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Traumatic brain injury (TBI) induces instant activation of innate immunity in

brain tissue, followed by a systematization of the inflammatory response.

The subsequent response, evolved to limit an overwhelming systemic

inflammatory response and to induce healing, involves the autonomic

nervous system, hormonal systems, and the regulation of immune cells.

This physiological response induces an immunosuppression and tolerance

state that promotes to the occurrence of secondary infections. This

review describes the immunological consequences of TBI and highlights

potential novel therapeutic approaches using immune modulation to restore

homeostasis between the nervous system and innate immunity.
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Introduction

Traumatic brain injury (TBI) is a significant cause of morbidity and mortality,
mainly in young patients (1). In addition to the high mortality in the immediate
aftermath, the severity of these traumas is related to the significant morbidity and
mortality in intensive care units (ICU) (2). While most of the morbidity and mortality
factors are direct consequences of the trauma (initial severity of injury, secondary
bleeding), approximately one-third are represented by hospital-acquired infectious
complications (3). Around 50% of patients with severe TBI mechanically ventilated
in ICU will develop ventilatory-associated pneumonia (4). Patients with severe TBI
complicated by hospital-acquired infection develop more secondary systemic brain
aggressions (sepsis, hypoxia, hypercapnia) that lead to intracranial hypertension and
further brain damage, prolonged mechanical ventilation, and ICU length of stay (5) and
is an independent risk factor for unfavorable neurological outcome (6).

The susceptibility of patients with TBI to nosocomial infections is correlated with
the development of a state of immunosuppression that sets in in the direct aftermath
of the trauma (7) some characteristics of which are close to the immunosuppression
found in septic shock (8). Following a TBI, producing proinflammatory cytokines is
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a necessary physiological phenomenon that promotes
the healing of contused tissues and the defense against
developing secondary infections. However, in some patients, the
development of an exacerbated systemic inflammatory response
syndrome (SIRS) can induce multiple organ failure syndromes
with a very high mortality rate (9). To prevent the occurrence of
an exacerbated proinflammatory response, the central nervous
system (CNS), in association with innate immunity, initiates
a systemic anti-inflammatory response (compensatory anti-
inflammatory response [CARS]). This response aims to restore
homeostasis but increases the risk of post-traumatic infectious
complications (10). Studying the immune modulation after
TBI, is necessary to propose relevant therapeutic approaches to
reduce the morbidity and mortality of these patients.

Intracerebral immune response

After TBI, meningeal contusion, axonal shearing, or
cerebrovascular injury alter the functions of glial cells for days
(11). The release and extracellular accumulation of intracellular
components (such as ATP, HSPs, and HMGB1. . .), which are
recognized as Damage-Associated Molecular Patterns (DAMP),
activate innate immune receptors such as Toll-Like Receptors
(TLR) expressed on glial cells, macrophages, dendritic and
endothelial cells, and astrocytes (12). When exposed to DAMP,
microglia cells are rapidly activated to clear debris, reconstitute
the defective blood-brain barrier (BBB), and produce nutritional
factors for the brain cells (13). At the same time, microglia
produces proinflammatory cytokines such as IL-1β and IL-6,
which recruit neutrophils and blood monocytes-macrophages
to the injured area (14). Neutrophils cross the BBB within
minutes after TBI and DAMPs such as HMGB1 from necrotic
neurons increased leukocytes activation, IL-6 secretion via TLR4
pathway and induce brain edema (15). Activated neutrophils
subsequently produce NETs, web-like chromatin structures,
which prime other immune cells to induce sterile inflammation
(16). In humans TBI, NETs formation coincide with cerebral
hypoperfusion and tissue hypoxia (17). The release of HMGB1
from necrotic neurons may initiate a TLR4-dependent NETs
formation and promote neuroinflammation by IL1- β and IL-
6 secretion from peripheral blood mononuclear cells (PBMC).
After exposure to IL-1β, astrocytes rapidly generate immune
signals, resulting in more neutrophils recruitment and systemic
cytokine release (18). Immigrating neutrophils also help to
remove debris such as myelin fragments and exacerbate
inflammation and neuronal loss (19). This activation induces
the production of proinflammatory cytokines and stimulates
antigen presentation by antigen-presenting cells (APCs) to
effector cells (T and Natural Killer (NK) cells) (20).

At the same time, trauma-activated platelets and the
subsequent coagulation cascade release pro-inflammatory
mediators interacting with the immune system (21) and

generating a self-perpetuating cycle of local inflammation.
Activated platelets form aggregates with leukocytes causing
endothelial cell damage (22). Platelets and neutrophils are
also significant sources of microvesicles and exosomes, which
may contain various DAMPs (23) thereby propagating the
inflammation to the systemic compartment (24).

Other pathophysiological consequences include blood-brain
barrier disruption, cellular swelling and vasogenic edema.
HMGB-1 released by necrotic neurons induces the production
of IL-6 by microglia resulting in aquaporin water channel
expression in astrocytes and cytotoxic swelling (15). In TBI,
permeabilization of the BBB also leads to contact of CNS
epitopes (such as myelin basic protein) with innate immune
cells. Recognition of these antigens as DAMPs could lead
to the maintenance of the local inflammatory state (25).
DAMPs activate the complement cascade, leading to the rapid
generation of C3a and C5a (26). Activation of complement
and inflammatory cells triggers the production and release of
inflammatory mediators such as interleukins, generating the
systemic response seen in SIRS.

The important release of neurotransmitters (glutamate,
adenosine) in the extracellular space induces changes in
the anti- and pro-inflammatory functions of glial cells
and modulate neuroinflammation via numerous signaling
pathways (i.e., the adenosine-A2AR system in mice (27).
This balanced inflammatory response is intended to enable
DAMPs clearance and induce tissue repair mechanisms by
reprogramming brain macrophages from pro-inflammatory to
anti-inflammatory functions (28). The CNS also induces a
systemic anti-inflammatory response to avoid an exacerbated
pro-inflammatory response, likely to cause multiple organ
failure syndrome. This systemic immune response mainly
involves innate immune cells and neurohormonal mechanisms
(Figure 1). However, protracted anti-inflammatory response is
associated with secondary infections.

Systemic immune response

Neurohormonal mechanisms

The sympathetic nervous system
In healthy conditions, the sympathetic nervous system plays

an essential interface between the neural and immune systems
(29). Post-ganglionic sympathetic nerves, which pass through
the paraspinal and pre-spinal ganglia, release norepinephrine
into primary and secondary lymphoid organs.

The sympathetic nervous system activation, which belongs
to the systemic inflammatory response observed after TBI,
results in the secretion of catecholamines into the periphery
(30) in a dose-dependent manner according to the trauma
severity. Blood catecholamine levels were significantly increased
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FIGURE 1

Innate immune response in brain: After TBI, parenchymal, vascular, and blood-brain barrier damage results in the production of DAMPs. These
DAMPs activate resident brain cells (microglia, astrocytes) that initiate the intracerebral inflammatory response. The production of cytokines and
chemokines leads to the recruitment of blood leukocytes and the activation of complement and coagulation pathways. All these phenomena
maintain the state of intracerebral inflammation which causes edema and induces a systematization of the immune response.

in peripheral circulatory system at the earlier stage of TBI and is
correlated with adverse outcomes (31).

