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Objective: The study aims to identify potential diagnostic markers of

idiopathic pulmonary fibrosis (IPF) and analyze the significance of immune

cell infiltration in this pathology.

Materials and methods: Download two publicly available gene expression

profiles (GSE10667 and GSE24206 datasets) from the GEO database including

48 Idiopathic pulmonary fibrosis (IPF) samples and 21 human control samples

and select for distinctly expressed genes (DEG) from them. Lasso regression

model and support vector machine recursive feature elimination S,V,R,F

analysis were used to check candidate biomarkers. The area under the

subject’s work characteristic curve (AUC) value is used to evaluate its

recognition ability. The GSE53845 dataset (40 IPF patients and 8 controls)

continue to validate the expression level and diagnostic value of biomarkers in

IPF. Comprehensive analysis of immune infiltrated cells of IPF was performed

using R software and immune cell infiltration estimation analysis tool-

deconvolution algorithm (CIBERSORT).

Results: 43 DEGs were identified in total. The identified DEGs mostly involve

pneumonia, lung disease, collagen disease, obstructive pulmonary disease

and other diseases. The activation of IL-17 signaling pathways, amoebic

disease, interaction of viral proteins with cytokines and cytokine receptors,

protein digestion and absorption, and flaccid hormone signaling pathways

in IPF were different from the control group. The expression degree of

CRTAC1, COL10A1, COMP, RPS4Y1, IGFL2, NECAB1, SCG5, SLC6A4, and SPP1

in IPF tissue were prominently higher than the normal group. Immune cell

infiltration analysis showed that CRTAC1, COL10A1, COMP, IGFL2, NECAB1,
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SCG5, SLC6A4, and SPP1 were associated with monocytes, plasma cells,

neutrophils, and regulatory (treg) T cells.

Conclusion: CRTAC1, COL10A1, COMP, IGFL2, NECAB1, SCG5, SLC6A4, and

SPP1 can be used as diagnostic markers for IPF, providing new ideas for the

future study of IPF occurrence and molecular mechanisms.

KEYWORDS

idiopathic pulmonary fibrosis, immune infiltration, diagnostic, biomarker,
CIBERSORT

Introduction

Idiopathic pulmonary fibrosis (IPF) is a progressive
mesenchymal lung disease of unknown etiology with
common histological and imaging manifestations of interstitial
pneumonia (UIP) (1–4). IPF can cause scarring of the lungs,
clinically increasing the risk of lung cancer and developing
respiratory failure (5). IPF has the characteristics of rapid
progression, high fatality rate and poor prognosis, and the
median survival after diagnosis in most patients is 2.5 to
3.5 years, with a five-year survival rate of only 20–40%
(6). The pathogenesis of IPF has not yet been elucidated,
and anti-inflammatory therapy is generally used clinically
with glucocorticoids, immunosuppressants, cytotoxic agents
or inhibitor (Pirfenidone and Nintedanib) (7–9). With
the deepening of clinical research, researchers found that
only 20% of IPF patients are sensitive to glucocorticoid
therapy, and often transgender reactions(allergies: it is
a type of immune reaction, a reaction that occurs after
non-peptide drugs are combined with the body’s protein
as a hapten to an antigen), there is no specific treatment
plan for IPF in the clinic, coupled with the lack of
specific clinical manifestations in the early stage of IPF,
so the difficulty of diagnosis and treatment is high (10,
11). In recent years, it has been found that IPF often
presents familial aggregation, suggesting that it may be
a polygenic co-acting diseases. However, there has not
been much research on the causative genes of IPF so
far. Thus, it is significant to find genes closely related
to the pathogenesis of IPF to clarify the pathogenesis
of IPF and explore potential drugs for the prevention
and treatment of pulmonary fibrosis. And the human
Genome project was being completed, omics technology
and bioinformatics analysis technology based on high-
throughput sequencing/chip analysis have gradually emerged,
providing important technical support for the study of
the pathological mechanism of complex diseases (12).
In order to analyze the differentially expressed genes
between normal people and patients, this study used
bioinformatics methods to elucidate the signaling pathways

and key gene targets closely related to IPF development
in the National Biotechnology Center Gene Expression
Comprehensive Database GEO,1 making the results more
accurate and credible.

