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Objective: This study aimed to assess the value of radiomics based on non-

contrast computed tomography (NCCT) and contrast-enhanced computed

tomography (CECT) images in the preoperative discrimination between lung

invasive adenocarcinomas (IAC) and non-invasive adenocarcinomas (non-

IAC).

Methods: We enrolled 1,185 pulmonary nodules (478 non-IACs and 707 IACs)

to build and validate radiomics models. An external testing set comprising 63

pulmonary nodules was collected to verify the generalization of the models.

Radiomic features were extracted from both NCCT and CECT images. The

predictive performance of radiomics models in the validation and external

testing sets were evaluated and compared with radiologists’ evaluations.

The predictive performances of the radiomics models were also compared

between three subgroups in the validation set (Group 1: solid nodules, Group

2: part-solid nodules, and Group 3: pure ground-glass nodules).

Results: The NCCT, CECT, and combined models showed good ability to

discriminate between IAC and non-IAC [respective areas under the curve

(AUCs): validation set = 0.91, 0.90, and 0.91; Group 1 = 0.82, 0.79, and 0.81;

Group 2 = 0.93, 0.92, and 0.93; and Group 3 = 0.90, 0.90, and 0.89]. In the

external testing set, the AUC of the three models were 0.89, 0.91, and 0.89,

respectively. The accuracies of these three models were comparable to those

of the senior radiologist and better those that of the junior radiologist.
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Conclusion: Radiomic models based on CT images showed good predictive

performance in discriminating between lung IAC and non-IAC, especially in

part solid nodule group. However, radiomics based on CECT images provided

no additional value compared to NCCT images.

KEYWORDS

adenocarcinoma, lung, radiomics, solitary pulmonary nodule, X-ray computed
tomography

Introduction

Lung cancer is the most commonly diagnosed cancer
and the leading cause of cancer-related deaths worldwide
(1). Despite the recent development of targeted therapies
for selected sub-types of lung adenocarcinoma, the overall
cure and survival rates for this cancer remain relatively low
(2). Adenocarcinoma is the most common form of lung
cancer and has recently been classified into pre-invasive
adenocarcinoma [atypical adenocarcinoma hyperplasia
(AAH), adenocarcinoma in situ (AIS)], minimally invasive
adenocarcinoma (MIA), and invasive adenocarcinoma (IAC)
(3). The 5-year disease-free survival rates in AIS and MIA
are 100% or close to 100%, which are significantly higher
than that in IAC (38–86%, depending on the predominant
histological subtypes) (4, 5). Therefore, the accurate
preoperative diagnosis of lung adenocarcinoma is critical
for clinical decision-making processes and the assessment
of prognoses.

Due to the diversity and overlap of radiographic features
of these lesions, diagnosing and differentiating lung IAC is
challenging for radiologists. Radiomics is an emerging method
that can extract many features to facilitate the precision
medicine (6). Many studies have explored the value of
radiomics in the detection, characterization, and monitoring
of lung nodules, resulting in promising performance (7–9).
However, those studies focused on the radiomic features
extracted from non-contrast CT (NCCT) images. The National
Comprehensive Cancer Network (NCCN) recommends
contrast-enhanced CT (CECT) examinations for some lung
nodules: solid nodules > 15 mm on initial screening, part
solid nodules with solid components > 8 mm in initial
screening, new or increased solid nodules ≥ 8 mm during
the follow-up, new or increased part-solid nodules with
solid components > 1.5 mm during the follow-up) (10).
The CECT images can yield better vascular information
and improve the accuracy of the diagnoses. Several studies
have assessed the value of radiomics based on CECT
images in the diagnosis of pulmonary nodules (9, 11–14),
but their conclusions are inconsistent. Moreover, whether

the radiomics extracted from CECT images can provide
Supplementary information for differentiation of IAC from
non-IAC remains unknown, especially for different types
nodules (i.e., solid nodules, part-solid nodules, and pure
ground-glass nodules).

Therefore, this study assessed the value of radiomics based
on NCCT and CECT images to discriminate between IAC and
non-IAC and compared the performances of models of different
nodule subtypes (solid nodules, part-solid nodules and pure
ground-glass nodules).

