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The sirtuins are a family of seven proteins that perform a variety of dermatological 
functions and help maintain both the structure and function of the skin. More 
specifically, the sirtuins have been shown to be altered in multiple dermal cell 
types including dermal fibroblasts. The functions of dermal fibroblasts are 
extensive, and include playing a significant role in wound healing as well as 
helping to maintain the integrity of the skin. As dermal fibroblasts age, they can 
undergo a state of permanent cell cycle arrest, known as cellular senescence. This 
senescent process can occur as a result of various stressors, including oxidative 
stress, ultraviolet radiation -induced stress, and replicative stress. In recent years, 
there has been a growing interest in both enhancing the cutaneous fibroblast’s 
ability to facilitate wound healing and altering fibroblast cellular senescence. 
Thus, in this review, we examine the relationship between sirtuin signaling and 
dermal fibroblasts to understand how this family of proteins may modulate skin 
conditions ranging from the wound healing process to photocarcinogenesis 
associated with fibroblast senescence. Additionally, we  offer supporting data 
from experiments examining the relationship between fibroblast senescence 
and sirtuin levels in an oxidative stress model indicating that senescent dermal 
fibroblasts exhibit diminished sirtuin levels. Furthermore, we survey the research 
on the role of sirtuins in specific dermatological disease states that where dermal 
fibroblast function has been implicated. Finally, we  conclude with outlining 
potential clinical applications of sirtuins in dermatology. In sum, we  find that 
the literature on the involvement of sirtuins in dermal fibroblasts is limited, with 
research still in its early stages. Nevertheless, intriguing preliminary findings merit 
additional investigation into the clinical implications of sirtuins in dermatology.
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1. Introduction

Sirtuins are nicotinamide adenine dinucleotide (NAD)+-dependent class III histone 
deacetylases (HDACs) that have been largely conserved throughout the evolutionary process. 
From prokaryotes to eukaryotes, their function has been studied in a variety of living species 
since the first sirtuin, Sir2 (silencing information regulator 2), was discovered in the yeast 
Saccharomyces cerevisiae (1–4). In mammals, seven sirtuins (SIRT1-7) have been discovered, 
each with a conserved catalytic core but different terminal domains (5, 6). Sirtuins are best 
known for their NAD+-dependent HDAC activity and also have a variety of additional functions 
depending in part on their cellular compartment (7). SIRT1 and SIRT6 have been extensively 
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investigated and are primarily present in the nucleus, whereas SIRT2 
can traverse the cytoplasm and enter the nucleus (8–11). The 
mitochondrial sirtuins, SIRT3, SIRT4, and SIRT5, have many roles in 
cellular homeostasis (12–14). Finally, SIRT7 can be  found in the 
nucleolus and is less studied compared to the other sirtuins (11). 
Functionally, the sirtuins play multifaceted roles via epigenetic 
regulation in DNA damage repair, oxidative stress, cell cycle arrest, 
mitochondrial function, and telomere maintenance (14). As a result 
of their various functions, sirtuins are critical players in the 
homeostasis of a variety of organ systems. Thus, defining the role of 
sirtuins in the skin is imperative because of the potential impact it 
could have on dermatological care.

The skin is the largest organ in the body and consists of an outer 
epidermal layer that is separated from the inner dermal layer by the 
basement membrane. Typically, the epidermal layer consists of five 
layers and is constantly renewing itself via proliferating keratinocytes 
from the basal stem cell layer. As keratinocytes detach from the 
basement membrane, they undergo terminal differentiation which 
results in programmed cell death known as cornification (15). Each 
layer of the epidermis represents a distinct phase of this differentiation 
process ultimately leading to keratinocytes losing their nucleus and 
establishing a cytoskeleton barrier. This barrier has a variety of 
functions including protecting against pathogens and preventing 
dehydration (16–20). The inner dermal layer supports the deeper 
layers of the skin and consists of a large amount of extracellular matrix 
(15). Two distinct layers exist in the dermis—the papillary dermis and 
the reticular dermis. These both contain connective tissue, hair 
follicles, blood vessels, and sweat glands (16, 18). The papillary dermis 
makes contact with the basement membrane and is populated by 
densely packed fibroblasts, while the reticular dermis sits above the 
deepest layer of the skin, the hypodermis (15, 16, 18). Compared to 
keratinocyte populations in the epidermis, dermal fibroblasts in the 
dermis are rarely dividing cells that utilize damage repair mechanisms 
to maintain their youth (15). Dermal fibroblasts serve a variety of 
functions including maintaining the dermal integrity and releasing 
various signaling molecules that cross the basement membrane. These 
interact with keratinocytes to maintain skin hemostasis (18, 20, 21). 
Altogether, the complex interactions between the different layers of 
the skin help define the dermal microenvironment.