Materials and methods

Data processing

This study used gene chip data from GEO (see text
footnote 1) data from the National Biotechnology Information
Centre in the United States, serial numbers GSE10667,
GSE24206, and GSE53845. Among them, the GSE10667
dataset collected 31 pulmonary fibrosis tissue samples and
15 normal tissue samples, the GSE24206 dataset collected 17
pulmonary fibrotic tissue samples and 6 normal lung tissue
samples, and the GSE53845 dataset collected 40 pulmonary
fibrosis tissue specimens and 8 healthy lung tissue samples.
The Original Data is operated using the Robost Multiarray
Averaging function of the oligoR package2 and next employ
"limma" and "SVA" Two software packages combine two
microarray datasets, GSE10667 and GSE24206, into a single
dataset as a training dataset. Since the two datasets of
GSE10667 and GSE24206 contained samples of IPF tissue
and normal lung tissue, they were used for subsequent
difference analysis, and the GSE53845 microarray dataset
was selected as the model validation dataset for follow-
up research.

Screening for differentially expressed
genes

Differentially expressed genes (DEGs) were selected for
the combined GSE10667 dataset and GSE24206 dataset using

1 https://www.ncbi.nlm.nih.gov/geo/

2 http://www.bioconductor.org/packages/release/bioc/html/oligo.
html
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the R language "Limma" and "pheatmap" software packages,
and the differences in gene expression were represented by
the log2FC of P value and fold change (FC). P < 0.05 and
| log2FC| > 2 were used as thresholds for screening DEGs,
and IPF-related differential genes were screened out by volcano
maps and heat maps.

Functional enrichment analysis

Differentially expressed genes were used in the online
Database for Annotation (DAVID v6.7)3 conducted gene
ontology (GO) function and Kyoto encyclopedia of genes
and genomes (KEGG) pathway enrichment analysis to
comprehensively annotate the biological function information
of genes (13). GO functional analysis annotates DEGs
from three aspects: biological processes (BP), molecular
functions (MF), and cellular components (CC). KEGG
pathway enrichment analysis provides high-level pathway
function and bioinformatics through large-scale molecular
datasets (14, 15).The above analysis can use DAVID
to analyze the biological functions of DEGs online, of
which P < 0.05 is a statistically significant difference.
Besides,Disease Ontology (do) enrichment analysis of DEGs
using "clusterprofiler" and the DOSE software package in
R (16, 17). If P < 0.05, the gene set was considered to be
significantly enriched.

Screening of candidate diagnostic
biomarkers

To identify major prognostic variables, we use two
machine learning algorithms to calculate disease status.
Minimum Absolute contraction selection operator (LASSO)
is a regression statistics method,which uses regularization way
to ameliorate degree of accuracy. Make use of the LASSO
in the “glmnet” software package in R to distinguish genes
that were prominently relevanted with UC and normal
sample discrimination (18). Support vector machines
(SVMs) are monitoring machine learning methods that
are extensively applied in taxonomy and regression. To
avoid overfitting, an RFE algorithm is used to select the
optimal gene among the metadata queue. Therefore,
in order to discriminate the most recognizable group of
genes, we use the support vector machine recursive feature
elimination (SVM-RFE) to screen the suitable feature.
The nested gene of the two algorithms were fit into and
further verify the expression level of candidate genes on the
GSE53845 dataset.

3 https://david.ncifcrf.gov/summary.jsp

Diagnostic value of characteristic
biomarkers for idiopathic pulmonary
fibrosis

To examine the predictive value of the identified
biomarkers, We used mRNA expression data from 48 IPF
and 21 check samples to create ROC curves. The area under
ROC curve (AUC) value was used to determine the diagnostic
validity of IPF relative to the control sample, and was further
validated in the GSE53845 dataset.

Explore of immunocyte subtypes

The relative scale of infiltrating immunocyte in IPF
gene expression profile was quantified, One is called
CIBERSORT4 was made use of calculating immunocyte
infiltration. A reference set containing 22 immunocyte subtypes
(LM22) and 1000 permutations was used to estimate the
hypothetical immunocyte abundance (19). Relevance analysis
and visualization of 22 infiltrative immunocyte with R-pack
“corrplot”. Plot violin plots using “vioplot” packets with R
format to visualize discrepancy in immunocyte infiltration
between IPF samples and check samples.