Materials and methods

Our institutional review board approved this retrospective
study (No. 2019K134) and waived the requirement of obtaining
informed consent from patients.

Study population

A total of 2,130 patients who underwent CECT
examinations for pulmonary nodules between January 2014
and January 2019 were selected. Their medical records
were reviewed for clinical characteristics, histopathological
results, and serial chest CT scans. The inclusion criteria
were as follows: (1) the presence of a pulmonary
nodule; (2) histopathologically confirmed benign nodules,
AAH, AIS, MIA, or IAC, or confirmed follow-up for
inflammatory lesions; (3) NCCT and CECT scans were
available and acquired sequentially in one examination;
and (4) CT slice thickness ≤ 1.25 mm. The exclusion
criteria were: (1) prior treatment before surgery; (2). poor
quality CT images, and (3). lesions that were difficult to
delineate clearly.

Another 63 lung nodules met the inclusion and exclusion
criteria were collected as external testing set to validate the
stability and generalization of the models. Among the 63
nodules, 22 were selected from the cancer imaging archive
(15) and 41 were collected from the Second Xiangya Hospital
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FIGURE 1

Workflow of the study.

of Central South University. The workflow is described in
Figure 1.

Computed tomography scanning

Chest CT scanning was performed using one of
following the four CT systems: GE Discovery CT750 HD,
64-slice LightSpeed VCT (both from GE Medical Systems),
Somatom Definition Flash, and Somatom Sensation-16 (both
from Siemens Medical Solutions). The detailed scan and
reconstruction parameters are listed in Table 1. All patients
received a bolus of 80–100 mL of intravenous contrast medium
(Optiray; Mallinckrodt Imaging, MO, USA; 350 mg iodine per
mL) at a rate of 3–4 mL/s using a power injector via an 18-
or 20-gauge cannula into the antecubital vein. Enhanced CT
scanning commenced 50–60 s after the administration of the
contrast medium.

Pathological analysis

All resected specimens were formalin-fixed and stained with
hematoxylin–eosin in accordance with the routine regulations
of the hospital. A pathologist (with 10 years of experience in the
pathological diagnosis of lung cancer) reviewed the specimens
and recorded the pathological subtype of each nodule.

Nodule labeling and segmentation

One radiologist with 5 years of experience in chest CT
interpretation used a medical image processing and navigation
software, 3D Slicer (version 4.8; National Institutes of Health)1,
to manually delineate the volumes of interest of the 1,185
nodules at the voxel level in separate NCCT and CECT images.
The volume of interest was confirmed by another radiologist
with 12 years of experience in chest CT interpretation. DICOM
images were imported into the software for delineation, and
the label information was extracted with the nearly raw raster
data format for further analysis. Each segmented nodule was
given a specific label, non-IAC (inflammatory nodule, benign
tumor, AAH, AIS, or MIA) or IAC. To assess the segmentation
variability, a third radiologist with 3 years of experience in chest
CT interpretation independently segmented a random set of 60
nodules to calculate the intra-class correlation coefficient (ICC)
for each radiomic feature.

Observer study

Two radiologists (a junior and a senior radiologist with
more than 3 and 10 years of experience, respectively), who

1 https://www.slicer.org
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TABLE 1 Detailed scan and reconstruction parameters.

Setting Tube
voltage
(kV)

Tube
current
(mA)

Pitch Slice thickness of
reconstruction

(mm)

Slice interval of
reconstruction

(mm)

Reconstruction
algorithm

GE Discovery CT750 HD 120 200 0.984:1 1.25 1.25 STND

Lightspeed VCT 120 200 0.984:1 1.25 1.25 STND

Somatom definition flash 120 110 1 1 1 Medium sharp

Somatom sensation-16 120 110 0.8 1 1 Medium sharp

were blinded to the histopathological results and clinical data,
independently classified and diagnosed all nodules in the
validation set and external testing set. First, the two radiologists
categorized the nodules as IAC or non-IAC based on the NCCT
images, they then accessed to the folder containing the CECT
images and diagnosed the nodules again using both the NCCT
and CECT images.