Since dermal fibroblasts are a long-lived cell type, they are 
vulnerable to an accumulation of damage from both intrinsic and 
extrinsic stressors. One consequence of these stressors is the state of 
cellular senescence, defined as a state of premature cell cycle arrest (15, 
22). As one of the hallmarks of aging, cellular senescence can 
be further divided into two categories—replicative senescence and 
stress-induced premature senescence (SIPS) (23–25). In both cases, 
senescent cells can dysregulate gene expression which can lead to 
metabolic dysfunction and the development of the senescence-
associated secretory phenotype (SASP) (26). Currently, there is not a 
single marker of the senescence phenotype but rather a group of 
characteristics a cell may express. These include a state of cell cycle 
arrest, macromolecular modifications, the secretory phenotype, and 
deregulated metabolism (27). Of interest, there will be disruption of 
proteins such as p16INK4A and two serine/threonine kinases named 
Ataxia-Telangiectasia Mutated (ATM) and RAD3-related Protein 
(ATR), which subsequently activates p53 inhibiting the cell cycle (27). 
There is also a wide variety of triggers that can induce senescence such 
as reactive oxygen species (ROS), telomere shortening, and oncogene 

activation. ROS consist of (H2O2), superoxide ion (O2
•−) and hydroxyl 

radical (•OH), which are by-products of oxidative metabolisms (27). 
Other physiological processes can become impaired as dermal 
fibroblast lose their ability to function properly regardless of whether 
they are in a state of senescence. Specifically, impaired wound healing 
is of concern because dermal fibroblasts are essential throughout this 
complex process (28, 29). Sirtuins appear to be  important in the 
maintenance of cutaneous fibroblast activity. More precisely, it is 
thought that the sirtuins can impede fibroblast senescence as well as 
prevent the dysregulation of wound healing. As a result, the goal of 
this review is to establish a link between sirtuin signaling and dermal 
fibroblast function with a particular focus on how this information 
may translate to dermatologic patient care.

2. Fibroblast senescence

2.1. Background on cellular senescence

As previously stated, cellular senescence is defined as a permanent 
condition of cell cycle arrest and is one of the hallmarks of aging. 
Leonard Hayflick was one of the first to describe this process when 
he observed populations of cells entering a state of growth arrest after 
a certain number of divisions (30). Upon further investigation, a 
number of defining characteristics were discovered, including a 
number of structural changes that cause aberrant protein signaling, 
epigenetic modifications, and resistances to apoptotic signaling (31, 
32). Additionally, biomarkers were identified, including senescence-
associated-β-galactosidase (SA-β-gal), p16INK4A, and p53 (33). 
Moreover, the absence of proliferative markers, such as Ki67, can also 
be  used to identify senescent cells (34). Senescent cells exist in a 
variety of different tissue types including the skin, skeletal muscle, and 
adipose tissue (33, 35, 36). They have also been shown to be associated 
with many different diseases including diabetes, hypertension, and 
atherosclerosis (37–39). Finally, research into this field eventually led 
to defining the SASP, which is a collective term applied to senescent 
cells that secrete excess growth factors (e.g., TGF-β), inflammatory 
cytokines (IL-1, IL-6, and IL-8), and matrix metalloproteinases 
(MMPs) (26, 40). Of interest, senescent dermal fibroblasts generate 
less IGF-1 which has profound effects on how the overlying 
keratinocyte responds to ultraviolet light and has been implicated in 
the increased skin cancer development of geriatric skin (reviewed 
in (41)).

A multitude of intrinsic and extrinsic stressors produce the 
accumulation of senescent cells. Specifically, in vivo models have been 
created to simulate the different stressors found in our intrinsic and 
extrinsic environment, such as replicative senescence and 
SIPS. Replicative exhaustive senescence, originally discovered by 
Hayflick, describes the process of telomeres shortening. Conversely, 
SIPS can be induced by a variety of factors, the most common being 
UV-induced damage and oxidative stress (23, 24, 30). Both of these 
models can cause excess secretion of cytokines and contribute to the 
development of the SASP (26). Interestingly, senescence has 
advantageous effects during early development and can be protective 
against tumor proliferation because it can prevent pre-neoplastic cells 
from continuously dividing (42, 43). Further, senescent cells may also 
help to contribute to the initial stages of wound healing by secreting 
platelet-derived growth factors (PDGF) (44). The accumulation of 
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senescent cells appears to cause a shift from beneficial effects toward 
harmful effects. Excess and abnormal signaling leading to a state of 
chronic inflammation can result in tissue damage. More specifically, 
excess dermal fibroblast can accumulate from a variety of skin 
stressors, including UV damage and wound repair, all of which can 
disrupt skin homeostasis and contribute to the aging process (45). As 
senescent cells acquire the SASP, there can be deleterious effects on the 
skin microenvironment resulting in the secretion of proinflammatory 
cytokines and ultimately tumor development (46). Thus, better 
understanding cellular senescence and investigating potential ways to 
alter this response can provide integrative ways to prevent aging and 
other type of metabolic dysfunctions.

2.2. Sirtuins and stress-induced senescence

Ultraviolet (UV) light is functionally linked to skin health. As one 
of the many forms of light emitted from the sun, UV radiation can 
be  further divided by wavelength into UVC (200–280 nm), UVB 
(280–315 nm), and UVA (320–400 nm). Since most UVC radiation is 
blocked by the atmosphere, it is not a concern when considering skin 
aging (47, 48). UVA and UVB, on the other hand, have the ability to 
penetrate the atmosphere and cause damage to the skin. UVA rays are 
absorbed largely by the dermis, where they induce the creation of ROS 
(49). UVB only breaches the epidermis, where it induces DNA damage 
by forming photoproducts such as cyclobutane pyrimidine dimers 
(CPDs) and 6–4 photoproducts (6-4PP) (50). The accumulation of 
damaged cells in the epidermis and dermis by UV light results in the 
upregulation of specific growth factors and cytokines, such as AP-1, 
which promotes the expression of MMPs (48). The accumulation of 
MMPs can degrade the extracellular matrix and promote the spread 
of tumors (48, 50, 51). Finally, ROS can stimulate the expression of 
NF-kB-derived proinflammatory cytokines (TNFα, IL-1, IL-6, and 
IL-8), all of which can magnify the UV radiation response (48). This 
damage can progress to photoaging, or the process of UV damage 
superimposed on intrinsic aging factors (52).

