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Progress in kidney
transplantation: The role for
systems immunology
Aileen C. Johnson , Juliete A. F. Silva , Steven C. Kim
and Christian P. Larsen *

Department of Surgery, School of Medicine, Emory University, Atlanta, GA, United States

The development of systems biology represents an immense breakthrough

in our ability to perform translational research and deliver personalized and

precision medicine. A multidisciplinary approach in combination with use of

novel techniques allows for the extraction and analysis of vast quantities of

data even from the volume and source limited samples that can be obtained

from human subjects. Continued advances in microfluidics, scalability and

affordability of sequencing technologies, and development of data analysis

tools have made the application of a multi-omics, or systems, approach more

accessible for use outside of specialized centers. The study of alloimmune and

protective immune responses after solid organ transplant offers innumerable

opportunities for a multi-omics approach, however, transplant immunology

labs are only just beginning to adopt the systems methodology. In this review,

we focus on advances in biological techniques and how they are improving

our understanding of the immune system and its interactions, highlighting

potential applications in transplant immunology. First, we describe the

techniques that are available, with emphasis on major advances that allow

for increased scalability. Then, we review initial applications in the field of

transplantation with a focus on topics that are nearing clinical integration.

Finally, we examine major barriers to adapting these methods and discuss

potential future developments.
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Abbreviations: TCMR, acute T cell mediated rejection; AKI, acute kidney injury; AMR, antibody
mediated rejection; BCR, B-cell receptor; CDR, complementarity determining region; CfDNA, cell-
free DNA; cfNA, cell-free nucleic acids; CMV, cytomegalovirus; CNI, calcineurin inhibitor; CTOT,
clinical trials in organ transplantation; CyTOF, cytometry by time of flight; dd-cfDNA, donor-
derived cell-free DNA; EBV, Epstein-Barr Virus; ELISA, enzyme-linked immunosorbent assay; GCTC,
Genome Canada Transplant Consortium; HLA, human leukocyte antigen; IFN, interferon; MLR,
mixed lymphocyte reaction; PCR, polymerase chain reaction; qPCR, quantitative polymerase chain
reaction; RNA, ribonucleic acid; rtPCR, real time polymerase chain reaction; scRNAseq, single
cell RNA sequencing; SNPs, single nucleotide polymorphisms; TCR, T-cell receptor; UMI, unique
molecular identifier.
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Introduction

While organ transplantation can provide life-saving therapy,
our understanding of the immunology that determines each
patient’s trajectory remains immature. The immune response
to transplantation is complex, requiring us to consider an
incredibly heterogeneous set of characteristics that differ in
each recipient-donor pair, including human leukocyte antigens
(HLA), comorbidities, prior exposures, and immunosuppressive
medications (Figure 1). These baseline characteristics are
then modulated by the various medications, type and timing
of therapies, and new immune exposures that recipients
encounter after transplant. The interplay of these factors will
ultimately lead to a trajectory characterized by alloimmune
pathology, immunocompromised, or, hopefully, a state of
immune quiescence with respect to the allograft and immune
readiness for encounter with pathogens.

Although short-term outcomes in renal transplantation
have improved dramatically over the past decades, gains in
long-term patient and graft survival rates have lagged behind.
Late graft failure or premature death from infection or cancer
remain major clinical problems, with 10 year graft survival
rates hovering around 50% (1). The underlying causes of late
graft failure are often complex, sometimes occurring without
obvious evidence of contributing immune injury (2–4). Follow-
up is less frequent in the long-term, and progressive loss
of function is often attributed to scarring, though it can
be difficult to clearly discern the cause. Alloimmune injury,
including T-cell mediated acute or chronic active rejection and
T-cell dependent antibody mediated acute or chronic injury,
may be a contributing factor. However, in late graft loss,
this is often a mixed picture. Other factors contributing to
chronic allograft nephropathy, for example calcineurin inhibitor
(CNI) toxicity and BK virus nephropathy, can be amplified
by increasing immunosuppressive burden. Non-immune injury
from medication toxicity, including CNI, can lead to interstitial,
tubular, and vascular injury, and infection, such as BK, can both
cause direct injury and lead to subsequent immunopathology.
The emphasis on decreasing early acute rejection rates with
intense immunotherapy, including the use of T-cell depletion
as induction therapy, may contribute to long-term graft failure
and/or patient death rates by leaving transplant recipients in an
immunocompromised state (5, 6).

Even with relatively moderate immunosuppressive
strategies, transplant recipients are particularly susceptible
to viral infections, secondary to the specificity of
immunosuppressive medications in compromising T-cell
mediated immunity (7). This risk has been magnified by the
global SARS-CoV-2 pandemic, as transplant recipients have
been found to mount suboptimal responses to vaccination
(8) and have significantly higher rates of severe infections
and hospitalizations (9, 10). While this risk and the risk of
other viral infections can be mediated by vaccination prior

to the initiation of immunosuppression (11), the landscape
of prior immune exposures affects the profile of side effects
accompanying immunosuppressive medications and provides
an opportunity to further personalize medical therapy (12).

To continue making improvements in long-term outcomes
requires us to seek new approaches. From the first era of
technical developments in kidney transplantation, we have
moved through a second era, highlighted by the introduction
of more effective immunosuppression. However, treatment
remains largely similar for all recipients, using a protocol
with limited variation [cytomegalovirus (CMV) status, panel-
reactive antibody (PRA)] and a reactive approach to monitoring
drug levels, renal function, viral loads, and DSA. Rapid
advances in immune profiling and multi-omics promise a new
era of personalized immunotherapy. Personalizing medicine
based on patient baseline and response to therapy offers an
opportunity to improve long-term outcomes. Baseline and
longitudinal biomarkers have the ability to predict downstream
events, guiding ongoing risk stratification and personalized
management. In addition, biomarkers also yield mechanistic
insights that may identify new therapeutic targets for specific
patient subsets. While small steps have been made looking at
individual markers, the integration of multiple measurements
and the use of higher resolution techniques that reduce
background signal, by a systems approach, will be necessary to
significantly prognosticate and build intuition on the immune
system dynamics surrounding transplantation.

In this review we focus on major advances in biological
techniques, discuss how these tools are improving our
understanding of the immune system and its interactions, and
review current applications in the study of transplantation. We
aim to break down the alloimmune response to solid organ
transplant, with a particular focus on kidney, describe the
omics approaches best suited to characterize these components,
and introduce key concepts and methods used in the analysis
of high-dimensional datasets. We discuss how the application
of omics approaches is improving our understanding of the
immune system and its role in kidney transplantation. Finally,
we describe the main obstacles to adopting systems immunology
and discuss potential future developments.