Extraction of radiomic features

Radiomic features were extracted using PyRadiomics 2.2.02

(16), an open-source Python package for the extraction of
radiomics. The process of extracting radiomic features is
described in Supplementarymaterial. To minimize the effect of
image heterogeneity, we normalized the image spatial resolution
and voxels before radiomic features extraction. A total of
1,218 features were extracted, including shape class, first-order
class, gray level co-occurrence matrix (GLCM) class, gray level
dependence matrix (GLDM) class, gray level size zone matrix
(GLSM) class, and gray level run length matrix (GLRLM)
class. We also used Min-Max scaling to normalize features
before model construction. For feature variability analysis, the
ICC for each radiomic feature was calculated using a two-way
random-effects model under an absolute agreement condition.
The reproducibility of the radiomic features was considered to
be either high (ICC ≥ 0.8), intermediate (0.5 ≤ ICC < 0.8),
or poor (ICC < 0.5). The radiomic features with high
reproducibility were used as the input variables for building the
diagnostic models.

Building and validation of the
diagnostic models

All patients were randomly assigned to a training set
(n = 790) or a validation set (n = 395) at a ratio of 2:1
using the “scikit-learn” software packages for Python (17). The
validation set was further divided into three subgroups, 91
solid nodules (Group 1), 239 part-solid nodules (Group 2), and
65 pure ground-glass nodules (Group 3). The distribution of

2 https://pyradiomics.readthedocs.io/en/latest/index.html

different nodules properties (non-IAC vs. IAC, solid nodules
vs. part-solid nodules vs. pure ground glass nodules) was kept
uniform in both the training set and the validation set. After
assessing the reproducibility based on the re-segmentation data,
the open-source framework LightGBM was used for feature
selection and model building in the training set (15). LightGBM
is a fast, distributed, and efficient gradient boosting framework
based on decision tree algorithms. Finally, the NCCT, CECT,
and combined models differentiating between non-IAC and
IAC were established. The performances of these models were
then tested in the validation set (also in three subgroups) and
external testing set.

Statistical analysis

Differences in variables between the two patient groups
were assessed using the independent-sample t-test or Mann–
Whitney U-test for continuous variables and Fisher’s exact
test or the chi-squared test for categorical variables. To assess
the predictive performance of the study variables, receiver-
operating characteristic (ROC) curves were plotted for the study
variables to assess their predictive performance and compared
using the DeLong test and the area under the curve (AUC)
of the ROC curve was calculated. A two-sided p-value < 0.05
was considered statistically significant. Statistical analysis was
performed using Python (Version 3.7.1) software and SPSS
(Version 22.0, IBM).

Results

Patient profiles

A total of 1,185 nodules from 1,185 patients in our hospital
were enrolled. Among the 1,185 patients, 690 were women
(58.2%) and 495 were men (41.8%). The mean age of the patients
was 58.95 ± 11.45 years (range: 20–81 years); the maximum
diameter of the pulmonary nodules was 18.79 ± 11.32 mm
(range: 5–82 mm). There were 478 (40.3%) nodules were
diagnosed as non-IAC (123 inflammation or benign tumor; 11
AAH; 84 AIS; 260 MIA), and 707 (59.7%) IAC. Among the 1,185
nodules, 273 (23.0%) were solid nodules, 717 (60.5%) were part-
solid nodules, and 195 (16.5%) were pure ground glass nodules.
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The patient information of the training set, validation set and
external set are shown in Table 2. The patient information of
the three subgroups are shown in Supplementary Table 1. Of
the 63 pulmonary nodules in the external testing set, 22 were
non-IAC and 41 were IAC. There were 28 (44.4%) solid nodules,
26 (41.3%) part-solid nodules and 9 (14.3) pure ground-glass
nodules.

Model building and diagnostic
validation

After reproducibility analysis, 534 features on NCCT and
559 features on CECT remained separate (ICCs ≥ 0.8), and
the details are shown in Supplementary Tables 2, 3. The
selected features were inputted into the LightGBM framework to
construct the NCCT, CECT and combined models. LightGBM
ranked the importance of features based on the number of times
they were used in the decision tree.