The sympathetic nervous system afferences are the primary
and secondary lymphoid organs, including the thymus, bone
marrow, spleen, lymph nodes, and mucosa-associated lymphoid
tissues. The extensive sympathetic innervation of immune
organs and the expression of adrenergic receptors on numerous
leukocyte families suggest that immune function can be finely
tuned by the level of sympathetic activity (32). Activation of the
sympathetic system results in the release of catecholamines from
sympathetic nerve endings and selectively inhibits interferon
(IFN)-γ and IL-2 production by human Th1 T cells (33). Several
studies have shown that norepinephrine and epinephrine
secretions decrease the production of TNFα, IL-1β, and IL-12
by lipopolysaccharide (LPS)-stimulated mice monocytes (34)
and that the activity of NK cells, including cytotoxic activity
and production of effector cytokines, was inhibited by such
catecholamines (35). In severe trauma patients, sympathetic
nerve blockade, notably via the administration of beta-blockers,
reduces the blood levels of proinflammatory cytokines such as
TNFα, IL-1b, and IL-6 after brain injury (36, 37). Elevated levels
of the anti-inflammatory cytokine IL-10 have been documented

in patients undergoing a “sympathetic storm” in the aftermath
of TBI. Blocking β-adrenergic receptors with a β -blocker
such as propranolol provides a dose-dependent inhibition
of this exacerbated IL-10 release in rats (38). In human,
propranolol decreases in-hospital mortality and improves long-
term functional outcome in isolated severe TBI (39) confirmed
by a randomized controlled trial (40).

In a mouse model of focal cerebral ischemia, blockade of the
sympathetic nervous system restores IFN-γ secretory capacity
and decreases systemic bacterial infections (41). These data
suggest that catecholamine secretion by the sympathetic system
triggered by TBI contributes to the severe immunosuppression
observed following TBI (Figure 2).

The parasympathetic nervous system
The parasympathetic nervous system is mainly composed

of the vagus nerve, which innervates the liver, lungs, spleen,
kidneys, and gut. There is also evidence for vagal innervation
of lymphoid organs (42), the inhibitory role of which has
been referred to as “the cholinergic anti-inflammatory pathway”
(43). Thus Borovikova et al. demonstrated that in response to
acetylcholine, activated macrophages decrease their production
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FIGURE 2

HPA axis and autonomic nervous system (i.e., sympathetic nervous system and parasympathetic nervous system) plays central role in regulating
peripheral immune cells after TBI. After a TBI, the sympathetic and parasympathetic nervous systems stimulate the secondary lymphoid organs
via their neurotransmitters (norepinephrine and acetycholine respectively) leading to a state of immunodepression due to the loss of
inflammatory functions of the leukocytes. Post-traumatic activation of HPA axis leads to CIRCI and deepens the immunosuppressive state. α/β
AR, α/β adrenergic receptor; α7nAchR, α7 subunit of the acetyl choline receptor.

of proinflammatory cytokines such as TNFα, IL-1β, and IL-18,
but not their secretion of anti-inflammatory cytokines such as
IL-10 (44). The same authors (45) demonstrated that electrical
stimulation of the peripheral vagus nerve decreased serum and
liver levels of proinflammatory cytokine TNFα. Activating the
parasympathetic nervous system in animal models decreases
ischemia-reperfusion syndrome (46) and inflammatory state
after hemorrhagic shock (47). Studies in deficient mice have
provided additional evidence demonstrating a role for the α7
subunit of the ACh receptor (α7nAchR) on macrophages in
the cholinergic anti-inflammatory pathway (48). The binding
of ACh to this macrophage receptor results in activation of
Jak2, which phosphorylates the DNA-binding transcription
factor STAT3 (49), decreases the nuclear translocation of
the transcription factor NF-κB and reduces the transcription
of the DNA-binding protein HMGB1 (50), finally favoring
anti-inflammatory response. These findings support that the
activated efferent parasympathetic nervous system modulates
systemic the immune responses as well as it regulates heart rate
and other vital functions (51) (Figure 2).

The hypothalamo-pituitary axis and the critical
illness-related corticosteroid insufficiency

The hypothalamic-pituitary-adrenal axis (HPA axis) is a
complex neuroendocrine system controlling stress responses
and regulating many vital functions. In response to stress

the hypothalamic release of corticotropin-releasing hormone
(CRH) is increased which leads to the secretion of the pituitary
adrenéno-coticotropic-hormone (ACTH). In turn, the adrenal
cortex synthesizes and releases cortisol into the circulation (52).
Cortisol acts on all immune cells and elicits immunosuppressive
and anti-inflammatory functions through genomic and non-
genomic mechanisms (53). Hence, the combined activities of
the autonomic nervous system and HPA axis play an essential
role in regulating the immune system (54). In TBI patients
the direct stimulation of the pituitary secretion of ACTH
influences the number of β-adrenergic receptors on immune
cells (55). Activation of β2-adrenergic receptors potentiates the
expression of the glucocorticoid receptor gene through the
activation of intracytoplasmic downstream pathways (56). After
that, the HPA axis and sympathetic nervous system increase
the release of cortisol and norepinephrine, contributing to
the downregulation of immune cell activity (57) including the
inhibition of innate and adaptive immunity and induction of
leucocytes apoptosis.

Post-traumatic activation of the HPA axis usually results
in the simultaneous release of dehydroepiandrosterone
(DHEA). However, in the immediate aftermath of TBI, cortisol
levels remain highly predominant over DHEA levels (58).
The increase in the cortisol/DHEA ratio leads to a state
of immunodepression, notably by inhibition of neutrophil
function, and is associated with an increase in nosocomial
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infections (59). DHEA supplementation effectively reduces
sepsis-related mortality in mice (60) and some preliminary data
obtained in humans has strengthened the rationale to test this
molecule in large clinical trials (61).

Rapidly after a TBI, there is a maladaptive secretion and
abnormal cortisol response, so-called critical illness-related
corticosteroid insufficiency (CIRCI). CIRCI is the impairment of
the HPA axis secondary to inflammation which cannot respond
adequately to secondary stimulations (62). Corticosteroid
insufficiency occurs in 50-75% of patients with severe TBI and
is associated with a poor prognosis (63).

Three major pathophysiological events account for CIRCI:
anatomical disconnection of the HPA axis, alteration of the
cortisol metabolism with decreased cortisol degradation (64),
and tissue resistance to corticosteroids (65). The occurrence of
CIRCI after TBI is associated with an anti-inflammatory state
inappropriate to the severity of the disease (66), longer durations
of vasopressor support, and poorer long-term neurological
outcomes (67). After severe TBI, alteration of the HPA
axis is a consequence of the post-traumatic cytokine storm
(68) significantly influenced by IL-6 secretion. For example,
the administration of human IL-6 increases plasma cortisol
concentrations in mice (69). During activation of the immune
system, such as during TBI, it has been shown that IL-6
is a potent ACTH-independent stimulator of the HPA axis
(70). In children with TBI, serum IL-6 levels are elevated and
correlated with the severity of the TBI, and increased IL-6
levels are associated with a significant systemic inflammatory
response that can lead to the development of ARDS (71).
Structural damage to the pituitary glands can also cause
CIRCI in TBI patients (72) inducing the loss of blood-brain
barrier permeability and apoptosis of hypothalamic neurons.
After TBI, corticosteroid insufficiency aggravates the state of
immunosuppression and increases the risk of the secondary
respiratory infections (73). However, the principle of CIRCI and
the resulting modulation of the HPA axis has been the subject
of many therapeutic trials, many of which have failed to show
efficacy for patients (74) including the largest RCT to investigate
the impact on outcome of glucocorticoid treatment of patients
with septic shock (75).