One consequence of photoaging is the continual disruption of 
cellular integrity caused by UV radiation. (53). This can lead to cellular 
senescence. The sirtuins have been shown to play a role in blunting 
this response and helping to restore photoaged skin. In general, the 
sirtuins prevent cellular senescence by engaging in DNA repair, 
preventing telomere attrition, and maintaining genome integrity (54–
57). The exact process by which the sirtuins counteract UV radiation 
is complex and depends on the specific sirtuin family member. 
Moreover, the majority of the literature focuses on SIRT1, though 
other sirtuins have been demonstrated to play a significant role as well.

As previously mentioned, SIRT1 has the most established role in 
counteracting UV radiation in dermal fibroblasts. Three distinct 
mechanisms appear to dictate SIRT1’s ability to attenuate UV 
radiation; the first being through deacetylation activity of FOXO3a 
leading to suppression of oxidative stress (58). The second means is 
due to SIRT1 being found in interact with p53 to suppress 
UVB-induced p53 acetylation (58). Additionally, it is worth noting 
that excessive UV exposure has been demonstrated to lower SIRT1 
levels in dermal fibroblasts, resulting in an increase in acetylated 
proteins. This suggest that SIRT1 activity cannot compensate for the 
continual damage (59). Finally, the third mechanism by which SIRT1 
appears to be able to reduce UV radiation damage to dermal fibroblast 

is by blunting the response of MMPs. Out of the 19 MMPs produced 
in the skin, MMP-1, MMP-3, and MMP-9 are responsible for a 
majority of the UV radiation responses (Figure 1) (60). MMP-1 is a 
collagenase and degrades type I and III collagen. MMP-3 is a part of 
the stromelysins subgroup and degrades type I collagen and activates 
MMP-1, MMP-7, and MMP-9. Lastly, MMP-9 is a member of the 
gelatinases subgroup and degrades type IV collagen (61). Early in vitro 
studies done on SIRT1 by Ohguchi et al. showed that knockdown of 
SIRT1 by siRNA increased the expression of MMP-1 and MMP-3 in 
dermal fibroblast cell cultures (62). To add to this, they also found that 
resveratrol (a proposed SIRT1 agonist) suppressed IL-1β -mediated 
induction of MMP-1 (62). Further support of SIRT1’s influence on 
MMPs came from studies done by Lee et al., which established SIRT1’s 
ability to reduce the transcriptional activity of MMP-9  in dermal 
fibroblasts (51). Moreover, they demonstrated that SIRT1’s action was 
enhanced by resveratrol and metformin, leading to a reduction in the 
enzymatic activity of MMP-9. Interestingly, it has been recently shown 
that resveratrol’s activity in the cell is not through direct activation of 
SIRT1, but rather the drug’s induction of low-level replicative stress 
on cell proliferation that can upregulate SIRT1 (63). In vivo studies 
have also shown SIRT1’s involvement in UV-induced damage. More 
specifically, SIRT1 expression was found to be low in normal skin. 
However, it is significantly increased after both low and high doses of 
UVA radiation, suggesting a protective mechanism in preventing UV 
damage (64). As a result, direct activators of SIRT1, as well as 
innovative ways to alter SIRT1 expression, could be useful in reducing 
UV damage, thereby preventing the accumulation of senescent cells.

Enhancing SIRT1’s ability to augment UV damage represents one 
strategy to prevent cellular senescence and restore fibroblast function. 
Several in vitro SIRT1 activators that work through the methods 
described above have been described (59, 65–71). For example, in 
UVA-induced senescent dermal fibroblasts, pyrroloquinoline quinine 
(PQQ), a redox co-factor isolated from methylotrophic bacteria, 
recovered the protein expression of SIRT1, as well as SIRT6. Further, 
it reduced the activity of MMP1 and MMP3 compared to the 
non-treated control (66). Moreover, Aquatide, a synthetic SIRT1 
activator, was found to accelerate autophagy induction and reduce 
UVB-induced cellular senescence (71). Additionally, shikimic acid has 
also been identified to act indirectly on the SIRT1 pathway and 
prevent UV-induced cellular senescence in dermal fibroblasts (69). 
Red light irradiation has also been demonstrated to restore sirtuin 
function. More specifically, Niu et al. exposed dermal fibroblast to 
UVA and UVA plus red light. Red light irradiation also increased 
SIRT1 expression, and protected dermal fibroblasts from 
UVA-induced senescence (72). Recently, in vivo models were used to 
test the effects of a 50% ethanol extract from Nypa fruticans (NF50E), 
a plant belonging to the family of Aceraceae (67). SIRT1 secretion in 
the dermis was reduced in a UVB-induced animal model, where 
topical administration of NF50E enhanced SIRT1 expression, 
repressed the activation of AP-1 and NF-kB, and constrained collagen 
degradation by MMP-1 (67). Finally, Galangin, a flavonoid found in 
Alpinia Officinarum, has also been found to protect against 
UVB-induced skin photoaging in nude mice via the upregulation of 
SIRT1 and subsequent activation of heme oxygenase-1 (HO-1), an 
antioxidant enzyme (73).