In the validation set, the AUCs of the NCCT, CECT, and
combined models were 0.91, 0.90 and 0.91 respectively, to
distinguish IAC and non-IAC cases (Figure 2A). The DeLong
test found no statistically significant difference among the
three models (NCCT model vs. CECT model, P = 0.247;
NCCT model vs. combined model, P = 0.320; CECT model

vs. combined model, P = 0.277). In the external testing
set, the AUCs of the NCCT, CECT, and combined models
were 0.89, 0.91, and 0.89, respectively (Figure 2B). Again, no
statistically significant differences among the three models were
identified by the DeLong test (NCCT model vs. CECT model,
P = 0.218; NCCT model vs. combined model, P = 0.436;
and CECT model vs. combined model, P = 0.148). The
accuracies of the radiomics models were close to those of
the senior radiologist and better than those of the junior
radiologist for both the validation set and external testing set
(Table 3).

Performance of the models in the
subgroups

In Group 1, the AUCs of the NCCT, CECT, and combined
models were 0.82, 0.79, and 0.81, respectively, without
significant difference in the DeLong test (NCCT model vs.
CECT model, P = 0.247; NCCT model vs. combined model,
P = 0.320; and CECT model vs. combined model, P = 0.277)
(Figure 3A). The accuracies of the radiomics models were
slightly better than that of the junior radiologist but significantly
lower than that of the senior radiologist (Table 3). In Group
2, the AUCs of the NCCT, CECT, and combined model were

TABLE 2 Patient information of the training set, validation set and external set.

Demographic and
clinical characteristic

Training set
(n = 790)

Validation set
(n = 395)

p External validation set
(n = 63)

Age (years) 58.89± 11.23 59.08± 11.83 0.789 60.05± 10.25

Size (mm) 18.56± 10.75 18.91± 10.53 0.598 22.8± 10.92

Gender 0.708

Female 463 (58.6) 227 (57.5) 31 (49.2)

Male 327 (41.4) 168 (42.5) 32 (50.8)

Pathology 0.933

IAC 474 (60.0) 233 (59.0) 41 (65.1)

Non-IAC

Benign lesions 83 (10.5) 40 (10.1) 5 (7.9)

AAH 9 (1.1) 2 (0.5) 0

AIS 49 (6.2) 35 (8.9) 4 (6.3)

MIA 175 (22.2) 85 (21.5) 13 (20.6)

Type 1.000

Pure ground glass nodule 130 (16.5) 91 (23.0) 9 (14.3)

Part-solid nodule 478 (60.5) 239 (60.5) 26 (41.3)

Solid nodule 182 (23.0) 65 (16.5) 28 (44.4)

Location 0.585

Right upper lobe 274 (34.1) 135 (34.2) 20 (31.7)

Right middle lobe 64 (8.1) 39 (9.9) 3 (4.8)

Right lower lobe 153 (19.4) 78 (19.7) 10 (15.9)

Left lower lobe 191 (24.2) 99 (25.1) 17 (27.0)

Left lower lobe 108 (13.7) 44 (11.5) 13 (20.6)

IAC, invasive adenocarcinoma; AAH, atypical adenocarcinoma hyperplasia; AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma.
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TABLE 3 Performance of the radiomics models and radiologists for lung IAC.