Immune cells and traumatic brain
injury

TBI induces alterations in immune cells and each plays
an important role in establishing an immunosuppression and
tolerance state (Figure 3).

Neutrophils
An increased neutrophil count is observed up to 48 h after

TBI (76) notably through a delayed apoptosis mechanism (77)
as well as endogenous release of cortisol and catecholamines

promoting neutrophil demargination and their exit from the
bone marrow (78). TBI is therefore characterized by circulating
neutrophil populations at different stages of maturation. In the
homeostatic state, a single population of mature neutrophils
(CD16bright) circulates in the peripheral blood and trauma is
accompanied by a significant release of immature neutrophils
(CD16dim/) into the circulation (79). At the same time, there
is a significant release of myeloid-derived suppressor cells
(MDSCs) through a CXCL2-dependent mechanism, which
deepens the immunosuppressive state (80). In the aftermath
of TBI, neutrophils also show phenotypic changes affecting
their effector functions. There is a reduced expression of the
IL-8 receptors CXCR1 and CXCR2 in blunt chest injured
patients (81) as well as CD11b (a component of the β2
integrin receptor MAC-1), which is involved in neutrophil
membrane adhesion (82). When stimulated in vitro with fMLP,
(a neutrophil activator), neutrophils from TBI patients do not
upregulate the CD11b and FcγRII receptors (83) explaining
the hypo responsiveness of circulating neutrophils to bacterial
stimulation. In the hours and days following severe TBI,
neutrophils show an increase in ROS production in the resting
state (84) and response to stimulation (77). Loss of regulatory
feedback on immune function following direct injury to the
CNS appears to be the primary cause. After that, neutrophils
exhibit reduced ROS production in the days following TBI
(85) associated with impaired phagocytic abilities. Thus, after
TBI, the capacity of circulating neutrophils to phagocytose
Escherichia coli is significantly reduced for up to several
weeks after the trauma. The reduction in phagocytosis of
extracellular bacteria is more significant after TBI than after
severe trauma without CNS injury, suggesting a compensatory
anti-inflammatory mechanisms exacerbated to protect brain
tissue (84). Complement activation is an immediate response to
trauma and is correlate with the severity of the trauma and the
occurrence of infections (86). The C5a fraction of complement,
a critical mediator allowing neutrophils to phagocytose bacteria
(87), may be one cause of the neutrophil anergy and critical
illness induced organ dysfunction (88). Indeed, complement
activation is a hallmark of the inflammatory response to TBI
(89) and in a mouse model of TBI, C5a influences the functional
behavior of circulating neutrophils (90). Critically ill patients
exhibit significant circulating neutrophil dysfunctions, which is
mediated by activated complement like C5a which is known
to reduce chemotaxis, respiratory burst, and phagocytosis (91,
92). Trauma also induces an immediate alteration of leukocyte
receptors to C5a (CD88) (93) indicating a likely multi-factorial
mechanism inducing neutrophil anergy as found in human
sepsis (94). Studies of neutrophils from ICU patients and
healthy volunteers demonstrate that C5a induces a prolonged
defect in phagocytosis of relevant pathogens (S. aureus and
E. coli) persisting for several hours and also induces a
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FIGURE 3

TBI induces alterations in immune cells: These immune alterations concern myeloid and lymphoid cells, starting in the bone marrow and
lymphoid organs and then in the circulating cells. It is an alteration of the first line of defense (neutrophils) and an inability of the monocyte &
macrophages to maintain the inflammatory response. Dendritic cells lose their ability to present antigen and secrete pro-inflammatory
cytokines. All these cells develop a tolerogenic phenotype unable to initiate the lymphocyte response, which leads to an expansion of
regulatory T cells. All these mechanisms induce a phenomenon called post-traumatic immunodepression and favors the occurrence of
nosocomial infections.

defective phagosomal maturation thus decreasing the anti-
bacterial capacities of neutrophils (95). Another neutrophil-
derived mediator of the post-trauma inflammatory response is
NETs (96). As seen above, neutrophils in the brain parenchyma
produce NETs in the immediate aftermath of trauma (97, 98).
NETs are essential in the capture and the antibacterial defense
but in the aseptic inflammation caused by TBI, the presence of
histones and extracellular peptides may have detrimental effects.
In vitro, NETs induce lung epithelial and endothelial cell death
in mice (99), whereas in vivo, NETs appear to promote deep
vein thrombosis by intravascular inflammation, a secondary
complication with high morbidity in TBI patients (100).

Neutrophils are therefore pivotal cells and some authors
have shown that dysfunctions affecting these cells are correlated
with organ failure and secondary infections in trauma patients
and may represent a promising avenue for the development of
immune dysfunction biomarkers (101).

Monocytes/macrophages
In TBI patients, monocytes/macrophages undergo many

modifications and it is worth noting the difference between
microglia, monocyte-derived macrophages infiltrating the
cerebral tissue, and circulating macrophages.

Microglia represent the resident macrophages of the CNS
and, as seen previously, are the first immune cells to be
affected by TBI. Microglia have a great potential to adapt

to inflammatory conditions and can develop or annihilate
some functions (102). After their activation, the microglia cells
migrate to the site of injury, undergo morphological changes
(to form larger cell bodies with ramified cellular structures)
and changes in pro and anti-inflammatory functions (103).
For a long time, authors have described, based on in vitro
studies (104), two states of polarization of the microglia
after their activation. The M1 phenotype would have a pro-
inflammatory function and secretion of chemokines (105)
while the M2 phenotype would have an anti-inflammatory and
neuroprotective role (106). However, this dichotomy does not
represent the reality in vivo which is more complex (107). M1
phenotype can secrete anti-inflammatory cytokine such IL-10,
and the M2 phenotype can secret pro-inflammatory cytokines.
Recent publications (108) including transcriptomic analyses in
animal models (109) show that several microglia phenotypes
coexist and that TBI induces multiple responses in microglia
including electrophysiological changes, proliferation, migration,
release of cytokines/chemokines, and phagocytosis (110). This
results in the release of many factors into the injured tissue,
such as macrophage colony-stimulating factor (M-CSF), brain-
derived neurotrophic factor (BDNF) or neurotrophin 3 (NT-3).
Microglia also plays a role in phagocytosis of dead cells. via the
P2Y6 receptor that detects UDP released from dead cells (111).
After activation, microglia produce inflammatory mediators
such as IL-1b, IL-6, IL-12, NO or ROS (11). The production
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of these mediators may promote the inflammatory response
by increasing BBB permeability and facilitating the recruitment
of peripheral immune cells (112). This recruitment is also
mediated by the microglia secretion of extracellular vesicles
that sustain neuroinflammation and induce cell communication
after TBI (113) resulting in the migration of peripheric blood
monocytes/macrophages.