Systems biology

Systems biology is an area of research that aims to
understand the mechanisms of complex biological systems and
predict their behavior across scales: molecular-to-organismal
(13). This approach allows us to embrace the complexity
of a system and the, often degenerate, interactions between
its components as a fundamental feature of the network.
The immune system is a natural application of the systems
approach, with a multitude of components interacting at
various levels. Our current understanding of the immune
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FIGURE 1

Complex factors play a role in kidney transplant recipient outcomes. Baseline factors at the time of transplantation for both donor and recipient
determine the immune micro-environment in the transplant recipient. Modulating factors such as immunosuppression and antiviral prophylaxis
moderate the recipient response to this disturbance. The interplay between the fixed baseline characteristics of donor and recipient and
modifiable features (immunosuppression) determines the outcome for each transplant recipient.

system has been developed through painstaking investigation
of individual genes, proteins, and cell types, most commonly
in model organisms. Though we owe our fundamental
understanding of the immune system to research performed
using these traditional methods, further advance requires a
shift in perspective.

The global measurement of component features in systems
biology allows us to study perturbations in a system without
relying on a model organism, avoiding the barrier of translating
findings outside of that model. Additionally, considering all
components of a system reduces the bias of investigators to
focus on specific genes or cell types with prior associations.
Finally, incorporating measurements of multiple features for
each individual cell brings a deeper level of biological meaning
to the function of the network. Considering the enormous
complexity of the immune system, with approximately 350
cluster of differentiation (CD) receptors, over 100 cytokines
and chemokines, thousands of genes and as many cell
subsets (14), the systems approach is a critical strategy for
understanding human immunology (15). This approach allows
us to use knowledge about the interaction and dynamics of
the most varied types of networks (proteomics, genomics,
metabolomics, transcriptomics, epigenetics, etc.) to understand
a highly complex organism, such as the human body. By
considering multiple aspects of disease pathophysiology, the
systems approach provides the potential for fundamental new
insights into our therapeutic and diagnostic approach to
disease (16).

Continued advances in microfluidics, affordability of
sequencing technologies, accessibility of high-performance

computing and development of data analysis tools have
made the application of a multi-omics, or systems, approach
more accessible for use outside of specialized centers. In
addition, developments in bioinformatics have made it possible
to generate integrative models of the immune response,
allowing us to measure a cell’s activation state, intracellular
signaling pathways, cellular products (cytokines, chemokines,
and metabolites), and the genes that encode all of these
molecules (15). The implementation of the systems approach
has been incredibly successful in the fields of vaccinology,
oncology, and infectious disease (17–19). However, perhaps
owing to the complexity of data management, modeling,
and statistics necessary to wrangle the sheer bulk of data
produced in these novel methods, systems methods are just
beginning to see applications in many subfields of immunology,
transplantation included. Directing focus toward a systems
approach in the study of transplant immunology has the
potential to advance portions of the field that have been stagnant
by traditional methods.

Systems immunology techniques for
characterization of the alloimmune
response

In the study of transplant immunology, the key measurable
components of the immune system are cells, cytokines and
other molecular biomarkers, and cell-free nucleic acids (cfNA)
relating to the microbiome, microvirome, or organ donor.
Cells can be phenotypically and functionally characterized at
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the level of surface markers, genome, transcriptome, receptor
specificity (for B- and T-cells), or the proteome with the aid of
functional assays.

Cell surface proteome characterization
The surface proteome has been frequently evaluated by

transplant immunologists as an easily accessible external signal
of the inner workings of the cell. Flow cytometry, the original
single cell method, is capable of measuring multiple parameters,
however, the number of features measured is limited by
the need for spectral deconvolution. A recently developed
technique, cytometry by time of flight (CyTOF), expands the
number of parameters measurable by conjugating antibodies
to heavy metals rather than fluorescent probes (20). Because
CyTOF relies on mass differences detected by time-of-flight
measurements, it does not encounter the parameter limitations
imposed by spectral overlap as occurs in flow cytometry, rather
parameters are limited only by the number of heavy metal
isotopes (21). As single cell sequencing methods continue to
develop, the surface proteome can now be characterized at
the single cell level with more than 100 parameters by using
antibodies conjugated to oligonucleotide tags (22). While the
cost of single cell sequencing remains prohibitive, throughput
is rapidly increasing.

Traditionally immune subsets have been assessed by
supervised methods using expert driven manual gating to
evaluate T-cells and characterize into subsets by features
such as memory or regulatory profiles. However, as the
number of measurable markers expand, the combinatorial
possibilities increase exponentially. In this situation, manual
gating leaves most data unanalyzed. Unsupervised approaches
using dimensionality reduction and clustering create new
opportunities for insights into these high-dimensionality
datasets, the application of which is discussed later.

Genomics
From an immunological perspective, the major difference

between transplant recipient and donor can be traced to
HLA protein polymorphisms. Solid organ transplant recipients
and donors most commonly undergo low- or intermediate-
resolution human leukocyte antigen (HLA) typing via real
time polymerase chain reaction (rtPCR) or antigen specific
Luminex-based assays. Alternatively, high-resolution typing
with sequencing of the HLA loci can be performed (23).
Knowledge of the exact amino acid composition of recipient
and donor HLA proteins has led to a variety of approaches
toward matching patients at a more precise level, including
eplet (24, 25), electrostatic (26), hydrophobic (27), and amino
acid matching (28). Perhaps the most widely applied in the
United States has been calculation of eplet mismatch burden
with use of HLAMatchMaker (24). Calculation of mismatch
burden in general, whether via eplets, triplets, PIRCHE score, or

an alternative method, have demonstrated association with graft
outcomes (29, 30).

Differentiating between recipient and donor genomes is also
relevant in the use of circulating cell-free (cf) nucleic acids
assays to track complications after transplantation (31). The
isolation of nucleic acid from circulating plasma has generated
progress in several ways. Most familiar to practicing clinicians is
the use of circulating donor-derived cell-free DNA (dd-cfDNA)
to monitor for risk of rejection (32). Cell-free nucleic acids
also offer opportunity to better understand the pathogenicity
of opportunistic infections. Shotgun sequencing of cfNA can
allow us to characterize the microvirome and microbiome of
transplant recipients throughout the post-transplant timeline,
offering the potential to discover novel pathogens (33).
Additionally, using epigenomics, the methylation patterns of
circulating cfNA can be used to identify the source tissue,
thereby isolating the site of damage, whether alloimmune or
infectious in etiology (34). Study of cfNA has the potential
to create insights into diseases ranging from liver and kidney
disease to Alzheimer’s disease and bone marrow transplantation
complications (31, 35, 36).