Radiomics models Junior radiologist Senior radiologist

NCCT CECT NCCT + CECT NCCT NCCT + CECT NCCT NCCT + CECT

Validation set Accuracy 82.74% 81.47% 83.50% 74.90% 76.90% 83.40% 83.90%

F1 0.86 0.95 0.87

AUC 0.91 0.90 0.91

Group 1 Accuracy 74.73% 68.13% 74.73% 66.70% 68.90% 80.00% 84.40%

F1 0.82 0.79 0.82

AUC 0.82 0.79 0.81

Group 2 Accuracy 85.71% 86.55% 86.55% 76.30% 77.50% 83.50% 82.60%

F1 0.90 0.90 0.90

AUC 0.93 0.92 0.93

Group 3 Accuracy 83.08% 81.54% 84.62% 81.50% 82.20% 87.70% 87.70%

F1 0.86 0.84 0.88

AUC 0.90 0.90 0.89

External testing set Accuracy 84.13% 84.13% 84.13% 75.34% 76.12% 84.45% 85.21%

F1 0.88 0.88 0.88

AUC 0.89 0.91 0.89

FIGURE 2

Results of the receiver-operating characteristic (ROC) curve analysis. The ROC curves of the NCCT, CECT, and combined models for
identification of invasive adenocarcinoma (IAC) in the validation set (A) and external testing set (B) are shown.

0.93, 0.92, and 0.93, respectively (Figure 3B). The results of
the DeLong test showed no statistically significant differences
among the three models (NCCT vs. CECT model, P = 0.159;
NCCT vs. combined model, P= 0.402; and CECT vs. combined
model, P = 0.160). In this group, the accuracies of the
radiomics models were better than those of the junior and
senior radiologists (Table 3). In Group 3, the AUCs of the
NCCT, CECT, and combined model in Group 3 were 0.90, 0.90,
and 0.89, respectively (Figure 3C). The DeLong test showed
no statistically significant differences among the three models
(NCCT vs. CECT model, P= 0.402; NCCT vs. combined model,
P = 0.213; and CECT vs. combined model, P = 0.406). The
accuracies of the radiomics models were close to that of the
junior radiologist but lower than that of the senior radiologist
(Table 3).

Top 10 features of the non-contrast
computed tomography,
contrast-enhanced computed
tomography, and combined models

The LightGBM framework ranked the importance of
features according to the number of times they were used in
the decision tree. The top 10 features of the models were listed
in Figure 4. Most of the features were different, and only one
feature (wavelet_gldm_DependenceEntropy) was same between
the top 10 features of the NCCN model and CECT model.
Seven of the combined model’s top 10 features were from NCCT
images and three features were from CECT images. Only six of
the combined model’s top 10 features appeared in the NCCT and
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FIGURE 3

Results of the receiver-operating characteristic (ROC) curve analysis. The ROC curves of the NCCT, CECT, and combined models for
identification of invasive adenocarcinoma (IAC) in solid nodule group (A), partly solid nodule group (B), and pure ground glass nodule group (C)
are shown.

CECT models. Of all three models’ top 10 features, thirteen were
from GLSZM, seven were from GLCM, five were from GLDM,
three were from first-order, one was from shape and one was
from GLRLM separately. Of the thirteen features from GLSZM,
four were in the NCCT model, four were in the NCCT model
and five were in the combined model.

Discussion

This study investigated the value of radiomic features
extracted from NCCT and CECT images in the diagnosis of
IAC/non-IAC. The radiomics models showed good predictive
performance in discriminating between IAC and non-IAC of
the lung, especially those with in part-solid nodules. Generally,
the accuracies of the radiomic models were close to that of the
senior radiologist and better than that of the junior radiologist.
However, the radiomic models based on CECT images provided
no additional value compared to the NCCT models.

To date, several studies have documented that CT-based
radiomics can identify lung IAC with AUCs of 0.77–0.90
(18). Our NCCT model also obtained good performance
(AUC= 0.91 in validation set), verifying the ability of CT based
radiomics for identifying IAC. However, previous radiomics
studies were rarely based on CECT images. Recently, radiomics
extracted from CECT images were investigated, however, the
results were inconsistent. Chen et al. demonstrated that the
radiomics model based on CECT could provide additional
value in the prediction of invasiveness of subcentimeter ground
glass nodules (AUC_CECT: 0.896 vs. AUC_NCCT: 0.851)
(19). In the study of Fan et al., a radiomics model was
constructed using NCCT images for IAC prediction showed
similar performance in NCCT validation set and CECT
validation set (7). This result suggests that contrast injection
did not affect the two features included in their radiomics
model (i.e., GLCM_correlation and GLCM_cluster_tendency).
Other studies also constructed radiomics models separately
based on NCCT and CECT images and compared their
performance for predicting lung IAC. Gao et al. enrolled 34