The arrival of monocytes and their subsequent
transformation into macrophages in the injured brain
occurs within 24 hours after TBI (114). One mechanism
of monocyte recruitment after TBI relies on the production
of CCL2 in the CSF by the choroid plexus epithelium (115).
Recent transcriptomic studies have differentiated infiltrating
monocytes-derived macrophages from resident microglia cells
(116) and animals models have hypothesized that in the days
following TBI, the infiltrating macrophages induce damages
by exacerbated inflammation while the glial cells may have
a primarily neuroprotective effect. Hence, in a rat model of
TBI the production of inflammatory mediators (IL-1β, and
CD68) were higher in macrophages, whereas the TGF-β1 was
higher in microglia (117). Macrophages may be considered the
aggravating cell type, whereas activated microglia may play a
favorable role during the acute phase of TBI.

The effects of TBI on the circulating monocyte numbers
differed between animal and human studies. In contrast to
the murine studies, where significant reductions in monocyte
numbers were observed in the first few hours after TBI
(118), the human studies showed a substantial increase in the
absolute number of circulating monocytes (84). In mice, classical
Ly6C + monocytes secrete proinflammatory cytokines and
differentiate into proinflammatory macrophages after getting
into the target tissue. In contrast, non-classical Ly6C- monocytes
secrete the anti-inflammatory cytokine IL-10 and develop anti-
inflammatory functions (119). In a mouse model of TBI,
Schwulst et al. found a significantly higher number of anti-
inflammatory Ly6C- monocytes in the peripheral circulation.
Consistent with this observation, intracellular expression of
IL-10 was detected in monocytes isolated from TBI patients
immediately after injury (120), suggesting that TBI causes
tolerogenic polarization of circulating macrophages, leading
to an anti-inflammatory response. In the lungs, after the
resolution of acute inflammation caused by TBI, alveolar
macrophages present with a low phagocytic capacity for several
weeks. With murine models our team to demonstrate that
these paralyzed alveolar macrophages are developed from
resident macrophages that undergo tolerogenic epigenetic
reprogramming in situ (121). This adaptation was not induced
by a direct encounter with pathogens or DAMP but by locally
established secondary immunosuppressive signals after the
resolution of the primary inflammation. These experimental
data on animal models have been confirmed on samples of ICU
patients. Hence, circulating monocytes of patients with severe
trauma expressed altered levels of regulators of phagocytosis

CD14, CD16 and Signal regulatory protein α (SIRPα) for
months after the insult. SIRPα plays a critical role in establishing
the microenvironment that induces tolerogenic formation in
critically ill patients with significant systemic inflammation
like TBI patients, circulating monocytes exhibiting alterations
consistent with this immunosuppressive reprogramming six
months after resolution of inflammation. Despite discrepancies
between mice and humans data, several of these monocytic
alterations have been validated in patients with TBI, including
low phagocytic capacity (121), low capacity to activate natural
killer cells via the production of IL-12 (122), and more
recently a transcriptomic signatures has been identified in
monocytes and associated with Herpes Simplex Virus lung
reactivation and unfavorable neurological outcomes (123). As
summary, the monocytes-macrophages, which continuously
adapt their functions to spatiotemporal modifications of
their microenvironment (124), appear central to the immune
adaptation to TBI.

Dendritic cells
Dendritic cells (DC) count and maturation status are

affected in ICU patients (125). A reduction in the number
of circulating DC has been observed in brain-injured patients
(126) as well as in the pool of resident DC in lymphoid
organs. In addition to this decrease, the systemic circulation
of DAMP after TBI activate immature DC, leading to a
reduction in their ability to present antigens encountered later,
impairing the power of the immune system to respond to
secondary insults (127). The induction of “tolerogenic” DC,
characterized by Blimp-1 expression, low antigen presentation,
and IL-12 production capacities, is a significant mediator of
post-traumatic susceptibility to infections. These tolerogenic
DCs induce an immunosuppressive microenvironment, notably
conventional type 1 DCs produce anti-inflammatory cytokines
and induce the peripheric conversion of CD4 effector T
cells in regulatory FoxP3 T cells (iTregs) (128). In the
aftermath of TBI, Th2-inducing DCs may counteract Th1-
type inflammation, thereby regulating inflammation. The
immunogenic or tolerogenic characteristics of DCs may be
directly related to the developing concept of “innate memory,”
where “entrained” DC might exhibit increased proinflammatory
capacity. In contrast, “tolerogenic” DCs would instead be
regulatory, resulting in reduced or increased susceptibility to
secondary infections (129).

For example, our team has shown that circulating DC
from trauma patients express a tolerogenic transcription
factor, Blimp1, characteristic of tolerogenic functions (130).
In a mouse model of post-trauma immunosuppression, we
demonstrated that administration of a TLR agonist could restore
cytokine production from DC and improve the pulmonary
response to pneumonia (131). This state of reversible DC
paralysis is probably a consequence of an immunosuppressive
microenvironment induced by TBI.
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Natural killer cells
After severe TBI, the number of NK cells decreases rapidly

(132). This decay persists for weeks (133) and correlates
with trauma severity. After TBI, Mrakovcic et al. showed
that the proportion of cytotoxic CD56Dim NK cells decreases
significantly at the expense of immunosuppressive CD56Bight

cells. On day four after TBI, the percentage of perforin-positive
NK cells is also reduced compared to healthy controls (134).

A recent study looking at total NK cells within five days
of trauma observed a transient decrease in the expression
of the proinflammatory transcription factor T-bet and IFN-γ
(135). Hence, IFN-γ secretion by NK cells is impaired after
stimulation by S. aureus (136). Decreased IL-12R expression is
also observed, associated with decreased STAT4 activation and
IFN-γ synthesis. These TBI NK cells also show a deficiency
in the activation marker CD25 and CD69 in the direct
aftermath of trauma (136). There is an alteration in the
expression of inhibitory and activating receptors KIR and
NKG2D, and a hyporesponsiveness of TBI NK cells associated
with spontaneous lysis, leading to a weak IFN-γ response and
reduced degranulation in response to HLA-deficient target cells
(122). IL-12 significantly triggered the IFN-γ and degranulation
of TBI NK cells against HLA deficient cells, spontaneously
(via inhibitory receptors) and via the antibody-dependent
cytotoxicity pathway. Finally, IL-12 seems to be a new potential
treatment available to overcome NK cell alterations in TBI
patients (122).

CD4+ T cells
When activated after TBI, CD4+ T cells will differentiate

into distinct T-helper (Th) cells. These subsets include Th1,
Th2, Th17 and regulatory T (Treg) cells. Each of these subtype’s
functions differently in the aftermath of TBI.

