using the Inception-v3 model with 

FIGURE 8

Diagram of the VGG/19 architecture.
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TABLE 4 Learning rate and average processing time (C.I. 95%) for every 
case and model.

Case Model
Learning 

rate
Processing 

time
Max. 

epochs

A VGG-19 10−6 3.51 ± 0.20 31.6 ± 3

ResNet-50 10−4 2.35 ± 0.22 20.7 ± 3.3

Inception-v3 10−3 1.55 ± 0.14 11.8 ± 2.5

B VGG-19 10−6 3.83 ± 0.27 33.1 ± 2.5

ResNet-50 10−3 1.12 ± 0.34 6.8 ± 2.2

Inception-v3 10−3 1.40 ± 0.19 9.3 ± 2.3

C VGG-19 10−6 3.87 ± 0.35 33.3 ± 2.9

ResNet-50 10−5 2.91 ± 0.22 26.9 ± 2.8

Inception-v3 10−4 2.98 ± 0.53 22.3 ± 2.9

D VGG-19 10−6 3.20 ± 0.25 27 ± 3.2

ResNet-50 10−5 3.09 ± 0.46 25.9 ± 2.9

Inception-v3 10−3 1.40 ± 0.01 8.8 ± 2.0

E VGG-19 10−3 0.42 ± 0.03 11.6 ± 3.0

ResNet-50 10−4 0.86 ± 0.20 22.5 ± 3.6

Inception-v3 10−4 0.34 ± 0.14 9.4 ± 4.0

0.34 ± 0.14 h. These results depend on the maximum number of 
epochs that the model runs until reaching its best validation loss, and 
thus, the training process is stopped and the training ends. In some 
cases, it is less than 50 epochs. In addition, the smaller the total size of 
the training set, the less time it takes to complete the training process. 
The E case has only 89 samples in total. On the other hand, the longest 
recorded time was registered in the VGG-19 model in the C case with 
3.87 ± 0.35 h.

The DL architectures demonstrated outstanding performance 
using a shoulder MRI dataset. With a 10-fold cross-validation process, 
data was randomly divided into 10 non-overlapping folds. Nine folds 
were used as training sets and one as a validation set. The process was 
repeated three times; thus, three runs were obtained. This led to an 
average of 30 training loops.

Figure 9 shows the validation loss and AU-ROC curves for every 
model at every run. The three architectures show a decreasing 
validation loss at every epoch. At the beginning of the training 
process, the VGG-19 loss validation starts at 0.739 ± 0.006, 
0.632 ± 0.007, and 0.631 ± 0.005 in the first, second, and third runs, 
respectively. Then, in the end, the validation loss was reduced to 

0.225 ± 0.0053. In the case of Inception-v3, there is noticeably different 
behavior in one of the runs. This up-and-down loss value for the 
validation set could probably be explained due to the randomness in 
the process and the fact that the model could find a local minimum 
near the end. In any case, the last epoch showed an improvement in 
the validation loss value, and thus, it was recorded. Table 5 shows the 
starting value for the validation loss for every model. The model was 
run for a maximum of 50 epochs. We track the evolution of the loss 
function value. If the loss function did not decrease during 10 epochs, 
then the training process was terminated, and the results 
were computed.

The results confirm an optimized loss function. The loss function 
converges to zero as the learning progresses in the validation  
processes.

The model returns a value between 0 and 1, corresponding to the 
likelihood that the image belongs to the positive class. The value is 
then converted to binary based on a threshold. As the threshold value 
in our study, we utilized 0.5. The class will be considered positive if the 
model outputs a value greater than that. In contrast, if the model 
outputs a value lower than that threshold, the decision will 
be categorized as negative. One can compute the false positive and 
true positive rates under thresholds. The ROC curves in Figure 9 
demonstrate the high performance of the models for various threshold 
values. The closer the curve is to (0.0, 1.0), the better the performance. 
To quantify curves, the area under the ROC curve was used. For our 
case A, VGG-19, ResNet-50, and Inception-v3 achieved 0.991 ± 0.003, 
0.992 ± 0.003, and 0.991 ± 0.004, respectively for the area under the 
ROC curve (AU-ROC). Also, as shown in Figure 10, VGG-19 and 
ResNet-50 models showed the better performance when comparing 
precision-recall curves. When analyzing the per class prediction, the 
three models showed better performance in the negative class than in 
the positive class, which has fewer samples. Table  6 shows the 
confusion matrix for each model.