Immune cell specificity
With an estimated 1011 different T-cell receptors (TCRs)

in each individual’s repertoire (37, 38), and few “public” TCRs
shared between individuals, the analysis of receptor specificity
and similarity is non-trivial. TCR specificity to date has most
effectively been determined using HLA tetramers presenting a
peptide of interest (39). However, the combination of TCR-
HLA restriction and the numerous HLA alleles have restricted
progress in this arena to only the most frequently encountered
HLA alleles and few peptides (40). Resources such as VDJdb
have begun to compile TCR sequences in combination with their
defined antigen specificity (41).

Currently, TCR sequencing is dominated by commercial
ventures who have optimized methods for capturing and
amplifying the repertoire of a sample. Scoring TCRs by gene
usage and amino acid similarity has been successful in predicting
TCR specificity after training on datasets with known specificity
or pathologic relationships (42–44). As with surface proteomics,
TCR sequencing by single cell sequencing methods is becoming
more affordable and higher throughput. Single cell sequencing
captures both alpha and beta chain of the TCR, rather than
solely the beta chain as in most bulk TCR sequencing, not
only providing more information on cell specificity, but also
creating the potential to artificially express the TCR in a model
system (45).

Single cell sequencing
Perhaps the most revolutionary technology to drive

discovery in systems immunology is single cell sequencing.
Cells can be captured by multiple methods, however, the most
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broadly implemented method, due to its scalability, is droplet-
based cell isolation. Each cell is captured in a droplet emulsion
along with a gel bead containing a unique molecular identifier
(UMI) (46–48). Reverse transcription is performed inside of
the droplet so that all complimentary DNA is labeled with the
UMI. The droplets can then safely be disrupted, and cDNA
recovered for amplification by polymerase chain reaction (PCR),
library preparation, and sequencing. In addition to the capture
of paired chain TCR, another added benefit is the ability to
analyze surface protein expression, with cellular indexing of
transcriptomes and epitopes by sequencing (CITEseq). To do
this, before single cell isolation, cells are stained with antibodies
conjugated to oligonucleotide tags. When cells are subject to
reverse transcription, the antibody tags are captured and linked
via UMI as well, allowing surface markers to be retained to the
individual cell (49).

Comprehensive overview of state of
the art

Though applications in kidney transplantation have been
limited, authors contributing to this literature have overcome
significant hurdles and these results have laid the groundwork
for further additions to the field (Figure 2).

Biopsy omics
Recent study of kidney transplant biopsies have been heavily

weighted toward identifying high-throughput transcriptomic
signatures associated with specific disease pathology and
using those signatures to improve early discrimination in
diagnosis. Using microarray analysis, Halloran found that the
antibody mediated rejection (AMR) rejectome is characterized
by endothelial transcripts, reflecting angiogenesis secondary
to endothelial injury. In contrast, many IFNy-induced genes
are seen in both acute T cell mediated rejection (TCMR) and
AMR, and acute kidney injury (AKI) transcripts are found to
indicate disease progression across different forms of injury
(50–53). This work notably led to the discovery of the C4d-
negative AMR phenotype (54, 55). Halloran’s work led to
appreciation of increasing rates of AMR over time, along with
the recognition that AMR is strongly associated with graft
loss, in contrast to TCMR (56, 57). Biopsy transcriptomics has
also been applied to critique pathologic diagnoses of rejection
(50, 58). However, unsupervised clustering (see Section “Data
science capabilities”) with large gene panels has been unable to
discriminate pathologies well due to the similar gene expression
profiles in many forms of graft injury, requiring a supervised
approach to achieve higher resolution of groups (57). While
possible applications are numerous, microarray transcriptomics
has been modified for an early incorporation into clinical care
as a predictor of graft stability and future course, notably by the
“molecular microscope diagnostic system (MMDx)” (59, 60).

Peripheral blood omics
While the early diagnostic discrimination provided by

biopsy transcriptomics is promising, it still requires an invasive
procedure for tissue sampling. The transcriptomics field has
inspired much optimism toward developing a non-invasive
bioassay capable of detecting rejection. At the beginning of the
last decade, the kSORT assay was developed, using quantitative
polymerase chain reaction (qPCR) to measure expression of a
set of 17 genes identified (out of a panel of 43 examined) as
discriminatory of rejection. While the multicenter AART study
(61) initially validated the test as predictive, a recent application
in a large retrospective cohort found no diagnostic value (AUC
0.51) (62).

Proteomics of peripheral blood has also been appealing
because of the relatively straightforward transition to clinically
relevant assays with Luminex platforms (63) or flow cytometry.
Importantly, sequencing of cfDNA isolated from patient plasma
offers the opportunity to characterize the microvirome of
this immunosuppressed patient population. While commensal
organisms have been tied to host health in the context of
many disease states, the relatively targeted suppression of
T-cells by transplant immunosuppressants makes these patients
particularly susceptible to viral infection. Furthermore, an
analysis of heart and lung transplant patient microviromes
demonstrated the correlation between microvirome state and
risk of rejection (33). Another assay of cfDNA that has reached
a more widespread level of application is detection of donor-
derived cfDNA (64, 65). While dd-cfDNA has the ability to
detect graft injury, it has not yet achieved great success in
differentiating pathologies. One of the biggest challenges in
the field has been the design of studies to determine the most
suitable role for these techniques in clinical practice.

Urine omics
In kidney transplantation, the ability to obtain a “liquid

biopsy” is enhanced by the proximity of not only blood,
but an additional biofluid, urine. The study of urine for
possible biomarkers of rejection has received a lot of attention
and spans transcriptomics, proteomics, metabolomics, and
genomics approaches. Early work in analysis of mRNA from
cellular debris in transplant patient urine samples demonstrated
association between transcripts for mediators of cytotoxicity and
acute rejection (66–71). Over the past decade, the work has
shifted in the direction of a systems approach. Clinical trials
in organ transplantation (CTOT-4) investigators identified a
panel of 3 transcripts associated with rejection, with a signature
detectable up to 20 days prior to biopsy-proven diagnosis (72).
A later analysis used a panel of 26 genes to identify a linear
combination of 5 transcripts capable of discriminating TCMR
from AMR (73).

Urine metabolomics and proteomics have followed a similar
trajectory. Initial studies using enzyme-linked immunosorbent
assay (ELISA) or similar solid-phase bead-array assays identified
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associations with cytokines of interest (74–76), though applying
individual urine cytokine detection as a threshold for biopsy
was generally found to be insufficiently sensitive (77). A more
conservative approach proposed by the CTOT-1 consortium
is to consider urinary protein levels (in this case CXCL9) in
adjusting immunosuppression (78).