IACs that appeared as ground glass nodules and constructed
models using multivariate logistic regression analysis (14).
Their results also suggested that CECT did not improve the
performance of the radiomics model. For solid nodules, Yang
et al. (18) constructed radiomics models for differentiating
granulomatous nodules from lung adenocarcinoma; they came
to the same conclusion. Our result showed that the NCCT,
CECT, and combined model achieved similar performance
for identifying lung IAC. In subgroups, the AUCs of the
three models also showed no statistically significant difference.
Our study enrolled pure ground-glass nodules, partly solid
nodules, and solid nodules, built models that merged the
three types of nodules, and validated them in three subgroups.
To minimize interference factors caused by multiple scans
(such as CT scanners and protocols), we excluded nodules
whose NCCT and CECT images were not acquired in one
examination. Our results suggested that CECT did not improve
the radiomics performance for lung IAC prediction either in
solid nodules or ground glass nodules. We considered the
possible reasons were: (1) The existence of contrast agents
within the tumor may reduce the biological heterogeneity that
facilitates the differentiation between benign and malignant
nodules. (2) Calibration before model building might reduce the
image intensity.

In subgroup analysis, although there was no statistically
difference between the AUCs of the radiomics models within
the groups, there was a significant difference between groups.
The performances of the models were significantly lower in
solid nodule group than those in the part-solid nodule group
and pure ground-glass nodule group. This result is with that of
other studies, although they only included one type of nodules.
While Wu et al. (20) showed that a radiomics model for the
prediction of lung IAC (part solid nodules) obtained an AUC
of 0.88., Yang et al. (18) reported that radiomics models for
differentiating solitary granulomatous with solid IAC achieved
low AUCs (AUC_NNCT = 0.78, AUC_CECT = 0.77, and
AUC_combined = 0.80). In another study (21), a radiomics
model achieved an AUC of 0.967 for differentiating solid lung
adenocarcinoma from benign lesions; this is obviously better
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FIGURE 4

Top 10 most-used features of the NCCT model (A), CECT model (B), and combined model (C). The left vertical coordinates indicate the
radiomic features; the horizontal coordinates indicate the number of times the features were used in the models.

than our result. A possible reason for this is that solid nodules
only represented only a small percentage of our training set, and
the model cannot generate diagnostic information. In addition,
we found that the accuracies of the radiomics models were both
superior to those of the junior radiologist and senior radiologist

for the part solid nodule group. The solid components in
nodules, which are crucial for identifying IAC (GGN) with
ground glass nodules, are diverse pathologically and include
mucus, hemorrhage, mucus, granulation tissue, and alveolar
collapse. It is rather difficult for radiologists to differentiate these
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solid components in many cases, but some invisible radiomic
feature may reflect their differences.

Although the performances of the NCCT and CECT models
were similar, the top features they used differed greatly. This
suggests that the contrast agent changed many radiomic features
and affected their predictive power. In the combined model,
more features were from NCCT(7/10)than from CECT (3/10);
this phenomena may explain why CECT did not improve the
model performance. Among the three model’ top 10 features,
13/30 were from GLSZM class (4 in NCCT model, 4 in CECT
model and 5 in combined model). GLSZM quantifies gray
level zones in an image, which is defined as the number of
connected voxels that share the same gray level intensity. This
may indicate that GLSZM features are more stable and critical
for lung IAC prediction.

This study has several limitations. First, it was limited by
its retrospective nature. The heterogeneity of imaging protocols
and image quality may have affected the result. Second, we did
not validate the performance of models in subgroups of external
set due to the limited data; therefore the subgroup results need
to be confirmed. Third, the malignant group comprised only
adenocarcinoma; thus, the results of this study cannot address
the situation in other pulmonary malignant tumors.

In conclusion, the CT image based radiomics models
showed good predictive performance in the diagnosis of
lung invasive adenocarcinoma, especially those with part
solid nodules; however, the radiomic model based on CECT
images provided no additional value. In the diagnosis of
pulmonary nodules, enhanced CT examinations should be
selected cautiously, especially in young patients and patients
with impaired renal function.
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