The involvement of the remaining sirtuins in UV protection and 
cellular aging is still being investigated. SIRT3 has been found to 
protect against UV-induced senescence in vitro and in vivo via an 
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A2AR/SIRT3/AMPK-mediated autophagy pathway and through 
enhanced superoxide dismutase 2 (SOD2) activity. All of these can 
lead to enhancements in the ability of mitochondria to diminish 
oxidative stress [66, 67, (74)]. Interestingly, caffeine has direct SIRT3-
activating effects and has been shown to prevent collagen degradation 
in UV-irradiated mouse skin (75). Moreover, the expression of SIRT4 
is increased in dermal fibroblast undergoing UVB-induced senescence 
as well as replicative senescence in vitro (76). Additionally, SIRT4 
appears to be regulated by micoRNA-15b, which can prevent this 
stress-induced increase in SIRT4 expression (76). MicroRNA 
expression has an effect on SIRT6 expression as well. Specifically, 
microRNA-378b is induced in UVB-exposed human dermal 
fibroblasts. This subsequently represses the mRNA expression levels 
of a-1-type 1 collagen (COL1A1) by disrupting SIRT6 activity (77, 78). 
Arctin, a lignin derived from Arctium lappa, downregulates 
microRNA378b, preventing UVB-induced reduction in COL1A1 and 
restoring SIRT6 activity (78). Recently, in vitro studies by Lee et al. 
revealed that UV-irradiated dermal fibroblasts had lowered SIRT2 and 
SIRT3 mRNA and protein levels (79). Surprisingly, there was no 
discernible decrease in the remaining sirtuins. Overexpression of 
HDAC4, a class II histone deacetylase, has also been shown to prevent 
cellular senescence (79). Finally, Lanni et al. discovered that SIRT7 is 
crucial for maintaining the integrity of the tumor suppressor p53 
during UV radiation. More specifically, they demonstrated UV 
irradiation enhances SIRT7 activity through ataxia telangiectasia 
mutated and Rad3 related (ATR)-mediated SIRT7 phosphorylation, 
resulting in deacetylation of nucleophosmin (NPM) which binds 
MDM2, preventing MDM2-mediadted proteasomal degradation of 
p53, causing an enhanced activation of p53. (80). In conclusion, each 
sirtuins role in UV-induced damage is still being established, as are 
the molecular processes that underlie them. However, it is necessary 
to investigate real-world applications with a stronger emphasis on in 
vivo models and therapeutic possibilities in humans.

The literature on sirtuin functions in an oxidative stress model 
and replicative stress model of dermal fibroblast senescence is limited 
but worthy of discussion. The production of oxidative stress is due to 

a delicate balance between ROS and detoxifying strategies. As 
discussed previously, different types of ROS exist including superoxide 
radicals (O2

•−), hydrogen peroxide (H2O2), hydroxyl radicals (•OH), 
and singlet oxygen (1O2). These are all produced as metabolic 
by-products from various sources including mitochondrial electron 
transport chain, the peroxisome, and UV-mediated accumulation (81, 
82). Defense mechanisms, including superoxide dismutase and 
catalases, are in place. However, when the defensive capacity of these 
mechanisms is exceeded, alteration occur including mitochondrial 
phospholipid peroxidation, cellular signaling dysregulation, protein 
transport malfunction, and peroxisomal dysfunction. Cellular 
senescence may then be initiated in order to prevent the proliferation 
of abnormal cells (81, 83, 84). To further elaborate on how oxidative 
stress specifically causes senescence, Zhu et al. have summarized four 
molecular pathways that are contributing the dysfunction discussed 
above. The first being oxidative stress causes DNA damage activating 
the DNA damage response pathway through activating of p53 and 
upregulating p21. The second being due to oxidative stress 
phosphorylating IκB causing activation NF-κB and stimulation of 
IL-8. The third due to p38 MAPKs pathway in which activated ROS 
upregulate p19 protein expression and the fourth the influence of 
oxidative stress on microRNA function and the promotion of cellular 
senescence (84).

Early in vitro studies on oxidative stress and SIRT1 demonstrated 
that expression of SIRT1 is diminished when dermal fibroblasts are 
treated with H2O2 (85, 86). To add to the limited literature on H2O2-
induced fibroblast senescence, our group treated senescent fibroblasts 
with 600 μM H2O2 and measured the mRNA expression of all seven 
sirtuins (Figure  2). Our previously published study describes the 
process of oxidant induced cell senescence in detail including the dose 
response curve for H2O2 and the method by which the mRNA was 
isolated, as well as the finding that the oxidant-treated fibroblasts have 
increased levels of p21, and SASP-associated cytokines IL-6, IL-8, and 
TNFα (87). Our findings reveal that the expression of all seven sirtuins 
were significantly reduced following treatment with H2O2 (Figure 2). 
Thus, the low levels of sirtuins may not be able to mitigate the potential 