The more recent escalation to higher dimensionality
measurement via large-scale antibody arrays and multiplex
beads assays began to allow for an unsupervised approach to
urine biomarker discovery (75, 79). The field has since shifted
to a true systems approach driven by Minnie Sarwal et al. at
UCSF, who have used mass spectrometry to perform shotgun
high-throughput proteomics (80–83), which has been successful
in creating panels that discriminate between pathologies (84)
and have been translated into a spot based diagnostic assay (85).
Contributions from other labs are leading toward providing
resolution between AMR and TCMR (86, 87).

A subfield that has largely been neglected in application
to urine biomarkers is measurement of the surface proteome.
Several early papers presented immune cells in the urine as a
marker of rejection (68, 88–90), though this was not pursued
in follow-up until very recently (91). This is a promising
approach that may benefit from increased dimensionality, using
an unsupervised approach, and incorporation into a multi-
omic characterization along with urine transcriptome and
metabolomics. Both surface proteomics and free fluid omics
share a common limitation due to the dilute concentrations
encountered in urine (92). However, surface proteomics also
relies on live cells in order to avoid non-specific binding, a
significant additional limitation.

Ready for prime time

Cell-free DNA
While a number of insights can be drawn from circulating

cfDNA, the application that has more recently gained traction
in the clinical practice realm is monitoring dd-cfDNA. To our
knowledge, three companies have commercially available tests
monitoring dd-cfDNA (93). These tests use next-generation
sequencing of cfDNA to detect single nucleotide polymorphisms
(SNPs) that can distinguish between donor and recipient cfDNA
(94), allowing for readouts of the absolute quantity and relative
proportion of dd-cfDNA. Early interest in dd-cfDNA gained
momentum after the DART study (Circulating Donor-Derived
Cell-Free DNA in Blood for Diagnosing Active Rejection in
Kidney Transplant Recipients) demonstrated that a threshold of
only 1% dd-cfDNA was useful in discriminating active rejection
(95). While the limitations of the test were clear, as observed
in the notably lower levels of dd-cfDNA detected in TCMR
when compared to ABMR, this still represented a sensitive,
non-invasive test with the potential to provide more specific

guidance on the need for invasive biopsy than that obtained
from serum creatinine.

Further study with serial observation of dd-cfDNA in a large
cohort of kidney transplant recipients in the ADMIRAL study
(Assessing Donor-derived cell-free DNA Monitoring Insights
of kidney Allografts with Longitudinal surveillance) identified
a cutoff of 0.5% as a surrogate marker for immune quiescence
and preservation of eGFR (32). This study importantly
demonstrated the utility of dd-cfDNA not only in discriminating
active rejection but also in predicting future allograft function
(96). However, as dd-cfDNA does not provide the diagnostic
granularity to replace the need for biopsy, its most promising
application is in early detection of allograft risk allowing
for more frequent monitoring, or in evaluating patients’
appropriateness for reduction of immunosuppression.

Studies of dd-cfDNA outside of these initial trials have
led to variable outcomes and an overall lack of consensus
regarding the most appropriate application of the test. While
studies have generalized that patients with higher dd-cfDNA
experience higher rates of rejection, the ability to accurately
predict adverse events among these patients is still lacking
(97). This is because dd-cfDNA is elevated in a multitude
of pathologies and lacks the ability to distinguish among
infectious or immunologic etiologies of graft injury (98).
In fact, some studies suggest that among low-risk kidney
transplant recipients, the benefit provided from early dd-cfDNA
monitoring may only be marginally better than current clinical
management (99). For now, dd-cfDNA has found a niche in
the surveillance of high-immunologic risk patients for early
detection of a threatened allograft and an opportunity to alter
immunosuppression regimens. However, the cost-effectiveness
of these strategies must be weighed carefully, as the cost of each
dd-cfDNA assay is not trivial (93).

Eplets
Eplets, a set of polymorphic amino acids within a 3-

angstrom radius, represent the smallest functional unit capable
of determining antibody specificity. The tabulation of eplet
mismatch between HLA molecules can be used to quantify
the alloimmune burden between recipient and donor HLA.
Though the study of eplet disparities continues to evolve
rapidly as methods to handle the varying immunogenicity of
particular eplets are developed, the underlying principles of
eplet mismatch as a correlate to clinical outcomes has been
strongly established (100–104). Eplet mismatch clearly has a
role in risk stratification of transplant recipients during the
post-operative period. Wiebe et al. (105) demonstrated that
patients with a lower eplet mismatch burden are better able
to tolerate lower tacrolimus troughs without developing DSA,
a finding that has been reproduced in multiple independent
cohorts (106, 107). As these studies reinforce, understanding
of eplet mismatch burden will enable personalization of
immunosuppression reduction after transplantation.
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FIGURE 2

Application of systems immunology to transplantation. In kidney transplantation, samples can be obtained from 3 primary sources: whole
blood, urine, and allograft tissue. High dimensional measurement of each sample type provides a unique source of information, which can be
integrated using bioinformatics to build a more complete understanding of the biologic system.

Prospective matching using eplet disparities has also
received a considerable amount of attention, primarily in
the pediatric population and by the Canadian transplant
community. The Genome Canada Transplant Consortium
(GCTC) performed a study using simulations of targeted eplet
matching and demonstrated that, in the Canadian population,
perfect identity at the class II loci could be obtained with a
waiting list size of approximately 250 transplant candidates.
The GCTC is currently underway in evaluating the feasibility
and repercussions of implementing epitope-matched allocation
at the national level (108). In pediatrics, the importance of
a close match between donor and recipient is magnified, as
the likelihood of re-transplantation is significantly higher in
this population. In recognition of this, a small prospective
study examined the outcomes of transplant recipients who
were matched with an additional exclusion criteria for potential

donors with a high eplet mismatch burden (109). Patients who
were transplanted within the additional donor exclusion criteria
experienced a lower rate of DSA at 1 year follow-up. While this
is a promising result, the complexity of deceased donor organ
allocation means that further examination of the outcomes,
equity, and systemic effects of epitope matching are needed
before broader application can be considered. In contrast, eplet
matching in the context of living donor paired exchange has
begun to gain traction at a number of centers (104).