Correlation identify between
recognized genes and soak
immunocyte

The correlation between the recognized gene biomarkers
and the level of infiltrative immunocyte was detected using
spearman rank relation explored with R. Using charting
techniques with “ggplot2” packages, it is possible to visualize the
generated associations.

Results

Identification of differentially
expressed genes in idiopathic
pulmonary fibrosis

This study retrospectively analyzed data from 48 IPF and
21 control samples from two GEO datasets (GSE10667 and
GSE24206). The LIMMA package is used to perform DEG
analysis on the metadata after the batch effect is removed. A total
of 43 DEGs are obtained, as shown in Figure 1. 35 genes were
remarkably raised and 8 genes were obviously downregulated,
as shown in Figure 2.

4 https://cibersortx.stanford.edu/
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FIGURE 1

IPF-related genetic heat maps.

Functional correlation analysis

Gene ontology biological process analysis of DEGs, with
P < 0.05 as the filter, involving 192 biological processes. The
first 20 biological processes include 10 BP, 5 CC, 5 MF, as
shown in Figure 3. The KEGG results demonstrated that the
enriched pathways mainly involved:ECM-receptor interaction,
Amoebiasis, Protein digestion and absorption, PI3K-Akt
signaling pathway, Focal adhesion, Rheumatoid arthritis,
Cytokine-cytokine receptor interaction, as shown in Figure 4.
Conduct pathway enrichment analysis to explore the role of
DEGs. The results of functional enrichment demonstrated
that diseases enriched by DEGs were mainly related to
pneumonia, lung disease, collagen disease, sarcoidosis,
osteoarthritis, integumentary system disease, systemic
scleroderma, as shown in Figure 5. These results strongly
prove that inflammation and immunoreaction plays an vital
role in IPF.

Recognition and confirmation of
diagnostic traits biomarkers

We use two distinctive algorithms to sifting potential
biomarkers. Narrow the DEGs via the LASSO returning
method to obtain 10 variables as diagnostic biomarkers for
IPF, as shown in Figure 6. A subgroup of 40 traits among
the DEGs was confirmed using the SVM-RFE, as shown in
Figure 7. The 10 superimposed traits (CRTAC1, COL10A1,
COMP, RPS4Y1, IGFL2, NECAB1, SCG5, SLC6A4, SPP1, IL-6)
between these two algorithms were finally picked as shown in
Figure 8. Moreover, to produce more precise and trustworthy
outcome, the GSE53845 informationset was used to validate the
expression levels of the 10 features. The expression degree of
CRTAC1, COL10A1, COMP, RPS4Y1, IGFL2, NECAB1, SCG5,
SLC6A4, SPP1 in IPF tissue were prominently higher than
the normal group (Figure 9; all P < 0.05). Whereas, there
was no obviously discrepancies in IL-6 expression between the
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FIGURE 2

IPF-related differential gene volcanic map.

two groups. Thus, we applied the logistic regression algorithm
to build the diagnostic model of nine identified genes in the
metadata queue.

Diagnostic validity of traits biomarkers
in idiopathic pulmonary fibrosis

As presentation in Figure 10, the diagnostic ability of the
three biomarkers in distinguishing IPF from the normal samples
showed a advantageous diagnostic value, with an AUC of 0.943
(95% CI 0.883–0.986) in CRTAC1, AUC of 0.886 (95% CI 0.778–
0.970) in COL10A1, AUC of 0.984 (95% CI 0.956–1.000) in
COMP, AUC of 0.633 (95% CI 0.469–0.782) in RPS4Y1, AUC
of 0.936 (95% CI 0.873–0.980) in IGFL2, AUC of 0.925 (95% CI
0.841–0.987) in NECAB1, AUC of 0.967 (95% CI 0.923–0.995)
in SCG5, AUC of 0.763 (95% CI 0.625–0.882) in SLC6A4, AUC
of 0.886 (95% CI 0.790–0.957) in SPP1. In addition, a strong
discrimination ability was confirmed in the GSE53845 dataset
with an AUC of 0.981 (95% CI 0.941–1.000) in CRTAC1, AUC
of 0.975 (95% CI 0.912–1.000) in COL10A1, AUC of 0.953 (95%