FIGURE 1

A visual representation of sirtuins localization in the cell and effects when dermal fibroblast undergoes UV-mediated damage. SIRT1 works through 
downregulating MMPs and by deacetylating FOXO3a and p53. SIRT7 activates p53 and the mitochondrial sirtuins (SIRT3, SIRT4, and SIRT5) will activate 
SOD2.
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damage to the senescent cells caused by excess oxidative damage. 
Relevant to the role of potential fibroblast senescence in 
non-melanoma skin cancer, oxidant-treated fibroblasts also had 
diminished levels of insulin-like growth factor 1 (IGF-1) (41, 87). 
More specifically, dermal fibroblast produce IGF-1 that acts in a 
paracrine fashion on IGF-1 receptors (IGF-1R) expressed on 
keratinocytes. This activates a variety of different pathways responsible 
for cell proliferation and apoptosis (88). When fibroblasts undergo 
senescence, IGF-1 secretion is impaired, thereby causing keratinocyte 
dysfunction and increasing the susceptibility of potential for 
non-melanoma carcinogenesis (89). Interestingly, our previously 
published data demonstrated pretreatment with creatine and 
nicotinamide (NAM) protects dermal fibroblasts from H2O2-induced 
cell senescence (87). Moreover, NAM is rapidly converted to NAD+ in 
cells through sirtuin deacetylation activity, suggesting that IGF-1 and 
sirtuin regulation may influence each other through its enzymatic 
reactions including NAM (87, 90, 91). The potential relationship is 
further supported by other literature showing sirtuins can inhibit 
IGF-binding proteins, which can inhibit IGF-1 function (92). 
However, relationship between IGF-1 and the sirtuins remains unclear 
because high NAM levels may actually inhibit SIRT1 through a 
negative feedback mechanism (93).

More recently, a multitude of in vitro studies have focused on 
preventing the downregulation of SIRT1 in H2O2-mediated dermal 
fibroblast cellular senescence, either directly or indirectly through a 
variety of different compounds (73, 94–98). Letsiou et  al. treated 
H2O2-damaged dermal fibroblast with an Aspergillus chevalieri extract 
and found that it was capable of restoring the levels of SIRT1 and 
SIRT2 (98). Another study looked at the effects of pollutant particulate 
matter on dermal fibroblasts, which was found to cause oxidative 
stress, cellular senescence, as well as reduced SIRT1 expression in a 
concentration-dependent manner (99). Moreover, the literature on 
replicative fibroblast senescence is considerably limited, yet there are 

a few intriguing papers out there. Fridman and investigators reported 
that AED peptide triggered the synthesis of both SIRT1 and SIRT6 in 
dermal fibroblast undergoing replicative aging (100). Finally, SIRT4 
mRNA levels were significantly increased during replicative 
senescence in human foreskin fibroblasts (76). Thus, it is unclear what 
the mechanisms is behind increased levels of SIRT4 mRNA levels in 
a replicative stress model when compared with our oxidant-induced 
senescence model. Importantly, our studies demonstrate that the levels 
of sirtuin 1–7 expression were significantly decreased in H2O2- treated 
oxidant-induced senescent dermal human fibroblasts (DHF) 
compared to vehicle control-treated DHF (Figure 2), indicating that 
conditions resulting in oxidative stress can downregulate sirtuins.

3. Wound healing

3.1. Physiological response to dermal injury

Wound healing involves a set of complex interactions between 
different cell types and signaling molecules that ultimately leads to the 
restoration of the skin’s barrier. Typically, wound healing has been 
described in three distinct phases: the inflammatory, proliferation, and 
maturation and remodeling phases (101). The inflammatory phase 
encompasses hemostasis and inflammation, which leads to the 
activation of the coagulation cascade, and migration of neutrophils 
and macrophages (101, 102). The proliferative phase produces the 
formation of granulation tissue, re-epithelization, angiogenesis, and 
the production of collagen to build a new extracellular matrix  
(101–103). Finally, the maturation and remodeling phase strengthens 
the wound with deposition of additional collagen in an organized 
manner (101). Keratinocytes, endothelial cells, immune cells, and 
dermal fibroblast interact with each other through this process via 
various cytokines to enable healing.

Dermal fibroblasts are multifactorial in wound healing because of 
their location within the dermis. Fibroblasts will migrate into the 
wound to form granulation tissue and deposit collagen for the new 
extracellular matrix (103). Some of these fibroblasts will be induced 
by transforming growth factor beta (TGFβ) to become myofibroblasts, 
which will assist in wound contraction (104). The interactions between 
dermal fibroblasts and other cell types in the skin during wound 
healing can be described in two distinct ways. First, dermal fibroblasts 
will interact with immune cells and keratinocytes directly in the 
inflammatory and proliferative phases that mediate cell migration, 
proliferation and adhesion. Second, dermal fibroblasts will undergo 
paracrine interactions between immune cells and keratinocytes 
during the inflammatory and proliferative phase. This will lead to 
inflammatory and anti-inflammatory effects through M1 and M2 
macrophages and enhance the re-epithelization process, MMP-1 
synthesis, and collagen synthesis (102).