However, viewing eplets as a count metric with a singular
weight is an oversimplification of the biology the method aims
to represent (110). In particular, DQ and DR mismatches appear
more likely to lead to DSA and kidney graft failure (111).
To compensate for this difference in biological importance,
Wiebe et al. (105) developed single molecule eplet mismatch
scoring, which considers only the mismatch of DR and DQ loci,
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and uses molecule-specific counts. The field continues to seek
further refinement, by considering the varying immunogenicity
of specific eplets in terms of association with antibody
formation (110, 112, 113). However, early studies suggest that
immunogenicity of eplets may vary depending on the transplant
recipient population demographics (114–116). This may reflect
the importance of T-cell biology to the outcome of AMR.
One tool, PIRCHE, outputs a score reflective of the ability
of recipient HLA to present peptides from donor HLA (117).
This weighting of the role of the indirect pathway has been
associated with transplant recipient outcomes (118). While this
has not yet been evaluated, it could be hypothesized that the
varying immunogenicity of eplets across demographic subsets
may be related to the ability of recipient HLA to present relevant
peptides and recruit T-cell help to the antibody response.

Although the original eplet matching software
(HLAMatchMaker) represented a major breakthrough in
this field, it suffered from lack of reproducibility and a high
barrier to use. Recently, our group published a high-throughput
tool, hlaR, available as a web application (119) and on CRAN
(120), that applies HLAMatchMaker reference tables and logic
in a format that is accessible to a broader user base (121).
However, without high-resolution HLA typing, the accuracy
of these tools are constrained by the imperfections of the
method of imputation used to convert HLA typing from low to
high-resolution (122, 123).

Digital pathology
The term digital pathology was created after the

introduction of digital images generated by microscopes
and represents the use of technology to assist in the creation,
sharing, exchange of information and analysis of tissues
and cells performed by the pathologist (124). The latest
technological advances including super-resolution and single-
molecule imaging associated with sequencing approaches have
transformed pathology, allowing us to better understand cell
types, interactions, and heterogeneity in complex tissues. Most
importantly, this has enabled spatial transcriptomics, the ability
to extract spatially resolved molecular information from tissue
biopsies, which was named Nature’s 2020 Method of the Year
(125, 126). Spatially resolved omics can be divided into two main
categories: one using multi-omic analysis of microdissected
tissues followed by computational reconstruction of spatial data
and another using in situ hybridization or single cell barcoding
before sequencing and analysis.

In transplant biology, graft rejection diagnostics have
essentially been based on clinical and histological criteria.
While histologic diagnosis remains the gold standard, it suffers
inconsistencies due to the variations in histologic grading
and considerable interobserver disagreement. In an attempt to
align and standardize histological diagnostics for transplanted
organs, the MMDx was developed (59, 127, 128). MMDx is a
microarray-based gene signature platform that evaluates kidney

allograft biopsies to predict graft injury and rejection. MMDx
evaluates the gene signature assigned to each particular biopsy
region by combining molecular measurements with machine
learning classifiers.

At the last Banff meeting in 2019, the Banff Molecular
Diagnostics Working Group suggested the use of
transcriptomics in combination with immunohistochemical
assays and conventional pathological evaluations for the
diagnosis of transplant rejection. The recommended Banff
Human Organ Transplant (B-HOT) NanoString panel includes
770 genes, covering the most pertinent genes related to
rejection, tolerance, toxicity, viral infections, innate and
adaptative immune responses (129). However, bulk ribonucleic
acid (RNA) sequencing of graft biopsies may not capture
the focal nature of acute rejection. Multiplex spatial biology
techniques with molecular resolution up to single cell level
may be the future of rejection analysis in transplant biopsies
(130–135). Recently Salem et al. (136) showed that the
NanoString whole exome GeoMX Digital Space Profiling
platform can be used to study the transcriptional profile in
different regions of acute rejection biopsies. Another use of
digital pathology in transplantation has been the use of artificial
intelligence for automated image analysis of immunological
synapses and cell activation in biopsies stained by multiplex
immunohistochemistry (137). However, the high cost and
the need for a fully integrated multidisciplinary group to
develop these spatially resolved omics technologies are today
the biggest challenges prohibiting the routine employment of
these technologies, especially for clinical diagnostics.

Emerging technologies

T-cell receptor sequencing
Most extensive study of the human T-cell repertoire has

focused on response to infectious pathogens, notably CMV,
Lyme disease, and COVID-19. In a landmark study, Emerson
et al. (138) performed immunosequencing of 666 healthy
humans with known CMV status and HLA class I type.
These 90 million TCR beta chains opened the door for the
application of technology and bioinformatic pipelines to guide
TCR analysis and demonstrated that TCR repertoire could
be used to distinguish individuals by characteristics of their
immune system such as viral exposure or HLA type. Public
CMV-associated TCRs, or those found in multiple individuals
correlated with CMV serostatus, were identified. Examples of
these public TCRs were experimentally confirmed to indeed
be specific for CMV epitopes in HLA molecules expressed by
the blood donor.

Public TCRs, sequences that are statistically more likely
to appear across multiple individuals’ repertoires, may occur
because of the biologic advantage incurred, because of the
redundancy of the genetic code, or because of the entropic

Frontiers in Medicine 08 frontiersin.org

https://doi.org/10.3389/fmed.2022.1070385
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-1070385 December 12, 2022 Time: 16:14 # 9

Johnson et al. 10.3389/fmed.2022.1070385

favorability of specific rearrangements (139, 140). The presence
of these public sequences allows for the use of TCRs as
biomarkers of prior exposures. Though the presence of even
public TCRs can be subject to the stochastic nature of
recombination, generalization of the specific TCR into a meta-
clonotype of biosimilar, quasi-public TCRs likely to recognize
the same epitope can provide a more rigorous search metric
to fully characterize the T-cell response (141). Quantifying the
presence of these antigen-specific TCRs by frequency in the
overall repertoire, which has been termed breadth for unique
clones and depth for total templates, may inform the quantity
and quality of the anti-pathogen T-cell response. Following
CMV, this approach was later applied successfully in both Lyme
disease and Epstein-Barr Virus (EBV) (142, 143).

These expanding databases of TCRs and cognate antigen
have allowed for additional insights into the TCR repertoire
and implications for protective immunity, most recently with
SARS-CoV-2 (41). Just as CMV naïve transplant recipients have
markedly distinct patterns in TCR sequences when compared to
CMV seropositive transplant recipients (144), this concept has
been extrapolated to the application of SARS-CoV-2 exposure
analysis. Prior exposure and T-cell mediated immunity can be
inferred by comparing an individual’s TCR repertoire against
a classifier developed from a database of known public SARS-
CoV-2 associated TCRs (145, 146). This methodology has
recently been expanded to diagnosis of other vector-borne
disease and has the potential to be applied to innumerable viral
pathogens (143). TCR repertoire has proved to be useful in
evaluating response to vaccination, and may be a useful adjunct
in screening patients for baseline protective immunity prior
to transplantation to guide prophylaxis or duration of therapy
(147, 148).