CI 0.881–1.000) in COMP, AUC of 0.736 (95% CI 0.494–0.927)
in RPS4Y1, AUC of 0.931 (95% CI 0.812–1.000) in IGFL2, AUC
of 0.991 (95% CI 0.963–1.000) in NECAB1, AUC of 0.984 (95%
CI 0.944–1.000) in SCG5, AUC of 0.900 (95% CI 0.784–0.981) in
SLC6A4, AUC of 0.925 (95% CI 0.809–1.000) in SPP1 indicating
that the feature biomarkers had a high diagnostic ability, as
shown in Figure 11.

Immunocyte permeability

First of all, we investigated the constitution of immunocyte
in IPF tissues vs. normal control tissues. The ratio of Plasma
cells (P = 0.009), regulatory (Tregs) T cells (P = 0017),
resting NK cells (P = 0019), monocytes (P < 0.001), M0
macrophages (P = 0.012), M2 macrophages (P = 0.024),
Eosinophils (P = 0.033) in IPF tissues were apparently lower
than in normal tissues. Nevertheless, the percentage of memory
B cells (P = 0.010), CD4 memory resting T cells (P = 0.001),
Neutrophils (P < 0.001) in IPF tissues was obviously higher than
that in normal tissues, as shown in Figure 12.
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FIGURE 3

GO enrichment analysis graph.

FIGURE 4

KEGG pathway enrichment diagram.
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FIGURE 5

DO enrichment analysis plot.

FIGURE 6

Tuning traits selection in the least absolutem reduction and selection operator model.
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FIGURE 7

Biomarker selection graph based on support vector machine recursive feature elimination (SVM-RFE) algorithm.

FIGURE 8

Venn diagram shows the minimum absolute shrinkage and ten diagnostic markers that the selection operator shares with the SVM-RFE
algorithm.

Frontiers in Medicine 08 frontiersin.org

https://doi.org/10.3389/fmed.2022.959010
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-959010 November 19, 2022 Time: 14:46 # 9

Dai et al. 10.3389/fmed.2022.959010

FIGURE 9

Verification of the level of diagnostic biomarkers in the GSE53845 infomationset.

Correlation of ratio of each immunocyte in IPF tissue
samples as presentation in Figure 13. In UC tissues, immune
cells that make up a larger than correlation factor include:
negatively correlated visible monocytes and Plasma cells
(−0.57), memory B cells (−0.57), follicular helper T cells
(−0.37); activated mast cells and static mast cells (−0.53), M2
macrophages (−0.53); activated NK cells and M0 macrophages
(−0.39), resting NK cells (−0.34); CD4 memory resting T
cells and follicular helper T cells (−0.41), M0 macrophages
(−0.34), and CD8 T cells (−0.34); CD8 T cells and
M0 macrophages (−0.31); M1 macrophages and activated
dendritic cells (−0.34).The above negative correlation suggests
a relationship between these immune cells in the process of IPF
disease. Positive correlations are visible memory B cells with
Plasma cells (0.62), follicular helper T cells(0.30); monocytes

and resting NK cells (0.32); Eosinophils and activated dendritic
cells(0.50); T cells CD4 native and memory B cells (0.30);
M1 macrophages and activated NK cells(0.35); CD4 memory
activated T cells and M1 macrophages (0.32), activated dendritic
cells (0.32). The above positive correlation suggests that these
immune cells have a synergistic relationship between these
immune cells in the course of IPF disease.

