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Eosinophilic esophagitis (EoE) is a chronic allergic inflammatory condition

of the esophagus associated with elevated esophageal eosinophils. Second

only to gastroesophageal reflux disease, EoE is one of the leading causes of

chronic refractory dysphagia in adults and children. EoE is a clinicopathologic

disorder and the histological portion of the diagnosis requires enumerating

the density of esophageal eosinophils in esophageal biopsies, and evaluating

additional features such as basal zone hyperplasia is helpful. However, this task

requires time-consuming, somewhat subjectivemanual analysis, thus reducing

the ability to process the complex tissue structure and infer its relationship

with the patient’s clinical status. Previous artificial intelligence (AI) approaches

that aimed to improve histology-based diagnosis focused on recapitulating

identification and quantification of the area of maximal eosinophil density, the

gold standard manual metric for determining EoE disease activity. However,

this metric does not account for the distribution of eosinophils or other

histological features, over the whole slide image. Here, we developed an

artificial intelligence platform that infers local and spatial biomarkers based

on semantic segmentation of intact eosinophils and basal zone distributions.

Besides the maximal density of eosinophils [referred to as Peak Eosinophil

Count (PEC)] and a maximal basal zone fraction, we identify the value of two

additional metrics that reflect the distribution of eosinophils and basal zone

fractions. This approach enables a decision support system that predicts EoE

activity and potentially classifies the histological severity of EoE patients. We

utilized a cohort that includes 1,066 biopsy slides from 400 subjects to validate

the system’s performance and achieved a histological severity classification

accuracy of 86.70%, sensitivity of 84.50%, and specificity of 90.09%.

Frontiers inMedicine 01 frontiersin.org

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2022.950728
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2022.950728&domain=pdf&date_stamp=2022-10-21
mailto:yoni.savir@technion.ac.il
https://doi.org/10.3389/fmed.2022.950728
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2022.950728/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Larey et al. 10.3389/fmed.2022.950728

Our approach highlights the importance of systematically analyzing the

distribution of biopsy features over the entire slide and paves the way toward a

personalized decision support system that will assist not only in counting cells

but can also potentially improve diagnosis and provide treatment prediction.

KEYWORDS

eosinophilic esophagitis, deep learning, digital pathology, decision support system,

pathology biomarkers

1. Introduction

Eosinophilic esophagitis (EoE) is a chronic immune system

disease associated with esophageal tissue inflammation and

injury characterized by a large number of eosinophils, which

are found in the lining of the esophagus, called the esophageal

mucosa (1). EoE is allergen-driven and mainly caused by a

reaction to food (2). The damaged esophageal tissue leads

to symptoms, such as pain and trouble swallowing (3).

In particular, EoE is becoming a more common cause of

dysphagia in adults and vomiting, failure to thrive, and

abdominal pain in children (3). EoE can be treated by

dietary restriction, proton pump inhibitor (PPI) (4) therapy

or topical steroids, and in more severe conditions, an

endoscopic dilation intervention, specifically stricture dilation,

is used.

Currently, the diagnosis of EoE relies on performing an

upper endoscopy and obtaining esophageal mucosal biopsies.

The hematoxylin and eosin (H&E) stained slides (5) are

examined by pathologists. The physicians typically manually

examine the slide using a microscope, identify the area of

the tissue with the greatest eosinophil density, and count the

number of intact eosinophils in that high-power field (HPF), i.e.,

the peak eosinophil count (PEC). The gold standard, histologic

criterion, to date, is to define patients with EoE as having active

disease if their PEC ≥ 15 (6).

Yet, the PEC score captures only the maximal eosinophil

count and not other properties such as the distribution of the

eosinophils within the tissue, and it does not account for other

cellular features that are captured by the EoE histology scoring

system (EoEHSS) (7). This method includes eight features that

are relevant to EoE and accounts not only for the maximal

severity of these features, but also for their distribution. This

includes, for example, quantifying the percentage of HPFs within

the slide that exceed the threshold of≥ 15 eosinophils. However,

estimating such a metric visually poses a significant challenge.

Another example of the importance of accounting for features in

addition to the maximal eosinophil count is the development of

a histological severity score that was used to diagnose remission

(EoEHRS) (8). In this case, both PEC < 15/HPF and total grade

and stage scores from all EoEHSS features ≤ 3 are required to

define remission.