Th1/Th2

Under conditions of immune homeostasis, Th0
lymphocytes differentiate into Th1 and Th2 cells. Th1 and
Th2 subtypes coexist in the aftermath of an inflammatory
event and produce different groups of cytokines (137). CD4+

Th1 cells require IL- 12 and transcription factor T- bet in
order to produce IL- 2, IFN-γ and TNF-α (138) and maintain
the inflammatory functions of macrophages. CD4 +. Th1
cells permeabilize the BBB to secrete chemokines essential
for leukocyte trafficking into the cerebral spinal fluid (139).
Th2 cells require IL- 4 and the transcription factor GATA3
and produce neuroprotective cytokines, such as IL- 4, IL-
5, IL- 10, and IL- 13 and induce macrophages with rather
anti-inflammatory phenotypes (140). After TBI, Th polarization
is mediated by the TLR4 receptor on myeloid cells. Microglia
secrete the pro-inflammatory chemokine CXCL10 which
stimulates the infiltration of Th1 CXCR3 + cells (141). At the
same time IL33 stimulates the production of Th2 cytokines
necessary for wound healing in the case of CNS injury (142).

In the 24 hours following a TBI, there is a significant
decrease in the number of circulating T cells (132) which affects
both CD4 + T helper cells and CD8 + cytotoxic T cells. Several
hypotheses for this lymphopenia is an accelerated apoptosis, but
some authors have also suggested, based on experiments in mice,
that high concentrations of catecholamines inhibit the exit of
lymphocytes from lymph nodes (143). TBI is also associated
with a loss of thymus mass which is associated overall with
immunosuppressive features (118).

Following TBI, circulating T helper balance rapidly shifts
toward Th2 (144, 145), increasing the susceptibility to infection
(146). Several mechanisms participate in this phenomenon:
first, TBI induces changes in the metabolism of the IL-2
cytokine. IL-2 is a potent Th1 cell growth factor essential in
the cellular immune response (147). Early studies in polytrauma
patients demonstrated a significant reduction in serum IL-2
and its soluble receptor in the weeks following TBI, suggesting
immunosuppression of IL-2 regulated responses during this
period (148). In addition to IL-2, altered productions of the
proinflammatory cytokines IFN-γ and IL-12 are involved in
post-traumatic immunosuppressive mechanisms. IL-12 is a
promoter of IFN-γ secretion and NK cells cytotoxic activity,
and decreased IL-12 secretion in the aftermath of TBI is a
susceptibility factor for nosocomial infections (122). Schwulst
et al. showed, for example, that IL-12 expression was decreased
in TBI patients for up to 2 weeks after trauma (118).
This significant alteration of the IL-12/INF-γ loop is one of
the central mechanisms associated with inflammation-induced
immunosuppression.

T cells from TBI patients also have higher expression of the
PD1 receptor and the tolerogenic transcription factor BLIMP1
(149) making them less effective against hospital-acquired
infections. This immunosuppressive microenvironment is
found primarily in the lung parenchyma, where the PD1
ligand induces IL-10 overproduction and T cell apoptosis (150).
And may partly explain the high incidence of PAVM in TBI
patients. This phenomenon of “exhaustion” and the resulting
lymphopenia is a risk factor for mortality in the ICU (151). This
lymphopenia persists beyond six months in most patients and
can be a source of chronic immunological disorders (152).

Treg

T reg are CD4 + T cells that express Foxp3 and CD25
(153) and are capable of differentiating into natural Treg
cells (nTreg) and inducible Treg cells (iTreg); nTreg cells
are the primary cells to infiltrate the CNS parenchyma
after trauma (140). After reaching the site of injury, Treg
secrete anti-inflammatory cytokines such as IL-10 and TGF-
β, but also inhibit various immune cells such as circulating
monocyte-derived macrophages or dendritic cells and limit
neuroinflammation and brain damages. Treg also suppress other
T helper cells by limiting the transformation of Th0 to Th1
and their brain infiltration (154). Consistently, the absence of
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Treg has been shown to correlate with increased brain damages
and impaired functional outcome in C57BL/6 mice undergoing
stroke (155) and increased T- cell infiltration and astrocyte
proliferation in acute experimental TBI (154). After TBI, the
level of circulating Treg is increased on day 1 and peaked
on day 14. This increase in circulating Treg cells is correlate
with functional outcome and may predict prognosis after TBI
(156). However, an overwhelmed Treg response could lead to a
state of immunosuppression and could increase susceptibility to
infections as our team has demonstrated in sepsis (157).

Th17

Th17 lymphocytes are a subtype of CD4+ T cells depending
on IL6 and TGFb as well as the transcription factor RORγT to
develop (158). Animal models have shown that the increase in
Th17 cells shortly preceded the increase in cytotoxic CD8 + T
cells several days after TBI suggesting that Th17 cells may
be responsible for cytotoxicity and neuroinflammation (159).
Th17 cells promote cell migration across the BBB in some
neuroinflammatory disease (160). and in a mouse model of TBI
the Th1/Th17 polarization is a component of the intracerebral
inflammatory response (161). In addition to sharing a similar
developmental pathway, Th17 can differentiate into Treg, and
Treg can determine Th17 orientation (162). High ratio of Th17
cells to Tregs are associated with post-traumatic infections
(137), suggesting that tuning the Th17/Treg balance could be
an important avenue of research to limit secondary damage
induced by TBI. Supporting this hypothesis, the level of
circulating Treg cells has been positively correlated with the
neurological recovery of patients with TBI (156).

B cells
B cells are lymphoid cells that regulate the immune system

both through direct interactions with the target and through
the secretion of antibodies (163). These cells are poorly
studied in TBI although B cells have been studied in many
neuroinflammatory diseases and seem to show a specificity for
the subacute phase of TBI. Our team was interested in the
phenotype of B cells in TBI patients (164) and we showed
that TBI patients have a significantly higher frequency of
B cells with an activated profile at day 7 after injury. Our
results also suggest that IL-10+ B cells may play a role in
immunosuppression after TBI. Another study shows that B cells
are activated by CNS antigens after TBI (165). Subsequently,
the study of B cells in mouse models showed that B cell-
deficient mice exhibit an enhanced immune response after
TBI (159), indicating a potential protective role for B cells
in TBI. The importance of immunosuppressive regulatory
B cells and their role in maintaining the regulatory T cell
compartment is becoming increasingly well documented (166).
One hypothesis for the role of B cells in TBI is the secretion of
anti-inflammatory cytokines (e.g., TGF-β and IL-10) that could
limit microglia overactivation and decrease macrophage and

Th cells infiltration. Secretion of anti-inflammatory mediators
would promote parenchymal healing through the induction
of a protective microenvironment as demonstrated in an
animal model of autoimmune neuroinflammation, where B cells
modulated neuroinflammation and limited Th1/17 responses
via TGF-β production (167). In mouse models of stroke,
intravenous infusion of IL-10-producing B cells was observed
to reduce neuroinflammation and infarct volume (168). In a
mouse model of TBI, intraparenchymal injection of mature B
cells improves structural and functional outcome, and lesion
volume in mice treated with B cells was significantly reduced by
40% at 35 days after TBI (169). T-cell activation, astrogliosis, and
microglial activation were also reduced. Lymphocytes appear to
have an interesting role in TBI and may serve as a candidate for
future study in the subacute phase.

Diagnosis and therapeutic
approaches

Immune changes after TBI are pleiotropic: In the direct
aftermath of TBI, brain inflammation leads to neuron and white
matter damages. After major activation of immune cells, the
CARS leads to tolerogenic state which induces major sensitivity
to secondary nosocomial infections. However, immune cells
activation can last many years after TBI (110) and contribute
to chronic neuroinflammation process. This persisting TBI-
induced neuroinflammation is associated with poor outcomes
(170) and neurodegenerative post traumatic disorders (171).