Correlation analysis between the eight
biomarkers and infiltrating immune
cells

As shown in Figure 14, CRTAC1 was positively correlated
with Monocytes (R = 0.37, p = 0.0018), T cells CD8 (R = 0.33,
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FIGURE 10

The receiver manipulation characteristic (ROC) curves for diagnostic validity of nine diagnostic markers in the metadata queue.

p = 0.0053) and negatively correlated with Plasma cells
(R = −0.28, p = 0.021), Macrophages M0 (R = −0.26, p = 0.029).
COL10A1 was positively correlated with T cells CD4 memory
activated (R = 0.28, p = 0.022), and negatively correlated with
Neutrophils (R = −0.32, p = 0.008). COMP was positively
correlated with Plasma cells (R = 0.38, p = 0.0012), B cells
memory (R = 0.29, p = 0.017) and negatively correlated with
Monocytes (R = −0.34, p = 0.0046), Neutrophils (R = −0.3,
p = 0.011), NK cells resting (R = −0.3, p = 0.012), Eosinophils
(R = −0.29, p = 0.014), T cells CD4 memory resting (R = −0.27,
p = 0.022).IGFL2 was positively correlated with B cells memory
(R = 0.35, p = 0.0033), T cells regulatory (Tregs) (R = 0.31,

p = 0.0089), Plasma cells (R = 0.31, p = 0.010), Dendritic
cells resting (R = 0.3, p = 0.011), Macrophages M0 (R = 0.24,
p = 0.043) and negatively correlated with NK cells resting
(R = −0.35, p = 0.003), Monocytes (R = −0.32, p = 0.007), T
cells CD4 memory resting (R = −0.3, p = 0.013), Neutrophils
(R = −0.26, p = 0.033). NECAB1 was positively correlated
with Eosinophils (R = 0.35, p = 0.003), Monocytes (R = 0.35,
p = 0.003), Neutrophils (R = 0.3, p = 0.011), T cells CD4
memory resting (R = 0.29, p = 0.017), Dendritic cells activated
(R = 0.24, p = 0.043) and negatively correlated with Plasma
cells (R = −0.39, p = 0.001), B cells memory (R = −0.38,
p = 0.001), T cells regulatory (Tregs) (R = −0.3, p = 0.011), T
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FIGURE 11

The receiver operating characteristic (ROC) curve of the diagnostic effectiveness of the nine diagnostic markers in the GSE53845 dataset.

cells gamma delta (R = −0.25, p = 0.040). SCG5 was positively
related to Plasma cells (R = 0.36, p = 0.003), B cells memory
(R = 0.31, p = 0.009), Dendritic cells resting (R = 0.27, p = 0.023),
Macrophages M0 (R = 0.27, p = 0.026), T cells regulatory
(Tregs) (R = 0.26, p = 0.033) and negatively correlated with NK
cells resting (R = −0.45, p < 0.001), Monocytes (R = −0.35,
p = 0.003), Neutrophils (R = −0.29, p = 0.016), T cells CD4
memory resting (R = −0.29, p = 0.017). SLC6A4 was positively
correlated with Monocytes (R = 0.69, p< 0.001), NK cells resting
(R = 0.35, p = 0.003), NK cells activated (R = 0.3, p = 0.012),

Eosinophils (R = 0.3, p = 0.012), Dendritic cells activated
(R = 0.26, p = 0.032) and negatively correlated with Plasma cells
(R = −0.62, p < 0.001), B cells memory (R = −0.6, p < 0.001),
T cells follicular helper (R = −0.34, p = 0.004), T cells regulatory
(Tregs) (R = −0.25, p = 0.035), T cells gamma delta(R = −0.24,
p = 0.048). SPP1 was positively correlated with B cells memory
(R = 0.51, p < 0.001), Plasma cells (R = 0.49, p < 0.001),
Macrophages M0 (R = 0.46, p< 0.001), T cells regulatory (Tregs)
(R = 0.33, p= 0.005), T cells follicular helper (R = 0.33, p= 0.005),
T cells gamma delta (R = 0.24, p = 0.045) and negatively related
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FIGURE 12

The comparison of 22 immune cell subtypes of IPF tissue with normal tissue green represents normal samples, and red represents IPF samples.

to Monocytes (R = −0.54, p < 0.001), Eosinophils (R = −0.42,
p< 0.001), NK cells activated (R = −0.36, p = 0.002), T cells CD8
(R = −0.32, p = 0.007), T cells CD4 memory resting (R = −0.32,
p = 0.007).