Whereas processing the features of the entire whole slide

improves diagnostic metrics, current manual approaches limit

it. Counting PEC and scoring EoE histology is time-consuming,

requires trained personnel, and can lead to variability between

pathologists upon EoE biopsy diagnosis (6, 9, 10). Hence, in

recent years, considerable effort has been dedicated to build

a robust and trustworthy process of inferring pathological

biomarkers in health and disease. This includes harnessing

machine learning in general and deep learning specifically

(11–20). We have recently applied a dual approach toward

diagnosing EoE: the first one is assigning a global label for the

pathology images that is based on the patient condition (21). The

second one is based on segmenting and counting inflammatory

cells, such as Intact eosinophils and Not-Intact eosinophils for

EoE biopsy diagnosis using a deep convolutional neural network

(DCNN) (22).

Here, we developed an artificial intelligence (AI) approach

using machine learning for extracting novel biomarkers and

used it to predict the histological severity condition (Figure 1).

The pipeline has a state-of-the-art segmentation performance

with a mean intersection over union metric (mIoU) score of

83.85% based on basal zone (BZ) and intact eosinophils (Eos-

Intact) features. We show that derived biomarkers significantly

correlate with manually obtained HSS scores. Using a cohort

of 1,066 biopsy slides from 400 patients, we demonstrate

that AI biomarkers estimate histological severity achieving

an accuracy of 86.70%, sensitivity of 84.50%, and specificity

of 90.09%.

2. Materials and methods

2.1. Dataset and clinical scores

The dataset is part of the Consortium of Eosinophilic

Gastrointestinal Disease Researchers (CEGIR) (23), a national

collaborative network in the U.S. of 16 academic centers

caring for adults and children with eosinophilic gastrointestinal

disorders. The institutional review boards approved this study

of the participating institutions via a central institutional

review board at Cincinnati Children’s Hospital Medical Center

(CCHMC IRB protocol 2015-3613). Participants provided
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FIGURE 1

Artificial intelligence pipeline for diagnosing whole slide images (WSIs) and predicting disease activity of patients with eosinophilic esophagitis

(EoE). (A) First, we analyze the WSI with a high-power-field (HPF)-sized kernel. (B) For each HPF, we segment intact eosinophils (Eos-intact) and

basal zone (BZ) areas to obtain a local score for both features. (C) Once we have the analyzed entire WSI, we extract four biomarker scores that

depend on the spatial distributions of eosinophils and basal zone. (D) We use these four biomarkers to predict the histological severity of the

patients’ conditions.

written informed consent. The dataset contains subjects with a

history of EoE undergoing endoscopy (EGD) for standard-of-

care purposes (n = 419). Distal, mid, or proximal esophageal

biopsies (1–3 per anatomical site) per patient were placed in

10% formalin; the tissue was then processed and embedded in

paraffin. Sections (4 µm) were mounted on glass slides and

subjected to hematoxylin and eosin (H&E) staining. Slides were

scanned on the Aperio scanner at 400X magnification and

were saved in SVS format. Each slide of esophageal tissue was

analyzed by an anatomic pathologist who is a member of the

CEGIR central pathology core. In addition to determining peak

eosinophil count per 400XHPF (PEC), the pathologist subjected

each slide to eosinophilic esophagitis histological scoring system

(EoE HSS) analysis to assess the severity (grade) and extent

(stage) of a set of histological abnormalities using a 4 point scale

(0 normal; 3 maximum change) (7). These features included

eosinophilic inflammation (EI), basal zone hyperplasia (BZH),

dilated intercellular spaces (DIS), eosinophilic abscess (EA),

eosinophil surface layering (SL), surface epithelial alteration

(SEA), dyskeratotic epithelial cells (DEC), and lamina propria

fibrosis (LPF) (7). The BZH grade score is determined by the

amount of total epithelial thickness occupied by the basal zone,

where 0 indicates that BZH is not present, 1 indicates that basal

zone occupies >15% but <33% of the total epithelial thickness,

2 indicates that the basal zone occupies 33–66% of the total

epithelial thickness, and 3 indicates that the basal zone occupies

>66% of the total epithelial thickness. The BZH stage score

indicates the amount of biopsy that showed any degree of BZH,

where 0 indicates that BZH is not present, 1 indicates that<33%

of the epithelium exhibits any BZH with grade >0, 2 indicates

that 33–66% of the epithelium exhibits any BZH with grade >0,

and 3 indicates that >66% of the epithelium exhibits any BZH

with grade >0 (7).