Ultimately, there is potential for this process to malfunction, 
leading to two potential outcomes: chronic wound healing and 
excessive scar formation. Fibroblasts can become unresponsive during 
wound healing, leading to an upregulation of growth factors and 
MMPs, as well as a dysregulation of the TGFβ signaling pathway (105, 
106). The second outcome involves excessive formation of scar tissue, 
which can develop into a hypertrophic or keloid scar. The literature on 
the wound healing process is extensive. Nevertheless, it is important to 
continue to investigate this process in order to recognize potential 
targets, enhance acute wound repair, and prevent chronic complications.

FIGURE 2

Effect of Hydrogen Peroxide (H2O2) on the expression of Sirtuins  
(1 to 7), TNFα, IL-8, and IGF-1 in oxidant-induced senescent Dermal 
Human Fibroblasts (DHF). Neonatal-derived HF were treated with 
600 μM of H2O2 for 2 h, for oxidant-induced cell senescence and then 
harvested 72 h later. The data are mean ± SE levels of mRNA from 
different sirtuins (1–7) normalized to 18 s and cytokines relevant to 
fibroblast senescence from 3 to 4 different experiments using 
triplicate samples. The statistical analysis was done using Student t 
test where all values listed are statistically (p < 0.05) different from 
control values set at 1 (see line). Please see reference (87) for further 
details as to the characterization of the DHF treated with vehicle vs. 
pro-oxidative stressor.
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3.2. Sirtuins relationship with wound 
healing

In terms of fibroblast function, sirtuins have been found to play a 
variety of roles in wound healing. As with fibroblast senescence, SIRT1 
has the most established role in wound healing. In particular, Qiang 
et al. showed that fibroblast recruitment and activation is inhibited in 
epidermis-specific deletion of SIRT1 knockout (KO) mice (107). 
Wildtype (WT) mice had greater activity of α-SMA+ cells, a marker of 
activated fibroblast, in granulation tissue compared to the KO mice 
(107). Interestingly, SIRT1 may also play a role in hypertrophic scars. 
In a mouse model of wound healing, Bai et al. observed that SIRT1 
deletion causes more disorder within the skin with denser collagen 
fibers, whereas resveratrol treatment improved these processes (108). 
To support these findings, Bai et al. also discovered that the depletion 
of SIRT1 showed an upregulation of α-SMA+, Col11, and Col3  in 
hypertrophic scar-derived human dermal fibroblasts, suggesting it 
may have a role in maintaining the balance of certain molecules in 
wound repair (108). Furthermore, increased levels of SIRT1 also 
prevented TGFβ-induced activation of normal dermal fibroblasts. 
(108). SIRT1 has also been linked to diabetic wound healing due to its 
ability to inhibit NF-κB-mediated tissue damage (109, 110). More 
specifically, SIRT1 downregulation can contribute to a 
proinflammatory state through an increase in the NF-κB-mediated 
pathway, which upregulates TNFα and IL-6 (Figure 3) (109). Recently, 
however, activators of SIRT1 have been investigated to improve the 
process of wound healing. Berberine, an alkaloid extract from 
philodendron amurense, has been shown in a diabetic rat model to 
work by activating SIRT1 and inhibiting the expression of NF-κB 
mediated, TNFα, and IL-6 (109). NED416 is another SIRT1 activator 
demonstrated to promote SIRT1 activity in dermal fibroblast and 
epidermal keratinocytes, as well as accelerate wound closure and 
collagen formation both in vitro and in vivo (111). Furthermore, it 
appears that NED416 is more potent than resveratrol and enhances 
cell migration via the Rac1/Cdc42 pathway and MAPK signaling 
(111). Finally, utilizing a rat model, a combination of caloric restriction 
and resveratrol have been suggested to increase SIRT1 activation and 

regulate angiogenesis, fibroblast proliferation, and collagen 
production (112).

The remaining literature concerning the role of sirtuins in wound 
healing pertaining to dermal fibroblasts is limited but is worthy of 
discussion. Recent work by Yang et  al. demonstrated that SIRT3 
expression is decreased in the skin of diabetic patients (113). This 
group expanded upon this finding by determining that SIRT3 deficient 
diabetic mice have diminished skin fibroblast migration as well as 
reduced blood supply and delayed healing rates (113). Inasmuch 
SIRT3 is a mitochondrial sirtuin, Yang et al. hypothesized that the 
delay in wound repair caused by SIRT3 loss could be  related to 
mitochondrial malfunction, increased oxidative stress, or amplified 
necroptosis (113). Interestingly, SIRT6 may work in a similar manner 
as SIRT1  in wound repair, but the exact mechanism on dermal 
fibroblasts in wound repair remains unclear. The inhibition of SIRT6 
may promote a proinflammatory response by increasing NF-κB and 
decreasing angiogenesis in diabetic mice. Yet, more research is needed 
to define its role in dermal fibroblasts (114). In recent years, SIRT7 has 
also been identified for its potential role in wound healing (115, 116). 
Noteworthy of discussion, Xia et al. found that exosomal transfer of 
micro-RNA-125b (miR-125b) inhibits SIRT7 in fibroblasts in a wound 
healing mice model, which actually increases myofibroblast 
differentiation in aged fibroblasts (116). They also discovered that, as 
the amount of SIRT7 decreases, the number of α-SMA+ fibroblasts 
increase, thus contributing to the evidence that SIRT7 activation 
inhibits old fibroblasts and prevents fibroblast migration (116). This 
may propagate potential interest in discovering new outlets for 
promoting wound healing. In sum, the literature surrounding sirtuins 
and wound healing suggest they may have a protective role through a 
variety of mechanisms including fibroblast migration, inhibition of 
NF-κB-mediated tissue damage, and regulation of angiogenesis. 
However, a contradiction exists in the literature. As discussed 
previously Demaria and colleagues demonstrated senescent fibroblasts 
arise very early during the healing of wounds and encourage wound 
closure by stimulating myofibroblast differentiation through the 
release of PDGFs (44). This discrepancy may be explained by the 
authors noting that senescent fibroblasts are present only transiently 
during tissue repair (44). Thus, it possible that sirtuins potentially 
protective role is based on timing and cellular dynamics within the 
wound healing process.