An exciting potential application in transplantation led by
M Sykes has coupled TCR sequencing with alloimmune mixed
lymphocyte reaction (MLR) to identify the donor reactive TCR
repertoire (149). The donor reactive TCR repertoire can be used
to assess the specificity of graft infiltrating lymphocytes during
rejection, as well as to monitor for the development of tolerance
and deletion of alloreactive clones after liver transplantation
or chimerism induction (150, 151). While this work is in
early stages, the alloreactive TCR repertoire may be useful as
a diagnostic tool, predictive of rejection with expansion or
induction of tolerance with contraction. However, the sensitivity
and required sampling depth for these assays need to be
explored and characterized. Cell based assays are cumbersome
and may have limitations in reproducibility, but nonetheless
offer exciting potential applications.

There are numerous, complex forces involved in shaping
the alloimmune T-cell response. Alloreactive TCR repertoires
vary based on widely variable recipient HLA alleles driving
T-cell selection during development, the ability to indirectly
present donor non-self peptides, the variety of self-peptides that
may be presented in the direct pathway on donor HLA, and

even random chance (152). Though this requires significant
work for each candidate transplant donor-recipient pair, it does
provide a useful diagnostic, though not therapeutic, tool that
can track alloreactive TCRs post-transplant to determine the
risk of rejection (153). Ideally, understanding each component
involved in shaping the alloreactive TCR repertoire could
allow for computational development of an alloreactive-specific
TCR depletion method. Significant work has been done in
determining non-self peptide ability to bind recipient HLA
(117), but our knowledge of the immunopeptidome, and our
ability to predict the cognate TCRs to specific epitopes is still
nascent (154–157).

Immunopeptidome
Major advances in our understanding of the

immunopeptidome have been made in recent years due to
improvements in wet lab and computational methods. T-cells
are known to recognize peptides when presented on HLA
proteins; the HLA-peptide complexes that are recognized by
allospecific T-cells make up the immunopeptidome. CD8 T-cells
recognize HLA-I presenting peptides that are 8–10 amino acids
long. In contrast, for CD4 T-cells, peptides are presented on
HLA-II and are longer, most often 15mers, due to the open
binding pocket of HLA-II. Peptides eluted from HLA have
been identified using mass spectrometry to define both the
self-peptidome and pathogen-related peptidomes. The large
datasets of these peptides and their presenting HLA proteins led
to the identification of allele-specific binding motifs. Machine
learning prediction algorithms, such as netMHCpan, have been
trained using these elution datasets as well as other large datasets
containing peptide binding affinity (158). These algorithms,
which were recently used to rapidly predict SARS-CoV-2
epitopes, compress the time required to develop tetramers and
characterize the T-cell response from years to months.

While application in transplant is in the early stages, the
two components of response to understand are the donor
HLA-I presented peptides on the allograft and the allogeneic
peptides presented on recipient HLA-II. Elegant work by Son
et al. (154) used a mouse model to identify immunodominant
peptides contributing a large portion of the direct alloresponse,
suggesting the importance of the peptides presented by donor
HLA-I. Additionally, the viral peptidome can lead to an
alloimmune response through heterologous immunity. For
example, a T-cell that recognizes an EBV peptide in the context
of HLA B8 can be cross-reactive against B44 with a self-peptide,
leading to an alloimmune response (159–163). However, the
self HLA-I immunopeptidome is vast, with the ligandome for
each allele measured in the thousands or tens of thousands.
The component of the alloimmune response due to indirect
allorecognition, while still complex, is more readily trackable.
The indirect immunopeptidome is presented by recipient HLA-
II and is limited to polymorphisms between donor and recipient
(most often HLA), the basis for PIRCHE II.
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In studying the indirect immunopeptidome, we aim
to understand the contribution of HLA class II peptide
presentation in recruiting T-cell help for the alloimmune
response. PIRCHE II is a sophisticated implementation of this
approach that generates a score for each donor antigen in the
context of each recipient HLA class II allele, representing the
number of unique, non-self, core sequences from the donor
antigen that are expected to bind to and be presented by the
recipient HLA (117). In just the past few years, PIRCHE II scores
have been associated in studies of kidney, lung, cardiac, and
liver transplant recipients with increased risk of DSA and TCMR
(164–167).

While there is likely utility in using PIRCHE II for post-
transplantation risk stratification, an exciting possibility for
clinical use is in evaluating potential donors for transplant
candidates with a prior sensitizing event. Evaluation of shared
T-cell epitopes in conjunction with cPRA can help to predict
the risk of early DSA formation in sensitized candidates (168).
Population level studies have been used to construct a tool that
allows clinicians to evaluate the distribution of PIRCHE II scores
for a given recipient across their center’s donor population,
providing context for the level of T-cell epitope match seen with
a given donor offer (118).

Though PIRCHE II is rapidly progressing toward the clinical
realm, the immunopeptidome as it relates to HLA class I
peptide presentation is equally exciting, albeit less developed.
The CD8 alloimmune response is most likely responding
to commonly occurring peptides in the context of non-self
HLA class I. In this case, the overall peptidome is essentially
constant between individuals, with the non-self class I HLA
driving the recognition of peptide-HLA as foreign. Recent
large scale projects are undertaking the mapping of the human
ligandome across organs and HLA types (155, 169). As this
data evolves, we are optimistic that immunodominant peptides
in the alloimmune response will arise. The identification of
immunodominant peptides, both for class I and class II HLA,
opens possibilities for tolerogenic therapy, with oral tolerance
of class II peptides (170) or tetramer mediated depletion of
cognate T-cells (171). Likewise, more comprehensive mapping
of the viral peptides involved in the immune responses to BK,
CMV, and EBV may facilitate new assays to better understand
transplant recipient protective immunity.

Data science capabilities

Our entrance into the era of “big data,” with increases in
the volume, variety, and velocity of data generation, requires
new approaches to harness the power of all the available data.
With data coming from multi-omics, electronic health records,
patient recorded devices, and blood tests, we have only begun
to skim the surface of the exciting opportunities beginning to
arise. Moving forward, studies will require the integration of

multimodal data sources, which requires more complex analysis
methods (Table 1). Bioinformatics offers multiple approaches
including network analysis, integration of longitudinal data, and
machine learning that is supervised, unsupervised, or semi-
supervised. Depending on the methods employed, analysis
of these high-dimensional datasets can lead to hypothesis
generation, or prediction models which range from explanatory
to “black box” depending on the level of supervision used. To
ensure reproducibility of results, these analysis methods need
to be developed in the context of data processing pipelines so
that local and personal data can be analyzed and compared
to public datasets. Ideally, these methods should also be
built into graphical user interfaces to allow interface between
clinicians, immunologists, and computational biologists. These
new opportunities and their accompanying challenges highlight
the need for new methods and new collaborators in the
transplant community.