2.2. Semantic labeling

To train and validate the models, we labeled 23 patients’

whole slide images (WSIs). The dataset consists of large WSIs

with median length and width of 150,000 and 56,000 pixels,

respectively.We cropped eachWSI into small patches with a size

of 1200 × 1200 pixels. Patches with a small amount of tissue,

less than 15% of the patch area, were filtered. A total of n =

10,170 patches was used for semantic labeling. Those patches

were analyzed and annotated by an expert using VIA (24) and

then were verified by three different experts. For each patch, the

intact eosinophils’ centers and the basal zone area were marked.

The result was two semantic masks. In the first, the pixels in

the area of a circle with a radius of 25 pixels around the intact

eosinophils center were labeled as Eos-Intact (22). In the second,

pixels within themarked basal zone polygons were labeled as BZ.

That is, each pixel was classified either as a BZ type, Eos-Intact

type, both of them, or as none. In total, about 570 million pixels

were labeled as BZ, and about 78.47 million pixels were labeled

as Eos-Intact. 8.6% of the images contained BZ, where their area

was, on average, 45.45% of the image size. Eos-Intact were found

in 22.8% of the images, with an average area fraction of 2.35%.

2.3. Semantic segmentation

We trained two models, one using the Eos-Intact masks

and one using the BZ masks. For both models, the annotated

patches were divided into two groups; 80% of the data were

dedicated to training the segmentation model, and the rest,

20%, for testing the model. The segmentation model was based

on the UNet++ architecture (25). It was developed in the

PyTorch framework (26) and was trained on a single NVIDIA
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GeForce RTX 2080 Ti GPU. During the training phase, the

1200 × 1200-pixel patches were divided into 448 × 448-

pixel sub-patches with an overlap of 72 pixels between them.

Different sub-patch sizes were tested, and this size was optimal in

terms of precision and recall (see segmentation metrics section

of the systems). In addition, multiple hyperparameters were

tested. The optimal parameters were batch size of 5, “Cosine

Annealing” learning rate scheduler, and a 0.5 softmax threshold.

The optimization loss function contains two terms, the Dice

and Binary cross-entropy (BCE), where each term is weighted.

After exploring different weights, we applied the weights 1

and 0.5 to the Dice and BCE, respectively. For inference, the

test image was cropped into 448 × 448-pixel sub-patches as

described above. To reduce segmentation noise, contiguous

regions labeled as Eos-Intact or BZ that were smaller than an

area of 1800 pixels, in the case of Eos-Intact, or area of 2007

(1% out of the sub-patch size), in the case of BZ, were re-labeled

as none.

2.4. Semantic metrics

To estimate the segmentation performances, we used the

following metrics,

mIoU =
1

I · C

∑

i

∑

c

TPi,c

TPi,c + FPi,c + FNi,c
(1)

mPrecision =
1

I · C

∑

i

∑

c

TPi,c

TPi,c + FPi,c
(2)

mRecall =
1

I · C

∑

i

∑

c

TPi,c

TPi,c + FNi,c
(3)

mSpecification =
1

I · C

∑

i

∑

c

TNi,c

TNi,c + FPi,c
(4)

where the c index iterates over the different classes in the image,

and the i index iterates over the different images in the dataset. C

is the total number of classes, and I is the total number of images.

TP, TN, FP, and FN are classification elements that denote true

positive, true negative, false positive, and false negative of the

areas of each image, respectively.

2.5. Calculating WSI AI scores

To evaluate the eosinophil and basal zone distribution

within each WSI, we use an iterative process to scan over the

entire slide. At each step, an image the size of a HPF is processed.