Therefore, there are multiple approaches to modulate
immune cells in TBI. In the early phase, it aims to reduce the
cerebral and systemic inflammatory reaction. Subsequently, the
challenge is to restore peripheral immune functions in order to
avoid secondary infections and organ failures in ICU. Finally,
in the late phase, therapeutics can be developed to limit chronic
cerebral inflammation and chronic neurologic disorders.

The challenge for ICU physicians caring for TBI
patients would be to detect the stage of the disease via the
implementation of biomarkers or imaging and thus be able to
apply personalized medicine to improve outcomes.

Diagnosis of neuroinflammation and
immune disorders

Biomakers of immune dysfunction
The occurrence of infectious complications in TBI patients

remains frequent without us being able to predict or prevent
their occurrence. The development of the “personalized
medicine,” particularly in oncology, made possible to adapt
chemotherapy to the tumor and to the genetic characteristics
of the patients, thus avoiding the principle of “one size fits all”
to a tailored approach (172). In TBI patients, research in this
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area is in development (173). In ICU patients, the challenge
remains to find biomarkers of occurrence of nosocomial
infections in order to develop adapted immunomodulatory
treatments. Like post-traumatic immunosuppression, sepsis-
induced immunosuppression is the subject of research to
establish biomarkers of this immunosuppressive state (174).
Decreased monocyte HLA-DR membrane expression was one of
the first markers used to define post-sepsis immunosuppression
(175) and its persistence has been highlighted as a risk factor
for mortality (176). Others biomarkers have subsequently been
highlighted such as the decrease in TNF-α production by
leukocytes after LPS stimulation (177) or the increased PD-
L1 membrane expression by circulating monocytes inducing
a state of CD4 T cell tolerance (178). High throughput cell
sorting devices have provided insight into heterogeneity of
the host response to sepsis or trauma. From now, biomarkers
allow classification of patients into different phenotypes and
thus facilitate the identification of distinct subgroups (or
endotypes) and secondary tailoring of immunomodulatory
therapy (179). Thus, studies have identified genetic variants
that may contribute to an impaired immune status observed
in septic patients with an unfavorable course (180). However,
immune dysfunctions in ICU patients is not limited to
patients with sepsis, but also occurs in patients with sterile
inflammation where the usefulness of immune dysfunction
markers of neutrophils, T cells and monocytes may also allow
prediction of ICU complications (181). In trauma patients,
the wide variety of traumatic injuries and injured organs
induces a wide range of inflammatory and anti-inflammatory
responses. Precision medicine seems very promising for these
patients. New technologies such as mass cytometry promise
an analysis of many cellular markers and will allow the
phenotyping of immune response to trauma (135). Publications
focusing on the use of transcriptomic data on PBMC samples
from trauma patients to highlight genomic signatures that
correlate with poor patients outcome (182) or the occurrence
of post-trauma nosocomial infections (183). Similarly a study
conducted in burn patients, developed a blood transcriptomic
panel of biomarkers to predict the occurrence of infections
(184). Another recent study using genome-wide information
analyses identified several leukocyte signatures associated with
susceptibility to infection (185). However, the impossibility of
the routine use of these technics as well as their cost does not
allow the clinical use of the resulting biomarkers. Our team
published in 2019 (186) a work aiming to develop an easy-to-use
biomarker to predict the occurrence of VAP in TBI patients. This
biomarker is a combination of two biological parameters (CRP
and total cortisol) which reflect the disorders between pro- and
anti-inflammatory mechanisms. In our study, this biomarker
discriminated patients who could benefit from treatment with
steroids to prevent the occurrence of VAP. Others easy-to-use
biomarkers have been evaluated in TBI patients. As with patients
in septic shock, decreased membrane expression of HLA DR

on leukocytes is also associated with the occurrence of sepsis
after severe trauma (187). Hildebrand et al. showed a correlation
between increased serum IL-8 levels and the development of
ARDS in polytrauma patients (188). In other work, elevated
IL-6 levels in serum of polytrauma patients were associated
with the occurrence of multiorgan failure (189). Cohen et al.
demonstrated that HMGB1 is released early after severe trauma
and correlates with organ failure, and with the occurrence of
pulmonary infection (190).

Biomarkers are essential diagnostic and prognostic tools in
TBI patients because the intensity of the initial inflammatory
state has consequences on the subsequent complications.
Biomarkers research has produced a multitude of molecular
and genetic signatures but the exact purpose and therapeutic
consequences of using these diagnostic tools have yet to be
defined (191).

Imaging diagnosis
The use of non-invasive imaging devices to diagnose

neuroinflammation is a promising area of research. These tools
are not useful in the early phase of TBI because of the direct
traumatic lesions (blood, CSF.) making their use impossible.
From 2 weeks after the TBI, molecular imaging of microglia
and brain macrophages like positron emission tomography
(PET) and magnetic resonance (MR) imaging can be interesting.
PET using radioligands specific of microglia activation has
shown good sensibility and specificity regarding cerebral
inflammation evaluation (192). Advances in magnetic resonance
imaging of microglia using iron oxide nanoparticles and ultra-
small super paramagnetic particles that are phagocytosed are
also in development. The single photon emission computed
tomography tracer 123 I-CLINDE, which visualizes translocator
protein (TSPO), a protein upregulated in active immune cells
has for example allowed to diagnose neuro-inflammatory states
persisting 2 weeks after the trauma and a correlation with a
poor neurological outcome (193). The combination of PET
and MR allows the simultaneous quantification of the volume,
localization and intensity of microglia inflammation and thus
the mapping of the inflammatory damage. In the future, the
combination of blood biomarkers based on the host response
to trauma with advanced imaging techniques will allow the
development of treatments adapted to the neuroinflammatory
and immune status of patients.

Therapeutic approaches

To correct posttraumatic immunosuppression and prevent
nosocomial infections or to limit chronic neuroinflammation,
many therapies have been evaluated in recent years. They aimed
either to limit initial and chronic inflammation, including the
use of low-dose glucocorticoids (4, 194), or to restore antigen-
presenting functions or cytokine secretory capacities through
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TABLE 1 Potential immunomodulating agents for the treatment of neuroinflammation and post-traumatic immunosuppression.