Discussion

Idiopathic pulmonary fibrosis is a rare, progressive, and
often lethal type of chronic fibrotic interstitial lung illness
(2).IPF is disabling, the mortality rate is high, the etiology
and pathogenesis are not clear, the prognosis is not ideal,
and improving the treatment effect is still a serious challenge
(2). Therefore, in-depth understanding of the pathogenesis of
the disease can further discover new treatments to improve
the prognosis of patients. Bioinformatics is an emerging
interdisciplinary discipline that uses tools such as mathematics,
computer science, and biology to analyze and study biological
data in order to understand the biological significance of the
data. Recent period, bioinformatics are widely used in the
study of nosogenesis, which can find genes that play a major
role in the development of diseases, so as to discover new
pathogenic targets of diseases, which is of great significance for
understanding the development system of diseases and creating
novel treatment methods.

In this study, the raw data of the two datasets of GSE10667
and GSE24206 were collected from the GEO database and the

datasets were comprehensively analyzed. Altogether 43 DEGs
were selected, of which 35 were highly expressed in IPF and
8 DEGs were lowly expressed in IPF. Subsequently, DEGs
were analyzed for GO function, KEGG enrichment and disease
enrichment, which were consistent with the results of previous
mechanism studies, and the biological functions of DEGs
were mainly concentrated in cell adhesion, biological adhesion,
collagen metabolism, cytoskeletal development, extracellular
matrix changes, cytokine interactions, etc. The results of KEGG
pathway enrichment analysis show that DEGs are mainly
related to ECM receptor interactions, protein digestion and
absorption, PI3K-Akt signaling pathway, and cytokine–cytokine
receptor mutual influence and other signaling pathways. The
results of disease enrichment analysis showed that DEGs were
mainly involved in diseases such as pneumonia, lung disease,
collagen disease, sarcoidosis, osteoarthritis, integumentary
system disease, systemic scleroderma, and so on.

Based on the LASSO regression model and SVM-RFE
analysis, COMP, SPP1, SLC6A4, COL10A1, CRTAC1, IGFL2,
NECAB1, and SCG5 were identified as diagnostic markers of
IPF. TGF-β1 is generally believed to be a key cytokine driving
fibrosis (20), and the expression level of TGF-β1 in most
fibrotic tissues is significantly increased. Cartilage oligomeric
matrix protein (COMP) is a non-collagenous glycoprotein
component of extracellular matrix (ECMs) that accentuates
TGF-β1 signaling and is associated with extracellular matrix
polymerization and stiffness. COMP is a biomarker associated

Frontiers in Medicine 12 frontiersin.org

https://doi.org/10.3389/fmed.2022.959010
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-959010 November 19, 2022 Time: 14:46 # 13

Dai et al. 10.3389/fmed.2022.959010

FIGURE 13

Relevance matrix of components of all 22 immunocyte subtypes. Both the horizontal and Vertical axis show immunocyte subtypes.
Immunocyte subtype composition (higher, lower, and the same correlated levels are shown in red, blue, and white, respectively).

with the severity of pulmonary fibrosis in systemic sclerosis
(21). The expression level of COMP in patients with IPF
was significantly increased, and the increase in serum COMP
expression level was closely related to the decrease of the
patient’s lung capacity index (22).Secretory phosphoprotein
1(SPP1) is a protein formerly related to pulmonary fibrosis
and COPD in lung process in mice (23). Recent years, it has
been found out that SPP1 expression has been upregulated in
bleomycin-mediated models of pulmonary interstitial fibrosis
(24, 25), mouse models of asbestos lungs (19), and irradiation-
induced models of interstitial fibrosis (26), suggesting that SPP1
may have played a certain regulatory role in the progression
of pulmonary fibrosis. Single-cell RNA sequencing has been
shown to show that the macrophage subset in IPF has high

expression of SPP1 (27), and the expression of SPP1 gradually
increases as inflammation and fibrosis deepen during fibrosis
(24). SPP1 result in human fibrotic lung disease, and rising in
SPP1 are related to IPF (28). Lamothe et al. (29) shows Spp1 and
Sirpa were identified as key conserved genes in the regulation of
smoking and pulmonary fibrosis in humans and mice. SLC6A4
is a serotonin transporter gene whose expression or methylation
is strongly associated with the onset, phenotype, and prognosis
of depression (30, 31). At the same time, the SLC6A4 variant
was associated with low survival in colorectal cancer patients
(32). In addition, SLC6A4 variants are a risk factor for coprous
obstructive pulmonary disease with lung cancer (33). However,
we have not found that SLC6A4 has been involved in pulmonary
fibrosis. Studies confirm that the progression of the disease of
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FIGURE 14

Correlation between diagnostic gene biomarkers and infiltrating immune cells in IPF.