3.3. Human disease models and clinical 
applications

The role of fibroblasts and sirtuins in certain diseases and cosmetic 
applications is being currently examined (117–125). Most notably, 
systemic sclerosis (SSc) has been investigated in regards to sirtuin 
activity, which is an immune-mediated rheumatic disease that causes 
fibrosis of the skin and other organs (126). SIRT1 mRNA in SSc is 
diminished in both mouse models and human skin biopsy samples 
(117, 118). However, the exact pathogenesis remains unclear because 
different studies have showed opposite results. Wei et al. showed that 
the pro-fibrotic effect of TGFβ was diminished by activation of SIRT1, 
while Zerr et al. showed downregulate of SIRT1 diminished TGFβ/
Smad signaling (117, 118). More recently, Manetti et al. measured 
circulating SIRT1 and SIRT3 levels in a cohort of SSc patients and 
healthy controls, and found significantly decreased serum levels of 

FIGURE 3

The effects of sirtuins on the dermal wound healing process. SIRT1 
downregulates IL-6 and TNFα as well as activating fibroblast 
migration. SIRT3 and SIRT6 have also been shown to promote 
fibroblast migration. Finally, SIRT7 may inhibit fibroblast migration.
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both SIRT1 and SIRT3, as well as an association with the extent of skin 
involvement (127). Further, Akamata et al. revealed that SIRT3 activity 
was significantly reduced in SSc biopsies and that its activation can 
augment TGFβ signaling and the fibrotic response (123). Another 
disease for which sirtuins have been implicated as a therapeutic target 
is in mitochondrial cytochrome c-oxidase (COX or CcO) deficiency. 
Potthast et al. examined SIRT1, SIRT3, and SIRT4 in human skin 
fibroblasts from COX deficient patients and found significantly 
decreased levels of all three (121). Additionally, they were able to 
modulate sirtuin levels and alter respiratory chain function through 
the sirtuin activator, SRT1720, and paeonol (121). As stated previously, 
the discovery of sirtuins occurred in the Saccharomyces cerevisiae 
yeast, which is the yeast that patients with inflammatory bowel disease 
can make antibodies to called Anti-Saccharomyces cerevisiae 
antibodies (ASCAs). Thus, sirtuins may influence inflammatory bowel 
diseases including Crohn’s disease and Ulcerative Colitis (128, 129). 
There may be a connection between sirtuin dysregulation and extra-
intestinal skin issues including erythema nodosum and pyoderma 
gangrenous, although there is currently no formal research on 
the subject.

Recent studies have provided compelling evidence linking the 
aging of dermal fibroblasts, with corresponding lack of IGF-1, as 
playing an important role in the increased incidence of non-melanoma 
skin cancer (NMSC) in the elderly (41, 89). Our current data 
indicating that the mRNA levels of all seven sirtuins were diminished 
in senescent normal human fibroblast suggest that these bioactive 
agents could be playing a role in the fibroblasts SASP. Uncertainty 
exists within the present literature on the role of sirtuins in NMSC. All 
seven sirtuin mRNA levels were overexpressed in one study involving 
squamous cell cancer cell lines and actinic keratosis (130). Another 
study on squamous cell carcinoma (SCC) found lower levels of 
SIRT2  in tumors and that SIRT2 deletion enhances the risk of 
carcinogenesis (131). Additionally, SIRT6 may play a pro-proliferative 
role in basal cell carcinoma (BCC) and SCC (132). IGF-1 levels are 
lower in SIRT6 KO mice, indicating that SIRT6 may be crucial for 
IGF-1 regulation (133). Future studies should seek to determine 
whether the lack of sirtuins in the dermal NHF are playing a passive 
or active role in age-associated NMSC. There is still more to learn 
about how sirtuins and fibroblast function relate to other kinds of skin 
cancer, like dermatofibrosarcoma protuberans (DFSP). DFSP is a 
cutaneous sarcoma derived from fibroblast and multiple studies have 
linked its function to EZH2-mediated histone methylation, and 
COL1A1-PDGFB translocation (134, 135). As mentioned previously, 
SIRT6 is influenced through mRNA express of COL1A1 activity (77, 
78). There is no formal literature on this subject but SIRT6 may 
be  contributing to the pathogenesis of DFSP through COL1A1 
mediated activity.