Dimensionality reduction
Data generated from sequencing requires significant

processing before analysis (Table 1). The processing required
varies based on the type of data generated, but the overall goal
is to only carry forward data that significantly differs between
samples. Specificity data results in TCR or B-cell receptor
(BCR) sequences, which may be broken done by V, D, and J
regions. Often, this data is simplified to a V gene, a J gene, and
the complementarity determining region 3 (CDR3) sequence,
which is the most variable portion of the sequence. While
unique TCRs are still distinguished by their CDR3 region, this
simplification greatly reduces the computational effort required
to compare TCRs to one another.

With transcriptomic data, sequencing results are used to
determine gene expression levels by cell (for single cell methods)
or by sample (for bulk transcriptomics). Although users can
manually determine genes of interest to predetermine the focus
of the experiment, a less biased approach is variance selection.
Rather than considering the expression of every single gene in
comparing cells or samples, first variance analysis is performed.
If gene expression has minimum variability across the samples,
that feature can be dropped with minimal loss of discrimination
between samples. This has the effect of reducing variables which
enables projection of the data for visualization, as in primary
component analysis (PCA), t-distributed stochastic neighbor
embedding (tSNE), and uniform manifold approximation and
projection (UMAP).

Machine learning
While experimental design results in some unavoidable

level of confirmation bias, machine learning aids in removing
preconceptions about the importance of specific cells or genes
and considers all features regardless of pre-ascribed ideals.
There are two basic branches of machine learning: supervised
and unsupervised. Supervised machine learning is applied to
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TABLE 1 Bioinformatics tools and review articles for some of the key aspects of systems immunology that are most relevant to transplantation.

Analysis Key bioinformatics tools Review articles

TCR/BCR repertoire TCRdist3 (141), CDRdist (44), GLIPH2 (42), Immunarch (183), VDJPuzzle (184) Rosati et al. (185), Teraguchi et al. (186)

Flow/mass cytometry flowCore (187), cytoExploreR (188), FlowSOM (189) Saeys et al. (190)

Single cell RNA seq Seurat (191), Scater (192) Andrews et al. (193), Luecken (194)

Metagenomics Metaspades (195), kraken2 (196), viral_ngs (197) Quince et al. (198)

High-resolution HLA HLAMatchMaker (24), HLA-Emma (28), hlaR (121) Sahin et al. (199)

Trajectory analysis Monocle (181), slingshot (200), GPfates (201) Saelens et al. (202)

Network analysis GeneMANIA (203), SNF (204), iGraph (205) Jiang et al. (175)

Multi-omic integration iClusterPlus (206), PARADIGM (207), MOFA (208), iOmicsPASS (209), STATegra (210),
xMWAS (211)

Subramanian et al. (212)

Differential expression MAST (213), limma (214), DESeq2 (215) Costa-Silva et al. (216)

FIGURE 3

Machine learning–fundamental concepts. In supervised
methods, input data is already classified, and machine learning is
used to determine associations. In unsupervised methods, input
features are used to determine classification.

data that is already categorized. Applying machine learning
to this data is essentially using it to train a model, similar
to performing linear or logistic regression. The model built
reflects the importance of input features in determining the
categorization of each object. The trained model can then be
applied to uncategorized testing data and used to assign a
classification based on input features. In contrast, unsupervised
machine learning is used to sort data that has no pre-assigned
classification. Data is input, and the similarity among features
is used to categorize objects (Figure 3). This is most frequently
implemented by clustering, which is useful both for identifying
the presence of distinct populations and for assessing the
presence of populations with a high level of similarity. We won’t
address the intricacies of clustering approaches here but refer
the reader to this recent review (172).

The most suitable method for analysis varies based on the
features of the data. Single cell methods create datasets where
the number of features far outnumber the samples. On the
contrary, analysis of cell surface markers from flow cytometry
or CyTOF, despite increasing discrimination with improved
technology, generates datasets with numbers of samples (cells)
that are orders of magnitude greater than the number of features
measured. Cells are categorized into clusters based on the
profile of markers or genes they express. Clusters can then be

visualized in several ways. Multiple approaches aim to improve
on the visual representation of data including PCA, tSNE, (173)
(Figures 4A,B), and UMAP (174). Though difficult to visually
interpret, heatmaps simultaneously convey the expression of
all markers used in clustering (Figure 4C). All of these are
dimensionality reduction methods, which are helpful for data
input into models and for understanding model or clustering
output by allowing visualization and comparison (Figure 4D).

For TCR and BCR sequencing, beyond assessing the
presence of clonality, cells can only be grouped after calculating
a measure of similarity between the CDR region and V/J
gene segments used (Figure 5). There are a number of
approaches, ranging from user-friendly GLIPH2 to algorithms
that also provide a measure of similarity in the form of a
Euclidean distance between each receptor and comparator, such
as TCRdist and CDRdist (42–44). This “distance” is measured
by sequence alignment, using amino acid similarity scores to
optimally align CDR3 sequences. Aligned sequences are used to
sum the concordant and discordant positions in each TCR, and
distances can then be used to find clusters of similar TCRs.

Multi-omic data integration
Multi-omic data can be acquired in two ways. The

most approachable method is single-cell sequencing. An
alternative method is performing single omic experiments
on parallel samples. The integration of single cell data,
while still not computationally insignificant, is logically trivial.
Each sequencing read has a unique identifier tying the
read to the cell it originated from. The unique identifier is
the same across the cell surface library, VDJ library, and
gene expression library, which allows reads to be integrated
across measurements. The integration of single omic data is
much more theoretically complicated and generates a less
rigorous result. However, the required sample input quality
for single cell sequencing is so high that many applications
will likely continue to rely on single omic bulk measurements
while cost and scalability improve. The current repositories
and continued production of this data have encouraged
the development of methods to incorporate the results
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FIGURE 4

Dimensionality reduction (144). An example of dimensionality reduction use to display the results of unsupervised clustering. Heatmaps (C)
display the representation of input features in each cluster. While TSNE graphs allow visualization of the distribution of clusters or cell types (A),
input feature (B), and detection of differences in cluster frequency between sample types (D).