IPF is accompanied by severe collagen metabolism disorders
(34). COL1A1, COL1A2, COL8A1, COL10A1, and COL14A1
are members of the collagen family. During the pathogenesis
of pulmonary fibrosis, a large amount of extracellular matrix
is deposited in the lungs and is highly expressed in the lung

tissues of IPF. Type I collagen is the main lung collagen and
contains two alpha1 chains (COL1A1) and one alpha2 chain
(COL1A2). IPF pathology is manifested by early thickening
of the alveolar wall and alveolitis of death in epithelial cells,
alterations that eventually lead to the formation of pulmonary
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fibrosis, characterized by overexpression of type I collagen
(21). Type I and type III collagen play a major role in the
development of fibrosis lungs. In the IPF, both type I and
type III collagen production increased (35). However, we have
not found that the characteristic gene COL10A1 identified in
this study has been involved in pulmonary fibrosis. CRTAC1,
regarded as an opponent of nogo receptor-1 (36). IL-1β and
TNF-α in patients with osteoarthritis can induce and obviously
upregulate the expression of CRT in articular chondroblasts or
synovial fibroblasts (37), CRTAC1 can be used as a biomarker
to distinguish chondrocytes from osteoblasts and mesenchymal
stem cells (38). At present, there are no reports on CRTAC1 and
pulmonary fibrosis at home and abroad. In addition, no other
potential markers IGFL2, NECAB1, SCG5 were found to play
a role in pulmonary fibrosis. This study uses bioinformatics to
screen out differentially expressed genes, some of which have
been confirmed to be involved in IPF and some of which have
not yet been studied, suggesting that these genes may be new
research targets for the study of the pathogenesis of IPF.

The categories of immunocyte penetration in IPF and
normal samples were evaluate using CIBERSOTR. The results
showed that various immunocyte subtypes were closely
related to the vital biological processes of IPF. An increased
permeability of Plasma cells, regulatory (Tregs) T cells, resting
NK cells, Monocytes, M0 macrophages, M2 macrophages, and
Eosinophils, and a decreased penetration of memory B cells,
CD4 memory resting T cells, and neutrophils has been found
to be associated with the onset and development of IPF.
Moreover, by utilizing correlation analysis between COMP,
SPP1, SLC6A4, COL10A1, CRTAC1, IGFL2, NECAB1, SCG5
and immune cells, COMP, SPP1, SLC6A4, COL10A1, CRTAC1,
IGFL2, NECAB1, and SCG5 were found to be correlated with
Plasma cells, monocytes, Neutrophils, regulatory (Tregs) T cells.
Chronic inflammation and the immune response is significantly
important in the progression of the IPF (39), Immune response
was thought to be related to IPF (40).Clinical studies have
confirmed that the level of monocytes was closely related to
IPF mortality. A retrospective, multicentre cohort study (41)
showed that patients with IPF with higher monocyte counts
were at higher risk for poor outcomes. In addition, Kreuter et al.
(42) In patients with IPF, an elevated monocyte count has been
reported to be related to an increased risk of IPF progression,
hospitalization, and mortality. Monocyte counts can be included
in the clinical evaluation of patients with IPF but detailed
future research was required to assess this (42, 43). Studies
confirmed (44) that the neutrophil inhibitor civirolox sodium
reduces the degree of pulmonary fibrosis by inhibiting TGF-
β expression; In addition, Gregory et al. (45) used bleomycin
to induce fibrosis in mice, and found that fibroblasts and
myofibroblasts in mice with NE(-/-) were greatly reduced, and
the degree of pulmonary fibrosis was less than in the normal
group, further confirming that neutrophils are participated in
the immune adjustment of IPF. Moreover, clinical studies (46)