The sirtuins make up the histone class III deacetylates. Therefore, 
HDAC inhibitors have the potential to alter the sirtuins activity and 
alleviate different processes in the diseases described above. For 
example, HDAC inhibitors TSA and Divalproex Sodium have both 
been shown to be used to treat systemic sclerosis in mouse models and 
humans (136–139). Additionally, Cutaneous T-cell Lymphomas 
(CTCL) are also treated with HDAC class I and II inhibitors including 
Vorinostat and Romidepsin. This heterogeneous group of diseases 
consist of a monoclonal proliferation of T-lymphocytes and primarily 
involve the skin. They commonly cause fibrosis in the skin through 
and IL-4 and IL-13 interaction with dermal fibroblast (140, 141). 

SIRT1 was found to be overexpressed in cell lines of CTCL (142). 
Tenovin-1, a class III HDAC inhibitor of SIRT1 and SIRT2, reduces 
SIRT enzymatic activity, causing apoptosis (142). Finally, although not 
the focus of this paper, it is worthy of mention that HDAC inhibitors 
are also indicated in treating melanoma in which they can induce 
apoptosis by downregulating sirtuin activity in cancer cells (143–145).

Recently, there have been multiple publications related to other 
skin pathologies in which sirtuin alteration may have clinically 
relevant dermatological applications (146–152). For example, 
resveratrol and its analogs resveratryl triacetate (RTA) and resveratryl 
triglycolate (RTG) have been tested in multiple clinical studies. Studies 
testing 1% resveratrol cream and a combination of different creams of 
RTA and RTG have been tested in which 0.8% RTA showed antiaging 
effects by improving various skin parameters such as skin wrinkles, 
and elasticity (120, 153, 154). Sirtuin activation could be playing a role 
in this process but it is currently unclear as resveratrol can work 
through multiple different mechanisms (120). Rosacea is a chronic 
inflammatory disease that presents with recurrent flushing, erythema, 
telangiectasia on the nose, cheeks, and forehead (155). Interestingly, 
loss of SIRT7 alleviates the rosacea-like features in mice models and 
human dermal fibroblast. More specifically, epidermal keratinocytes 
in rosacea inflamed skin activates toll like receptors (TLR2) leading to 
the release of various cytokines. SIRT7 is upregulated in skin samples 
of patients and in mouse models with rosacea and can regulate gene 
transcription of TLR2 which activates NF-kB. Thus, this SIRT7-TLR2- 
NF-kB pathway may be one mediator of the inflammatory process in 
rosacea (146).

Other pathologies that are not directly derived from fibroblast 
dysfunction are also worthy of discussion due to the fluidity of the 
dermal microenvironment. Systemic lupus erythematous (SLE), an 
autoimmune inflammatory condition with an unclear pathophysiology 
which exhibits a variety of skin manifestation including a malar rash, 
discoid rash, photosensitivity, and oral mucosal lesions (156). A recent 
review analyzed SIRT1 and SLE and found that resveratrol was able to 
alleviate inflammation and decrease the levels of autoimmune 
antibodies. However, Qiu and colleagues also noted SIRT1 levels may 
be upregulated in CD4+ cells and they reported there is currently a 
lack of clinical evidence to recommend using SIRT1 activators in 
humans (147). Psoriasis is another chronic inflammatory disease 
mediated through the activation of T cells which stimulate the 
proliferation of keratinocyte. Applications of sirtuins in psoriasis have 
been extensively studied (149, 151, 157–160). In a recent study 
D’Amico and colleagues, took punch biopsies from 6 untreated female 
patients affected with chronic plaque psoriasis. Immunohistochemical 
analysis was done and reduction of SIRT1 and adenosine 
monophosphate-activated kinase (AMPK) expression was observed 
(158). Vacharanukrauh and colleagues analyzed 9 patients with 
psoriasis treated with before and after UVB-mediated phototherapy. 
They concluded UVB-mediated phototherapy works partially through 
SIRT1 anti-inflammatory effects downregulating NF-kB. All patients 
showed clinical improvement their lesions after therapy (161). As 
mentioned previously NAM is rapidly converted to NAD+ in cells 
through sirtuin deacetylation activity. It has been shown to 
be beneficial in a variety of skin diseases partially through SIRT1-
mediated deacetylation downregulated pro-inflammatory 
transcription of NF-kB. Oral NAM shown efficacy both in oral and 
topical applications in bullous pemphigoid, acne vulgaris, and rosacea 
as well as for the treatment and prevention of NMSC in a variety of 
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clinical trials (162–167). It is indeed possible that NAM effects are via 
SIRT1. In sum, there are several opportunities to focus on methods of 
treating diseases that may directly or indirectly influence the dermal 
fibroblast or other cells in the dermal microenvironment. Sirtuin 
alteration by oral and topically applied treatments are still in the early 
stages but there is growing accumulation of human data through 
clinical trials.

4. Conclusion

Investigating the function of sirtuins within the dermal 
microenvironment has garnered more attention recently. The sirtuins 
seem to be crucial for both fibroblast senescence and wound healing. 
As a result, this review explores how sirtuins affect dermal fibroblast 
function and provide additional experimental evidence that indicates 
that expression levels of all sirtuins are decreased in the H2O2-induced 
fibroblast senescent cells. We also looked at the function of sirtuins in 
diseases like systemic sclerosis and how sirtuins may relate to NMSC 
and IGF-1. In summary, the body of research investigating sirtuins 
and fibroblast function in specific disease states is still in its infancy. 
However, continued study may shed light on clinically relevant 
opportunities where the alteration of sirtuin function may provide 
benefits to certain patient populations.
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