Limitation of initial
inflammation

Agent Potential therapeutic impact References

Steroids ↓Inflammatory cytokines
↓Adhesion and recruitment of T cells and neutrophils
↓HPA stimulation by IL-6
↓DAMPs & PRRs

(4, 127, 186, 197)

IL-1R inhibitor Inhibition of MAPK and NF-κB pathway
↓Microglial activation
↓Inflammatory cytokines

(202–206)

Anti-TNF- α ↓TNF-α-induced activation of glia
↓Brain inflammation
↓BBB breakdown

(208–210)

Neurokinine 1 antagonist
receptor

Blockage of substance P binding
↓BBB breakdown
↓Vasogenic oedema

(212–214)

Coagulation pathways
(Tranexamic acid, aprotinin,

antithrombin 3)

Clot stabilization
↓Inflammatory effects of plasmin
Inhibition of thrombin

(215–218)

Restoration of innate
immune cells functions

Agent Potential therapeutic impact References

Steroids ↑Phagocytic capacities of neutrophils
↑INF-γ and IL-12
↓IL-10
↑T cells recruitment

(198, 199, 201)

Interferon γ ↑Others inflammatory cytokines
↑HLA-DR expression
Restores macrophages, monocytes & neutrophils
inflammatory activities

(219–228)

IL-12 Restores the loop between DCs and effectors cells
Restores Inf γ production
Restores NK cells cytotoxicity

(122, 126)

GMCSF/
GCSF

↑Myelopoiesis/↑phagocytosis
↑Cytokines and adhesion molecules
↑HLA-DR expression on antigen-presenting cells

(229–234)

Limitation of chronic
neuroinflammation

Agent Potential therapeutic impact References

Neural stem progenitor cells Secretion of glial cell-derived neurotrophic factor
Differentiation into neurons
Secretion of neuroprotective factors

(249, 250)

Mesenchymal stem cells Secretion of neurotrophic factors
↓Angiogenesis via VEGF
↑Neuroinflammation

(252–254)

the use of IFN- γ, GM-CSF (195), or interleukin-12 (130)
(Table 1).

Limitation of initial inflammation
Corticosteroids

In TBI patients, early administration of corticosteroids
seems to be an attractive therapeutic approach. The
administration of corticosteroids in this context of relative
post-traumatic immunosuppression may be a paradox,
but the effects of corticosteroids, especially at low doses,

are pleiotropic. Indeed, in TBI patients, corticosteroids may
decrease immunosuppression and the occurrence of nosocomial
infections by two mechanisms:

• During the inflammatory phase, steroids decrease the
secretion of proinflammatory cytokines, the expression
of PRRs, and the adhesion and recruitment of T cells
and neutrophils (196). The introduction of corticosteroid
therapy may also reduce the stimulation of the IL-6-
dependent HPA axis, limit the anti-inflammatory response,
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and thus limit the prevalence of VAP in patients with
exacerbated inflammation (197). In a recent ancillary study
to the Corti TC trial (4), we showed that hydrocortisone
decreases the rates of hospital-acquired pneumonia in
patients with a significant imbalance between pro-
and anti-inflammatory mechanisms (186). TBI induced-
immunosuppression is partly due to NK cell damage to
dendritic cells via an IL-10-dependent mechanism, and
glucocorticoids limit this immunosuppressive loop (198).
We thus propose that the anti-inflammatory effects of
early injection of steroids prevent the development of the
CARS, thus hasting the return to immune homeostasis and
decreasing the susceptibility to secondary infections.
• Glucocorticoids modulate dendritic cells during and after

inflammation to restore their central role in the immune
response (127), thereby reducing trauma-induced tissue
damage and susceptibility to bacterial infections. Low-
dose glucocorticoids also act post-trauma by restoring the
effector capacities of innate immune cells affected by TBI.
Shortly after the inflammatory phase, the administration
of corticosteroids decreases anti-inflammatory cytokines
(IL-10) (198), upregulates PRRs & cytokine receptors,
increases phagocytic capacity (199) and increases leukocyte
recruitment (200). Low-dose glucocorticoids also enhance
the phagocytic abilities of neutrophils and increase
interferon- γ and interleukin-12 production, which are one
of the main proinflammatory cytokines involved in host
defense against infection (201).

All these arguments suggest that in patients with severe TBI
and an exacerbated overcompensated inflammatory response,
glucocorticoids may be beneficial in preventing nosocomial
infections. The challenge remains to find biomarkers to
identify these highest-risk patients who may benefit from this
corticosteroid therapy.

IL-1R inhibitor

IL1 β is a pleiotropic cytokine secreted immediately after
TBI. In the brain, IL1 β is secreted by microglia and induces
the inflammatory cascade by stimulation of astrocytes and
other brain cells. IL-1β can activate both the MAPK and
NF-κB pathways. Activation of these pathways results in the
transcription of proinflammatory genes and amplification
of the cerebral inflammatory response. Recombinant
interleukin-1 receptor antagonist (IL1ra) is an attractive
therapeutic option to reduce early brain inflammation and
limit secondary damages. Experimental studies demonstrated
that blockade of IL-1β through treatment with IL-1Ra results
in inhibition of inflammatory cascades, microglial activation,
and proinflammatory cytokine expression (202). In mice,
Anakinra (IL1Ra) improved performance on cognitive tasks
(203) but other experimentations could not confirm these
findings (204). IL1ra use has demonstrated benefits in chronic

cerebral pathologies by inhibiting the IL1 receptor-mediated
inflammatory cascade (205). In human TBI, it was shown to
be safe and modify the acute neuroinflammatory response in a
phase II single-center RCT (206).

Anti-TNF-α

TNF-α is a ubiquitarian proinflammatory cytokine localized
in the plasma membrane as transmembrane TNF-α and is highly
expressed in brain cells (207). TNF activates two receptors:
TNFR1 and TNFR2 (208). TNF-α is involved in different aspects
of TBI pathophysiology. It activates multiple inflammatory
pathways (NF-kB, MAPK) to intensify inflammation and can
induce the breakdown of the blood-brain. The use of Anti-
TNF α in TBI patients is justified by the early or late reduction
of cerebral and then systemic inflammation, in part due to
blocking TNF-α-induced activation of glia (209). Two studies
reported improved cognitive and motor outcomes in TBI
patients having received single-dose peri-spinal administrations
of etanercept (210). Still, these studies were conducted at a
distance from the TBI.

Neurokinine 1 antagonist receptors

TBI induces immediate vasogenic edema which requires
an increased BBB permeability to serum proteins and immune
cells. Increased BBB permeability after TBI with subsequent
edema formation has been recently linked to substance P (SP)
release (211). Neurokinin 1 receptor antagonist (NK1) acts
by blocking the binding of SP to neurokinin 1 receptors. In
rats models, inhibition of SP action by administration of the
NK1 antagonist at 30 mins after trauma attenuated vascular
permeability, edema formation and also improved both motor
and cognitive neurologic outcomes (212). Administration of
NK1 antagonist reduced brain edema and intracranial pressure
in other murine models (213).

Finally, authors hypothesize that the increase in SP-
mediated protein transcytosis increases vascular permeability,
contributing significantly to the development of increased
intracranial pressure and a major influx of circulating immune
cells via the BBB. Administration of NK1 antagonists reduces
this protein transcytosis, decreasing vasogenic edema and
reducing BBB permeability (214).

Coagulation pathways

The coagulation and immune systems interact following the
TB mainly through the activation of complements. Tranexamic
acid competitively inhibits the conversion of plasminogen
to plasmin, thereby inhibiting fibrinolysis. Its efficacy was
demonstrated in the CRASH 2 trial (215) in polytrauma
patients. While the better survival in the tranexamic acid group
was partly due to decreased bleeding and faster resolution
of hemorrhagic shock, a military observational study (216),
showed that its use also limited the inflammatory response
caused by fibrin degradation products. The use of other factors
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affecting coagulation, such as aprotinin (217) or antithrombin-
3 (218) for anti-inflammatory purposes, such as decreased IL-8
production, did not yield the expected results.