The area of an HPF corresponds to a size of 2144 × 2144 pixels

(548 × 548 µm). The stride step between constitutive HPFs is

500 pixels. Each HPF is divided into 25 sub-patches (448 ×

448 pixels—corresponding to the network input size) with an

overlap of 24 pixels. Each sub-patch is segmented and the HPF

segmentation mask is assembled from them. The pixels’ identity

in the areas overlapping between sub-patches is determined by

using OR function. After segmentation, each HPF is assigned

two local scores: the number of intact eosinophils (22) and the

BZ area rate, which is the ratio of the number of BZ pixels in

the HPF mask, to the HPF size. After scanning the entire WSI,

we produce score maps for both features—an Intact-Eosinophils

map and a BZ map, where every pixel in these maps represents

the score of the matching HPF. Based on the score maps, we can

produce four WSI scores (Figure 1C):

• Peak Eosinophil Count (PEC)—The number of eosinophils

in the HPF with the densest area of eosinophils within the

WSI. This score is used in the clinic to diagnose active EoE

(6, 22). A patient with a PEC greater than or equal to 15 is

considered to have active EoE. The EI grade score is a proxy

for this measure.

• Spatial Eosinophil Count (SEC)—The ratio of the number

of HPFs with an Intact-Eosinophil count that is greater

than or equal to 15 to the total number of HPFs in the

feature map. The EI stage score is a proxy for this measure.

• Peak Basal Zone (PBZ)—The maximum HPF BZ area rate.

This score is the maximal density of basal cells per HPF in

the WSI. The BZH grade score is a proxy for this measure.

• Spatial Basal Zone (SBZ)—The ratio of the number of HPFs

with local BZ score that is greater than or equal to 15% to

the number of tissue HPFs in the feature map. The BZH

stage score is a proxy to this measure.

2.6. Classifying whole slide image

2.6.1. Features-based classification

We previously presented a pipeline for classifying WSIs

using only the predicted PEC directly (22). In this paper, we

leverage the spatial information, for both eosinophils and basal

cells that was revealed by segmenting the entire WSI. We used

this information to devise four WSI scores and to predict the

histological severity condition of the patient (Figure 1D). We

explored different machine learning models—support vector

machine (SVM), and linear discriminant analysis (LDA). In

addition, various architectures of multi-layer perceptron (MLP)

were examined, particularly, all combinations of layers in

the size of 10, 20, 50, 100 tiled up to four hidden layers.

We used these types of classifiers because of their better

capability to handle tabular data (in contrast to convolutional-

neural-networks, for example, that support sequential data).

The cohort contains 1,066 WSIs that were not used for the

segmentation training. Classifier training was done using 80%

of the data, whereas the rest were used for validation. For
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FIGURE 2

Examples of our platform semantic segmentation. (A–I) The size of each image is 1200 × 1200 pixels. Each panel’s left-hand side is colored

according to the ground truth as annotated by trained experts. The right-hand side is colored with its corresponding network prediction mask.

Basal zone (BZ) pixels are colored with red, intact eosinophils (Eos-Intact) pixels are colored with green, and pixels associated with both (that is,

eosinophils within a BZ area) are colored with yellow. (A–C) The upper row shows examples with only one label or none. (D) An example of an

image that contains both a small number of basal cells and intact eosinophils. (E) An example of an image with a large basal zone and a small

number of intact eosinophils. (F) An example that contains a small area of basal zone and a large number of intact eosinophils. (G–I) The bottom

row displays examples with large basal zones and also a large number of intact eosinophils.

each model, we repeated the training procedure 20 times with

different random seeds for splitting the data, and reported the

median results.

2.6.2. Multi-classification

To improve the histological severity classification

performance, different classifiers were used for regions

having different eosinophil density. We define two regions of

PEC scores,

classifier =







Cin (PEC ≥ 15− 1) and (PEC ≤ 15+ 1)

Cout (PEC < 15− 1) or (PEC > 15+ 1)

(5)

where Cin and Cout denote the classifier inside the window

and outside of the window, respectively. The hyperparameter 1

defines the window size. The training procedure is as described

above. To avoid bias, the contribution of each region to the

80%-20% split is proportional to the region size, ensuring that

each region contributes points to the training and validation.We

examined 1 values in the range of (1, 12).

3. Results

3.1. Local segmentation results

Figure 2 illustrates a few examples of our platform semantic

segmentation compared with ground truth labeling by a trained

researcher. Table 1 summarizes the segmentation metrics over

the whole validation-set, 1, 2, 3, and 4.

3.2. WSI features scores

One of themain advantages of the described approach is that

it allows scoring that is based not only on a limited number of

regions probed by the pathologist but on the entire whole slide

image (Figure 3). To process the entire whole slide image, we

used dynamics convolution to scan the slide using windows with

aHPF size with a stride of about 1/4 of theHPF size (Section 2.5).