FIGURE 5

T-cell receptor (TCR) similarity analysis (217). TCRs can be grouped in terms of sequence similarity (A). Connected components can be
identified by network analysis (B). Known specificities can be overlaid on similarity networks (C), and motifs inferred (D).
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from multiple methods performed on parallel samples from
the same subject.

The various tools surrounding multi-omic data integration
are targeted toward the user intention. Most frequently, this falls
into two categories: disease subtyping or biomarker detection.
The ability to perform one implies the capacity to extrapolate the
other, but the number of available integration tools allows users
to pick one suited to their needs. Methods can simplistically be
understood by the timepoint at which data from single-omic
datasets are combined. There are two basic options-combine
datasets early or late.

Methods that combine datasets early can suffer bias if one
omics source has many more features than another. Steps
for covariance detection and normalization of datasets to the
same scale are required prior to data analysis. Regardless
of the method of regularization, early dataset integration is
subject to lose the differing weight of importance attributable
to each omics source dataset. However, once datasets are
satisfactorily combined, clustering and regression on clinical
outcomes of interest can be performed in a relatively
straightforward fashion, without much difference from a
single omic dataset.

A late integration means that each source omic is clustered
and analyzed individually before combining datasets. In this
approach, each single omic dataset is analyzed to generate
its own pattern of associations. The networks generated are
subsequently brought together (“fusion analysis”) to determine
consensus signatures. The benefit of this approach is the
ability to draw conclusions from individual data sources before
combining datasets. Building additional perspective on the
significance of specific features from the initial datasets can
help inform integration steps. Each dataset is ascribed “local”
effects, and integration of the datasets allows each omic to be
ascribed a weight in determining the “global” effect (pattern
fusion analysis).

Additional methods
Network Analysis contributes an additional layer to this

analysis by incorporating data on the biologic connectivity
between components. For example, the known relationships
between transcription factors and the proteins they moderate,
as well as genes and the proteins to which they are translated,
can be used to capture the biological ties between different
levels of omics data. In a network, also called a graph, the
components being analyzed are visualized as nodes, and the
associations between components are edges or vertices (175).
Building a network from omic results allows for analysis of
data from a topographical approach that captures information
in a more visually digestible manner. Nodes can be evaluated
for “degree,” a measure of the number of edges extending
from the node, or “betweenness,” the frequency at which a
node appears in the shortest path between any two given
nodes (176, 177). A weighted network can also provide

information on the strength of connection between two nodes.
There are a number of tools to help researchers use network
visualization and analysis to further understand their work,
including cytoscape, innateDB, and human disease network
(178–180).

In addition to capturing cell states and interactions at a
single point in time, we are interested in understanding the
trajectory of cell states and the behavior of these networks
over time. Collection and analysis of multiple longitudinal
samples is a critical component of building this knowledge, but a
significant amount of information on cell states and trajectories
can be extracted from single cell RNA sequencing (scRNAseq)
data by examining cells in pseudotime.

Understanding cell trajectories in scRNAseq data enhances
our ability to identify regulatory genes differentially expressed
both along and between pathways (181). Pseudotime,
or trajectory inference, assigns cells a position along a
trajectory from one state to another. The large number of
trajectory inference tools can be subdivided by whether the
topology is predefined (linear, bifurcating, etc.) or inferred
from the data. Inferring topology allows a more complex
trajectory to be defined, but as predefined topology can
underestimate complexity, inferred trajectory methods
can overestimate the complexity of biological networks
with simple trajectories. While single cell data provides
a particular advantage in the application of pseudotime,
for experiments with single omic data, temporal analysis
is equally important. The differences in patient immune
system composition at baseline can be used to predict
responses to perturbations in the environment, such as
vaccination (182).

Discussion

The rapidity of advancement in systems immunology is
difficult to overstate. Microfluidics is perhaps the most striking
example, where single cell capture has quickly scaled from a
cost-prohibitive technique limited to a few hundred cells into
a technique that captures tens of thousands, soon millions,
of cells and can be performed by individual labs outside of
specialized centers with minimal additional training. Many
features of single cell technology are evolving–extensions of
single cell proteomics, the incorporation of spatial data, ability
to formalin fix cells, functional assays, parallel sorting. These will
only expand the relevance of a multi-omic approach to our field.

While bioinformatics tools are rapidly advancing in
capability and use, the most important advancements are in
making such massive scales of data analysis approachable to
immunologists not trained in computer science. As the initial
generation of samples and ultimate derivation of biological
relevance from results falls to immunologists, it is a huge
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advantage for those researchers to be able to interact with multi-
omics data regardless of their familiarity with the command
line. In parallel to improved user interfaces, bioinformaticians
are developing reproducible pipelines that allow users simplified
input and output, reducing decision making and improving
standardization. Though too many to list, bioinformatics
tools for every facet of the field are improving in terms of
computational efficiency and accuracy.

The result of this effort is that several biomarkers are
beginning to cross the margin into the clinical realm. While
biomarkers are not yet able to replace standard of care
procedures, further application will allow us to find an
initial role that can be expanded in the future. Urine omics
have natural potential in screening patients to determine the
need for allograft biopsies. Molecular diagnostics of allograft
biopsies may lead to more accurate diagnoses and clarify the
interpretation of those with borderline presentation or the
appearance of mixed pathologies. Baseline early peripheral
blood omics and high-resolution typing can allow us to
individualize immunosuppression regimens and prophylaxis
more effectively.

Though the benefits of applying systems immunology to
transplantation are numerous, there are several limitations
to the multi-omics approach in its current form. As the
need for data analysis methods is recognized, multiple
techniques and tools have been developed in parallel for similar
applications, making it difficult to compare results between
studies. Standardization of methods and documentation for
reproducibility will be critical moving forward. In addition,
the systems approach, particularly in application to human
subjects, is often applied in an exploratory manner, with
hypothesis-generating results. Follow-up study in a targeted
manner is frequently required to confirm these initial findings.
Additionally, the breadth of knowledge required to integrate
findings from multiple techniques can require a high-
functioning multidisciplinary team, which can be difficult both
to identify and to train.

While the accumulation of knowledge and skill to
incorporate these multiple measures into outcome prediction
is no small feat, it is the most likely route to success. A single
biomarker, despite the utmost care taken in its selection,
captures only a single dimension of a patient, who in reality

is the most complex network of networks. The future of
outcome prediction for transplant recipients lies in our ability to
integrate multi-omic data. It is only with more accurate outcome
prediction that we can continue to move toward personalized
transplant care, using patient baselines and early profiles to
tailor immunosuppression, prophylaxis, and follow-up.
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