Subgroup analysis

A subgroup analysis was developed to determine the best 
combination of binary classes for Goutallier fatty infiltration level 
detection. Accuracy, sensitivity, specificity, AU-ROC, and loss 
performance for every single convolutional neural network model 
after three runs of 10 training cycles each are shown in Table 7. 
The reported metrics values shown are based on the results 
obtained from the repeated cross validation process. The process 
allowed us to have several validation groups and hence estimate 

TABLE 3 Quantity and proportions of sex by Goutallier’s level.

Goutallier Level N (%)

Female Male Value of p

N (%)
Age mean 

(SD)
N (%)

Age mean 
(SD)

N Age

0 403 (66.50) 140 (35) 53.06 (10.55) 263 (65) 49.24 (13.13) 0.477 ***

1 114 (18.81) 74 (65) 61.50 (10.37) 40 (35) 63.58 (8.17) 0.465 0.371

2 51 (8.42) 31 (61) 66.65 (9.53) 20 (39) 66.40 (10.13) 0.447 0.992

3 24 (3.96) 16 (67) 68.88 (7.74) 8 (33) 64.25 (7.59) 0.424 0.230

4 14 (2.31) 13 (93) 67.31 (7.33) 1 (7) N.A. 0.354 0.8

Total 606 (100) 274 (45) 58.47 (11.67) 332 (55) 52.42 (13.81) 0.483

Mann–Whitney or t-test were used to compute the significance (alpha 0.05). ***, statistically significant
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the mean and the confidence level of each model in every 
experiment. Since DL models tend to learn the training data well, 
we do not report the training accuracy. Instead, we provide the 
evolution of the Loss Function, which depicts how the training 
error (learning process of the model) evolves. We also clarify this 
in the revised manuscript.

Excellent performance for the three architectures in every case 
was demonstrated. In three out of four cases, all model configurations 
had AU-ROC values higher than 0.91 on average and thus performed 

well when classifying fatty infiltration levels. In the base case, the 
models got an AU-ROC mean value of over 0.99, the highest among 
the cases. Here, models had to separate lower to no fatty infiltration 
images from high to extreme fatty infiltration levels, which were very 
dissimilar. In addition, sensitivity and specificity for this case are more 
homogeneous among models. This means that the models perform 
well when classifying negative and positive samples as the false 
positive rate and true positive rate are over 0.92, except for 
Inception-v3, which has a lower value for sensitivity. On the other 
hand, the same architecture showed a higher specificity, with a mean 
value of 0.981.

Random split performance

We also trained the model using a random train/validation/test 
split (training size: 413, validation size: 104, testing size: 58). Only the 
training data was down-sampled in order to account for unbalanced 

FIGURE 9

Loss and receiver operator curve plots for VGG-19, ResNet-50, and Inception-v3 models for base case (A). The results for the first, second, and third 
run are in color green, orange and blue, respectively.

TABLE 5 Confidence intervals (95%) for the starting validation loss in 
each run.