We computed the score maps for 1,066 WSIs from 400 patients

that were not part of the semantic segmentation training and

validation sets. The pipeline produces two feature-score maps

for each WSI, one for the Eos-Intact score map and the second
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for the BZ score map. Figure 3 shows examples of two features

score maps computed from two different WSIs. We computed

four scores based on the semantic segmentation of the WSI;

TABLE 1 Four segmentation metrics measured at the pixel level.

Metric Eos-intact BZ Overall

mIoU (Equation 1) 0.93 0.75 0.84

mPrecision (Equation 2) 0.95 0.8 0.88

mRecall (Equation 3) 0.97 0.94 0.95

mSpecificity (Equation 4) 0.998 0.82 0.91

IoU denotes the Intersection Over Union between the Ground Truth and the prediction.

Recall denotes the fraction of the True-Positive pixels among the total Ground Truth

pixels in the image, whereas Precision denotes the fraction between the True-Positive

pixels and the prediction pixels. The fraction between the True-Negative pixels and the

total negative pixels in the image is coined Specificity. mIoU, mRecall, mPrecision, and

mSpecificity are obtained by averaging IoU, Recall, Precision, and Specificity, respectively,

over the validation set. The metrics are presented for the Eos-Intact and BZ classes

separately in addition to their average per image as the overall score. The compared

patches size is the network’s input size—448× 448 pixels.

this included two local ones (peak eosinophil counts [PEC] and

peak basal zone [PBZ]), and two global ones (spatial eosinophil

counts [SEC] and spatial basal zone [SBZ]) (Section 2.5). We

compared the different WSI scores with the relevant HSS score

estimated by the pathologists. We compared PBZ, SBZ, PEC,

and SEC with HSS BZH grade, HSS BZH stage, HSS EI grade

and HSS EI stage, respectively (Section 2.5). Our scores showed

a significant correlation with the human estimated metrics

(Figures 4A–D). We then analyzed the relationship between the

two types of biomarkers: the number of eosinophils and the

area of the basal zone. It was suggested that these features have

some correlation between them (7). A standard condition for

the classification of a patient as having active EoE is having

a PEC that is greater than or equal to 15. We show that the

PBZ distribution of non-active patients has significantly lower

values than the PBZ score distribution of the active patients

(Figure 4E). A similar trend is observed when analyzing the SBZ

distribution (Figure 4F). Yet, there are still patients with high

PEC scores and low PBZ / SBZ scores, and vice-versa. This

FIGURE 3

Examples of two di�erent WSIs (left) and their corresponding scores maps with scale for each score defined (middle, right). Each pixel in these

maps represents one HPF, and the color of the pixel indicates the respective score. From the Eos-Intact scores map (middle), we extracted peak

eosinophil count (PEC) and spatial eosinophil count (SEC). From the basal zone (BZ) score map (right), we computed peak basal zone (PBZ) and

spatial basal zone (SBZ) scores. (A) Example of a WSI of a biopsy obtained from an EoE patient with inactive disease (PEC = 10). (B) Example of a

biopsy obtained from a patient with active EoE (PEC = 245).
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FIGURE 4

Correlations among the di�erent score types. (A–D) Comparing the computed scores with the HSS scores. The HSS scoring method for BZH

grade, BZH stage, EI grade, and EI stage, each score is an integer between zero and three. Each panel depicts a violin plot that shows the

distribution of the computed WSI scores (vertical axis) for each HSS score that is the appropriate proxy (horizontal axis). The white circle

indicates the median value, and the black bar indicates the standard deviation. There is a significant correlation between the computed scores

and their HSS counterparts. Histograms of basal zone related metrics PBZ (E) and SBZ (F) for active (PEC ≥ 15) and non-active patients

(PEC < 15). Both the PBZ and SBZ distribution scores of non-active patients have significantly lower values than the PBZ and SBZ distribution

scores of the active patients (Kolmogorov–Smirnov-test, P << 0.0001).

raises the question of whether a combination of basal zone-

based metrics can better predict the patient clinical status and

treatment outcome.