have also confirmed that neutrophil levels are closely related
to IPF mortality, and that neutrophil recruitment into the
bronchoalveolar cavity is considered a predictor of early death
in patients with IPF (47). Clinical studies have also found
that BAL neutrophils and eosinophilia in IPF patients are
directly related to CCL18 concentrations, and their mechanism
may be related to the production of reactive oxygen species
by neutrophils and the participation of eosinophils in the
formation of inflammatory injury in pulmonary fibrosis (48).
Normally, very few lymphocytes are present in the alveolar
interstitium, while lymphocytes in the lungs of patients with
IPF are significantly elevated. Among them, T lymphocytes
are the main effector cells: Th1 type cells express antifibrosis
factors, while Th2 type cells express profibrosis factors, Th1/Th2
imbalance is one of the pathogenesis of pulmonary fibrosis, Treg
cells participate in irradiation-induced pulmonary fibrosis by
facilitating fibroblast aggregation, weakening the Th17 reaction
and governing the Th1/Th2 equilibrium (49). Regulatory T-cells
(Tregs) are also involved in the pathogenesis of IPF. Boveda-
Ruiz et al. (50) found that Tregs increase the release of TGF-
β1 and collagen deposition in the early stages of pulmonary
fibrosis, demonstrating that Tregs have a pro-fibrosis effect
in the early stages; However, Tregs in the late stage have
an anti-fibrotic effect: Xiong et al. (49) studies have shown
that the depletion of Tregs can increase Th17 cell expression,
thereby prompting the Th1/Th2 balance to shift to Th1, thereby
reducing the degree of pulmonary fibrosis. Studies have shown
that Tregs can also reduce fibroblast aggregation and reduce
the degree of pulmonary fibrosis by inhibiting fibroblast-9 and
chemokine ligand 12 (51, 52). M2 macrophages can secrete
IL-10, chemokines CCL18 and other profiblination cytokines,
such as CCL18 levels have increased significantly in the patient’s
serum, BALF and AM culture, indicating that it can promote
collagen production by lung fibroblasts and play an important
role in inflammatory immune response (53). Therefore, selective
activation of macrophages is crucial in IPF development.

Large-scale studies of high-throughput sequencing
techniques and molecular mechanisms have provided clues
to the origin and development of IPF, but further research is
needed to elucidate the pathogenesis of IPF. Considering the
potential for false-positive results, limited sample sizes, and
potential heterogeneity in the analysis of a single microarray
dataset, we have integrated data from two datasets (GSE10667
and GSE24206), and the molecular mechanisms of IPF
pathogenesis involved in the obtained DEGs still need to be
further explored. The limitation of this study is that although the
DEGs associated with IPF were extracted through data mining
and detailed bioinformatics analysis of multiple datasets,
and the diagnostic characteristic genes of IPF were obtained
according to THE LASO regression model and SVM-RFE
analysis, it was still necessary to perform related experiments
for example western blotting and immunohistochemical
analysis to verify the level of these genes in IPF. In addition to
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identifying IPF-associated DEGs and characteristic genes by
analyzing two datasets, more reliable and accurate DGEs need
to be explored through new techniques and bioinformatics
analysis methods. In addition, further loss of function and
function must be carried out in vivo and in vitro to obtain
experimental confirmation. This study illustrates a trustworthy
and comprehensive perspective on the pathogenesis and
progress of IPF, and a large number of potential molecules
relevant to the etiopathogenesis of IPF can be aquired through
bioinformatics analysis, and can be verified by later experiments
to provide a more detailed basis for the diagnosis and
treatment of IPF.

Conclusion

In a word, CRTAC1, COL10A1, COMP, IGFL2, NECAB1,
SCG5, SLC6A4, and SPP1 were identified as diagnostic
biomarkers of IPF. Monocytes, Plasma cells, Neutrophils,
Regulatory (Tregs) T cells, M2 macrophages, Eosinophils,
and CD4 memory resting T cells are tightly relevant to the
appearance and progress of IPF. These immune cells may be
developed as targets for immunotherapy in patients with IPF. In
summary, these research have shown that neutrophils are related
to the formation of IPF pulmonary fibrosis, and through in-
depth study of the immune regulation mechanism of sextrophils
in IPF, IPF target therapeutic drugs can be developed.
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