Model Run 1 Run 2 Run 3

VGG-19 0.739 ± 0.006 0.632 ± 0.007 0.631 ± 0.005

ResNet-50 0.379 ± 0.024 0.403 ± 0.031 0.400 ± 0.047

Inception-v3 0.239 ± 0.050 0.265 ± 0.037 0.243 ± 0.068
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FIGURE 10

Mean Precision-recall curves for VGG-19, ResNet-50, and 
Inception-V3 models for the base case (A).

labels. As shown in Table 8, all models showed similar performance 
in the final testing data split (10% of the data) as the observed in the 
stratified k-fold cross-validation method, reaching, for instance for the 
VGG-19 model, 0.931, 1.0, and 0.925 for the accuracy, sensitivity, and 
specificity, respectively. This demonstrates the usability of DL 
techniques and that the models are not likely to be  overfitted as 
demonstrated in the stratified k-fold process and in the 10% final 
random data split process. During the process of reviewing this paper, 
we were able to collect 20 more images. We added those images to the 
previous dataset and performed a random split experiment. We 
computed the performance of every model using this new dataset.

Discussion

This research is one of the first to demonstrate the capabilities of 
the DL models to classify SMFI in patients with RC conditions. The 
imagenological analysis considered an extensive novel shoulder 
T2-weighted MRI (30). This retrospective analysis applied various DL 
models, including the VGG-19, ResNet-50, and 
Inception-v3 architectures.

All diagnostics metrics demonstrated excellent results, achieving 
a high binary classification performance in every class of the Goutallier 
level. Distinctly high accuracy, sensitivity, and specificity among 
different architectures belonging to neural networks were found, 
specifically when the diagnosis was based on case A, that is, the 
negative class (Goutallier 0 or 1) and the positive class (Goutallier 
3 or 4).

Traditionally, the scapular Y-view of the MRI, particularly the 
lateral-most T1 sagittal, is the most reliable indicator of the 
supraspinatus muscle status and is used for identifying FI (31). 
However, current standard shoulder protocols include sagittal oblique 
T2-weighted sequences to evaluate these findings (32). Despite that, 
recent data support ML methods’ crucial function in identifying 
various structures in medical images (33). For this reason, 
we  proposed evaluating the most extensive collections of T2 
MRI sequences.

The approach we described allows a practical solution when the 
grading system of FI is presented, reducing diagnostic uncertainty. 
Other experiences using artificial intelligence have been published. 
We  highlight the exciting work Ro et  al. (24) carried out. They 
implemented a novel model using only 250 patients (all of whom were 
diagnosed with atrophy and fatty infiltration of the supraspinatus 
muscle) to analyze the occupation ratio using a DL framework. They 
calculated the amount of FI in the supraspinatus muscle using an 
automated region-based Otsu thresholding technique. Their method 
allows segmenting the supraspinatus muscle and fossa, which lets 
them figure out the occupation ratio without automatically classifying 
the Goutallier level.

In our case, results demonstrated that artificial intelligence tools, 
particularly the VGG-19 architecture, can be used to support shoulder 
MRI diagnosis. Few studies in the musculoskeletal radiology literature 
have addressed the evaluation of RC muscles using these methods 
(34). Even though supervised deep learning with CNNs has been 
highly successful in medical imaging, particularly in MRI (35). 
However, based on the CNN tool, different studies have determined 
the need to count with more analysis to detect the supraspinatus 
muscle’s fatty infiltration (22).

TABLE 6 Confusion matrix of VGG-19, Resnet-50, and Inception-V3 
models for the case A validation set.

VGG-19 Predicted

0 1

Actual 0 1,512 39

1 6 108

Resnet-50 Predicted

0 1

Actual 0 1,520 31

1 9 105

Inception-V3 Predicted

0 1

Actual 0 1,522 29

1 15 99
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Also, we identified some limitations. Firstly, our results used a 
binary classification method, even though the classification 
proposed by Goutallier presents five types of fatty infiltration. 
However, the binary performance showed great classification 
results, with an AUC of 0.991 [95% CI, ± 0.003] for the low to 
nonfatty infiltration against severe to extreme fatty infiltration 
(VGG-19 model). Therefore, a Fuch-type classification (12) could 
be more accessible to learn than a Goutallier-type classification. 
For this reason, it is necessary to have future studies that use 
multilabel classification methods. In addition, since the number of 
samples (images) in the data set was small, a training and validation 
set were created for the cross-validation process, however. The 
training and validation process used in this study follows related 
papers which faced similar data limitations (22, 24). To further 
assess the model performance, we used a training/validation/test 
random data split using 70%/20%/10% (train size: 413 validation 
size: 104, testing size: 58) for training, testing and validation, 
respectively. This allowed us to further confirm the good model 
performance in predicting class 0 and 1. In the future, more data is 
needed to further test the proposed models.