3.3. Histological severity classification

The naive approach for diagnosing patients’ histological

severity condition uses only PEC information. In this approach,

if the patient’s PEC is greater than or equal to 15, the patient is

considered to have active EoE. Similar criteria are also applied

to determine whether a patient who underwent treatment

responded and is in remission. Recent studies suggested using

basal zone histological information improves the estimation of

the disease’s histological severity. For example, it was suggested

that patients with low PEC values, i.e., greater than 0 but less

than 15, but with basal zone hyperplasia would not be considered

as patients in remission (8). To test the performance of our

pipeline in integrating all fourWSI scores, we used as the ground

truth (GT) a standard clinical histological severity metric that
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FIGURE 5

Classification performance of the di�erent models. (inset 1) We examined a few di�erent classification approaches: 1. A baseline in which the

classification is according only to the PEC (yellow rectangle, purple curve). The purple line outlines this model’s performances for di�erent

thresholds. On this purple curve, the purple circle denotes the gold standard threshold of PEC = 15 and the yellow circle denotes the optimal

baseline threshold of PEC = 6; 2. A trained classifier that accounts for all four WSI scores (orange rectangle, orange circle); 3. Our platform: a

multi-classification approach that separates patients close to the decision threshold from those that are far from it (blue rectangle, blue circle);

(inset 2) The accuracy of our platform compared with those of the gold standard. (inset 3) Spider plot depicts the performance of the di�erent

models. Our platform which accounts for all the AI WSI scores significantly improves the overall classification performance.

defines a histologically severe patient as one who is not in

histologic remission, i.e., that has a PEC of greater than or equal

to 15 or an HSS total score of more than 3 (8). This metric is

stringent when examining whether a patient is in remission or

not compared to taking into account only the PEC score.

First, as a baseline classifier, we calculated the accuracy of

the histological severity classification when it was based only on

the PEC score. The best accuracy (83.3%) was obtained when

the threshold criteria was PEC = 6. We recently showed that

when taking only PEC as a metric for classification of the patient

state (i.e., active EoE vs. non-active EoE), the AI-based PEC

score provides a classification accuracy of 94.75%. Moreover,

the optimal PEC threshold that provided the best accuracy in

that case was 15 (22), the same as the gold standard threshold

(6). Thus, the current results suggest that to compensate for the

cases in which low PEC are still considered histologically severe,

the system converges to more tight PEC criteria for histological

severity classification.

Next, we trained a classifier that takes into account all four

metrics we calculated from the WSI score maps (i.e., PEC,

SEC, PBZ, SBZ). We used several training approaches: support

vector machine (SVM), linear discriminant analysis (LDA), and

multi-layer perceptron (MLP). The best results were obtained

using MLP with three hidden layers where each layer has 20,

50 and 100 neurons, respectively. Integrating all the metrics

yields an improvement in accuracy to 85.05%. Moreover, the

false alarm rate decreased by about 20% compared to the

baseline classifier, whereas the miss rate decreased by about 5%

(Figure 5).

A possible factor that may impede the prediction

performances is the fact that our data contain patients

with a large range of eosinophil counts. To further improve

the prediction, we took a multi-classification approach where

patients with a PEC level that is near the decision threshold are

classified separately from patients that have a PEC level that is

far from it. The best results were achieved when patients with

PEC values within the range (6, 24) were analyzed separately

(Section 2.6.2). This approach led to an accuracy of 86.70% and a

significant reduction in the false-alarm rate to 9.91% (Figure 5).

In this case, the best results were given by an MLP with three

hidden layers in the size of 100, 20, and 100, respectively, for

both classifiers.

To gain insight into the role of each of our four WSI scores,

we explored the effect of training a classifier with a limited
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TABLE 2 Classification results of multiple models (SVM, LDA, and MLP) with di�erent combinations of input features (PEC, SEC, PBZ, and SBZ).

INPUT -WSI AI features scores OUTPUT - classification models results

PEC SEC PBZ SBZ SVM

med/std

LDA

med/std

MLP

med/std

+ + 0.8364 / 0.0247 0.75 / 0.0787 0.8388 / 0.027

+ + 0.7991 / 0.0236 0.8061 / 0.0227 0.806 / 0.0227

+ + + + 0.8341 / 0.0233 0.8155 / 0.0208 0.8505 / 0.0285

Each model was trained and validated 20 times with different train-validation random splits, the median (med) results are reported with the standard deviation (std).