Restoration of innate immune cells functions
Interferon γ

As seen previously, TBI induces an inability of the antigen-
presenting cells to present antigen to the effector T cells, notably
via the human leukocyte antigen DR (HLA DR). Numerous
studies, both in the laboratory and in the clinical setting, have
focused on HLA-DR, as its expression on monocytes has been
shown to reflect the host’s ability to present antigens (219,
220). Polytrauma patients with impaired antigen-presenting
capacity develop more infections than patients with normal
HLA-DR levels (221). In parallel, interferon-γ upgrades the
antigen-presenting capacity of monocytes via HLA DR in mice
(222) and in humans (223). Recombinant IFN-γ has been
evaluated in 4 studies in trauma patients. Daily administration
of IFN-γ at a dose of 100 µg subcutaneously had a positive
effect on mortality (224) and inhaled IFN-γ prevented the
occurrence of infection (225). However, other trials did not show
a beneficial effect (226), as restoring HLA DR expression was not
necessarily correlated with restoring immune functions altered
by the trauma (227). Recently this therapy has been evaluated
in post-septic immunodepression, demonstrating promising
results when administrated lately (228).

GM-CSF and immunoglobulins

Acquired neutrophil dysfunction is central to immune
system failures after TBI. Among them, impairment of
neutrophil phagocytosis is associated with occurrence of
nosocomial infections. (92) and results in an alteration of the
C5a-CD88 function (229). Granulocyte-macrophage colony-
stimulating factor (GM-CSF) is a multifunctional cytokine that
regulates inflammatory responses and is involved in a wide
range of biological processes in both innate and adaptive
immunity in response to danger signals (230). In critically
ill patients with sepsis-induced immunosuppression, GM-CSF
restores monocyte expression of HLA-DR (231) and improves
neutrophils phagocytic capacity in patients with impaired
neutrophil phagocytosis (232). GM-CSF have been studied
on cells from polytraumatized patients showing an effect on
the reactivity of innate immunity cells (233). However, these
effects have never been found in vivo in trauma. GC-SF which
stimulates stem cells to produce granulocytes was tested in 61
adults with GCS score ≤ 8, showed a dose-dependent increase
in neutrophil count and a significant decrease in bacteremia
incidence but no effect on strong ICU outcomes (234).

Immune modulation via metabolic pathways
Recent advances in cellular metabolism allow us to consider

new therapies for inflammatory diseases. Immunometabolism
is the study of immune cell metabolism and aim to develop

therapies which modulate metabolism and regulate endogenous
metabolites with anti-inflammatory effects (235). By modulating
various metabolic pathways of proinflammatory immune cells
the aiming is to promote a more anti-inflammatory phenotype
notably by Treg cells and anti-inflammatory macrophages
development, whilst suppressing differentiation of Th17 cells
and the more inflammatory M1 macrophages. In sepsis,
immunometabolism is more advanced than in trauma patients
(236). In sepsis, CYT107 has an impact on immunometabolism
via improving mTOR signaling, GLUT1 surface expression, and
glucose uptake by T cells (237) and targeting this metabolism
pathway showed promising results in a phase II clinical
on patients in septic shock (238). In TBI patients, several
therapeutic modulating metabolic pathways have shown an
interesting effect, most of them on animal models. Dimethyl
fumarate (DMF) has both immunomodulatory and antioxidant
properties by activation of the Nuclear factor erythroid 2-
related factor 2 (Nrf2) in different cell types which triggers
antioxidant gene expression. DMF treatment after TBI in
mice prevents depletion of antioxidative brain glutathione,
reduces brain tissue loss and confers neuroprotection (239).
Metformin is a treatment prescribed worldwide for its role
in glucose metabolism in type 2 diabetes patients. In mice
TBI model, metformin treatment increases ramified microglial
morphology with longer total branch lengths indicating reduced
neuroinflammation (240). Metformin also reduced cytokine
production in a rat model of TBI by suppression of NF-κB
and MAPK activation (241). Rapamycin targets the PI3K/Akt
pathway which is a central metabolic pathway in immune
cells inflammation (242). The target of rapamycin, commonly
known as mTOR regulates translation and cell division. In TBI
model, Rapamycin inhibits p70S6K phosphorylation, reduces
microglia/macrophages activation and increases the number of
surviving neurons at the site of injury (243). Treatment with
mTOR inhibitors ameliorate the post TBI neuroinflammation,
limit neuronal apoptosis and astrogliosis (244). There are
many other metabolic pathways that could be targeted to limit
the inflammatory and dysmetabolic consequences induced by
TBI (245).

Limitation of chronic neuroinflammation
In recent years, new therapeutic approaches have emerged

to limit the chronicity of neuroinflammation linking to chronic
neurodegenerative disease such as Parkinson’s or Alzheimer’s
(246). Limiting neuroinflammation is therefore a major issue
in the management of these patients and an important
field of research. The study of pluripotent stem cells is an
avenue of research in many inflammatory diseases such as
neurodegenerative disease, diabetes or auto-immune disease
(247). In TBI patients, these therapeutics could be very effective
(248). There are 2 main stem cell types (1), the neural stem
progenitor cells (NSPCs), embryonic stem cells derived from
fetal tissue (extremely difficult to obtain in practice) and
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(2) mesenchymal stem cells (MSCs) which can be found in
most tissues and are typically harvested from adipose tissue,
peripheral blood, human umbilical cord blood (hUCB), or bone
marrow (BMSCs). Research on NSPCs is limited due to the
technical difficulty but is promising because of the ability to
differentiate into neurons in the injured region, as well as
through secretion of glial cell-derived neurotrophic factor and
other neuroprotective factors (249). The use of human NSPCs
in rats showed an incorporation at the site of inflammation
and cells remain in the tissue 2 weeks after injection allowing
improvement in the animal’s neurological recovery (250). No
large-scale trials of NSPCs in TBI patients have yet been
conducted. MSCs do not have the capacity to differentiate into
neurons but have the ability to modulate the inflammatory
response and to secrete neurotrophic factors which promote
the protection and development of neurons (251). After
intravenous injection these cells go to the injury site guided
by the secretion of chemokines and cytokines by the activated
immune cells. The effect of MSCs is anti-inflammatory; the
use of autologous BMSCs in severe TBI patients demonstrated
structural neurological preservation correlating with functional
outcomes and a downregulation of key inflammatory cytokines
(IL-1β, and IFN-γ) (252) BMSCs therapy for seven patients,
using intracerebral transplantations and intravenous injections,
showed improvements in neurologic recovery (253). The use
of Non-Autologous MSCs, notably hUCB MSCs, is more
easy and shows promising results (254). Further studies are
needed to understand the mechanisms by which stem cell
therapies promote recovery following TBI, as well as evaluate
the effectiveness of these therapies in larger cohorts.

Conclusion

TBI initiates both local and systemic inflammatory
responses which aim at enabling brain-tissue healing while

limiting the risk of overwhelming inflammation. Given the
strong interplay between the brain and peripheric organs in
health conditions, the demonstration that the time course of the
inflammatory responses in the brain and systemic compartment
are highly correlated was almost expected, but still suggests
that immune interventions have the potential to enhance
neurological outcomes after severe brain injury. While several
approaches can be proposed for pilot evaluations in humans, it
will be crucial to deeply characterize both the systemic and brain
effects of such approaches to understand potential unexpected
effects and define subgroups of responders and non-responders.
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