On the other hand, when we included category two (Goutallier 
type 2), the analysis reduced the capability to classify correctly. 
However, better performance was achieved when the type two class 
was added to the negative class. As in other publications, the present 
study was an image analysis; clinical factors and the patient’s history 

were not considered (24). Another essential point is that using these 
AI tools requires teamwork between clinical practitioners and 
engineering. Interdisciplinary work is necessary to improve 
people’s health.

In conclusion, CNN models, particularly VGG-19, showed 
outstanding performance in classifying SMFI using shoulder 
T2-weighted MRI in patients with RC conditions. AI models could 
be used to support the radiological diagnosis.
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TABLE 7 Mean train loss, validation loss, accuracy, sensitivity, specificity, and AU-ROC for every case and model (C.I. 95%).

Case Model Train loss
Validation 

loss
Accuracy Sensitivity Specificity AU-ROC

A VGG-19 0.225 ± 0.053 0.096 ± 0.010 0.973 ± 0.006 0.947 ± 0.039 0.975 ± 0.006 0.991 ± 0.003

ResNet-50 0.394 ± 0.099 0.123 ± 0.011 0.976 ± 0.006 0.925 ± 0.053 0.980 ± 0.006 0.992 ± 0.003

Inception-v3 0.474 ± 0.154 0.102 ± 0.009 0.974 ± 0.007 0.869 ± 0.085 0.981 ± 0.006 0.991 ± 0.004
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ResNet-50 0.563 ± 0.184 0.187 ± 0.022 0.936 ± 0.012 0.779 ± 0.057 0.963 ± 0.009 0.948 ± 0.017

Inception-v3 0.332 ± 0.094 0.214 ± 0.012 0.933 ± 0.010 0.802 ± 0.039 0.956 ± 0.008 0.951 ± 0.013

C VGG-19 0.453 ± 0.057 0.310 ± 0.016 0.900 ± 0.015 0.750 ± 0.078 0.914 ± 0.014 0.935 ± 0.022

ResNet-50 0.605 ± 0.037 0.507 ± 0.008 0.896 ± 0.015 0.756 ± 0.079 0.909 ± 0.015 0.913 ± 0.025

Inception-v3 0.587 ± 0.048 0.372 ± 0.013 0.914 ± 0.011 0.659 ± 0.056 0.939 ± 0.012 0.912 ± 0.019

D VGG-19 0.299 ± 0.056 0.153 ± 0.018 0.942 ± 0.012 0.925 ± 0.056 0.942 ± 0.013 0.977 ± 0.007

ResNet-50 0.631 ± 0.040 0.405 ± 0.010 0.928 ± 0.013 0.872 ± 0.066 0.932 ± 0.012 0.964 ± 0.012

Inception-v3 0.494 ± 0.168 0.150 ± 0.011 0.941 ± 0.011 0.808 ± 0.078 0.950 ± 0.010 0.975 ± 0.007
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Inception-v3 0.696 ± 0.028 0.665 ± 0.008 0.678 ± 0.057 0.550 ± 0.103 0.766 ± 0.088 0.722 ± 0.072

TABLE 8 Accuracy, sensitivity, and specificity for case A and all DL models 
using a random training/validation/test data split.

Accuracy Sensitivity Specificity

VGG-19 (Case A) 0.931 1.0 0.925

ResNET50 (Case A) 0.948 0.8 0.962

Inception V3 (Case A) 0.965 0.8 0.981
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