PEC, Peak Eosinophil Count; SEC, Spatial Eosinophil Count; PBZ, Peak Basal Zone; SBZ, Spatial Basal Zone. SVM, Support Vector Machine; LDA, Linear Discriminant Analysis; MLP,

Multi-Layer Perceptron.

subset of them (Table 2). In all configurations, the best accuracy

was obtained by the MLP model. As expected, the highest

classification score was achieved when we used all four WSI AI

features scores. Yet, accounting only of Eos-intact scores (PEC

and SEC) provides better accuracy than using only BZ scores

(PBZ and SBZ).

4. Discussion

Biopsy-based diagnosis often requires the identification of

features that are on the single-cell scale. One of the promises

of digital pathology, besides automating manual tasks, is the

ability to process the entire WSI and infer novel biomarkers

that capture the spatial distribution of the relevant features.

In the case of EoE, the diagnosis procedure involves counting

eosinophils and estimating their density. As a typical whole slide

image contains at least tens of high-power fields, gold standard

scores usually do not account for the entire features’ distribution.

In the case of EoE, the gold-standard of clinical diagnosis is

based on Peak Eosinophil Count (PEC). As quantifying the

number of eosinophils in the slide using manual microscopy,

the common practice involves locating by eye the densest high-

power fields and taking the maximal number of eosinophils

per field as the number that represents the sample. This is a

limited biomarker since it considers peak local features (not the

entire distribution of eosinophils), and it takes into account only

one cellular feature. Indeed, previous histological studies (such

as the EoEHSS scoring system) suggested that accounting for

more cellular features (such as basal hyperplasia), and taking

into account not only the maximal number of eosinophils (or

other cellular features) but also accounting for the quantized

fraction of high-power fields with threshold levels of eosinophils

assessed manually.

In a previous study (22), we showed that our pipeline is

able to recapitulate the gold-standard PEC score with state-of-

the-art performance. In this work, we go beyond recapturing

the current manual histological gold standard. In this study, we

introduce an artificial intelligence system that infers novel local

and spatial biomarkers based on semantic segmentation of intact

eosinophils and basal zone. To test the platform, we utilized

a cohort that includes 1,066 biopsy slides from 400 subjects.

Whereas the decision of whether EoE is active or not depends

on a gold standard cutoff of 15 eosinophils per high power field,

the histological severity score (mainly used to estimate whether

a patient was in histologic remission after a treatment) also

accounts for the basal zone properties. Indeed, using only the

PEC of greater than or equal to 15 as a threshold to predict

histological severity yields an accuracy of only 78.97% (Figure 5).

The PEC cutoff that provides the best accuracy for histological

severity, which was 83.3%, is 6 eosinophils/HPF (Figure 5). This

reflects the fact that adding the basal zone criteria results in a

stronger criteria for the PEC.

Our platform provides a complete quantification of the

eosinophils and basal cells fraction over the entire slide. We

are therefore able to not only quantify the peak count and

basal cell fraction (PEC and PBZ) but also the percent of high-

power fields that have more than 15 eosinophils (SEC) and the

percent of high-power fields that have more than 25% basal

cells within them (SBZ). These metrics have a significant clinical

impact – they allow us to predict the histological severity of the

patients better than the gold-standard method (86.7% accuracy

compared with 78.97% accuracy, Figure 5). Therefore, these new

metrics are important for pathologists and gastroenterologists

when accounting for the remission status of the patients.

To improve the performance, we used a few machine

learning approaches that take our metrics as an input. We show

that taking the eosinophil metrics alone yields an accuracy of

83.4% whereas taking the basal zone metrics alone gives an

accuracy of 80.6%. Putting all the metrics together gives an

accuracy of 85.05%. That is, using all the metrics together gives

better performances than each of the metrics alone and also

better than a naïve approach of changing the PEC cutoff. Finally,

we also constructed a multi-classifier approach that is based on

the fact that patients around the PEC = 15 cutoffs are more

prone to errors. Altogether, our platform yields a classification

accuracy of 86.70%, sensitivity of 84.50%, and specificity of

90.09%. Interestingly, while there is no dependence of the error

rate with the number of biopsies and their spatial orientation,

the disagreement between the AI and the manual decision is
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higher when the total of area of the tissue in the slide is bigger.

One potential cause for this disagreement could be the difficulty

of manually probing a large area. Our approach highlights

the importance of systematically analyzing the distribution of

biopsy features over the entire slide image and putting together

metrics based on them. Our platform paves the way toward a

personalized decision support system that will assist in not only

counting cells but also in providing treatment prediction.
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