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Pathology is the gold standard of clinical diagnosis. Artificial intelligence (AI) in

pathology becomes a new trend, but it is still not widely used due to the lack of

necessary explanations for pathologists to understand the rationale. Clinic-compliant

explanations besides the diagnostic decision of pathological images are essential

for AI model training to provide diagnostic suggestions assisting pathologistsŠ

practice. In this study, we propose a new annotation form, PathNarratives, that

includes a hierarchical decision-to-reason data structure, a narrative annotation

process, and a multimodal interactive annotation tool. Following PathNarratives, we

recruited 8 pathologist annotators to build a colorectal pathological dataset, CR-

PathNarratives, containing 174 whole-slide images (WSIs). We further experiment on

the dataset with classification and captioning tasks to explore the clinical scenarios

of human-AI-collaborative pathological diagnosis. The classification tasks show that

fine-grain prediction enhances the overall classification accuracy from 79.56 to

85.26%. In Human-AI collaboration experience, the trust and confidence scores from

8 pathologists raised from 3.88 to 4.63 with providing more details. Results show

that the classification and captioning tasks achieve better results with reason labels,

provide explainable clues for doctors to understand and make the final decision

and thus can support a better experience of human-AI collaboration in pathological

diagnosis. In the future, we plan to optimize the tools for the annotation process, and

expand the datasets with more WSIs and covering more pathological domains.
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1. Introduction

Pathological diagnosis is the gold standard for most diseases, especially oncology, and is the
cornerstone of clinical treatment (1). It studies the etiology, pathogenesis, and morphological
changes of tissues and drives decisions about discovering, treating, and preventing diseases.
With the development of deep learning and artificial intelligence (AI) technologies (2, 3),
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computational pathology has made significant strides in helping
pathologists with auxiliary diagnostics and increasing their
productivity in smart medicine applications such as classifying tumor
subtypes (4–7), detecting cancerous regions (8), and segmenting
lesion areas (9–11), especially for small and easily neglected lesion
areas (12).

Artificial intelligence for pathology has stimulated a growing
demand for high-quality pathological image datasets. Deep-learning-
based computational pathology requires model training with
numerous gigapixel whole-slide images (WSIs) scanned from H&E-
stained specimens and annotated with diagnostic labels (13, 14).
Due to its professionalism, pathological annotation usually relies on
professional pathologists and is time-consuming and costly (15). The
form and granularity of annotations imply the types of potential
applications a dataset can support. For example, some large-scale
datasets with WSI-level weak labels are used for weakly supervised
classification tasks (16–18), while some datasets with region-
level annotations can support more tasks of lesion segmentation
with multiclassification types or even verbal explanations (19–21).
Nevertheless, existing public datasets are not directly applicable for
clinical use because most focus on the ground truth labels about
what the diseases and lesions are, rather than why and how they
are discovered and decided. As a result, the trained AI models can
hardly provide enough diagnostic explanations for pathologists to
understand the rationale.

There still exist challenges in collecting why and how annotations
because pathologists’ diagnostic thinking logics are not well recorded
and structured. Furthermore, the descriptions of a lesion’s decisive
morphological characteristics are not consolidated due to the diverse
captioning habits of pathologists. Most importantly, interactive
annotation approaches must provide a flexible and systematic
experience while avoiding additional workload for pathologist
annotators (22).

In this study, we propose PathNarrative, a new annotation form
that can collect both diagnostic labels and rich logical reasoning data
for pathological AI to better collaborate with human pathologists.
PathNarratives introduces an annotation protocol for pathologists to
record both the decision-layer lesions and the reason-layer decisive
features of diagnostic logic. It defines a hierarchical multimodal
data structure to manage the decision-to-reason labels and their
relations, a narrative annotation process, and an interactive tool
to support annotators working in a flexible and multimodal way
with clinical tags, voice, and pencil to not only mark the lesions
but also point out the relative decisive features. Meanwhile, the
underlying field-of-view (FOV) moving and pausing behaviors
can be recorded simultaneously to together form the hierarchical
annotation. Following the PathNarratives protocol, we recruited
eight pathologist annotators and built a colorectal pathological
dataset containing 174 WSIs with hierarchical decision-to-reason
annotations. We further conduct experiments on the dataset with
classification and captioning tasks to explore the clinical scenarios of
human-AI collaboration in pathological diagnosis.

The major contributions of this study are as follows:

(1) A new annotation protocol, PathNarratives, that can obtain
and manage clinical-compliant fine-grain multimodality labels,
diagnostic thinking logic, and decision explanations. The
hierarchical data structure involves decision-layer and reason-
layer labels compliant with standard pathology clinical guides.
A hierarchical terminology for the colorectal tumor is also

proposed. Multimodality information labels are supported for
flexible annotation.

(2) A comprehensive colorectal dataset of gigapixel WSIs with fine-
grained annotations following PathNarratives was constructed.
Each WSI involves the decision-to-reason hierarchical labels
and the multimodality information.

(3) Exploration of the application scenarios of the PathNarratives
colorectal dataset in diagnosis and experiments results show
that finer labels improved performance in the classification
and capitalization tasks. The explainable results supported
doctors’ efforts to better understand and experience human-AI
collaboration in pathological diagnosis.
The rest of the study is arranged as follows. Section “2 Related
study” the related study on datasets, narrative annotation,
and relative AI applications. Section “3 Data annotation
protocol” introduces the pathological data annotation protocol.
Section “4 Dataset” presents the annotated colorectal dataset.
Section 5 “Classification and captioning tasks on narratives-
annotated dataset” shows the application scenarios and
experiments on the dataset. Section “6 Conclusion” concludes
and discusses future study.

2. Related study

2.1. Pathological datasets

Some pathology datasets are typically weakly labeled with simple
metastatic disease circled at the WSI level and only applied to
a single decision scenario (23–27). For example, CAMELYON16
(23) and CAMELYON17 (24) datasets have been widely used in
research for automated detection and classification of breast cancer
to enable automated evaluation of patient staging while reducing
the subjectivity of the diagnosis. Similarly, the authors compiled
TCIA (25) containing clinical information from epithelial ovarian
cancer (EOC) and peritoneal serous papillary carcinoma (PSPC)
to explore and develop methods for predicting the therapeutic
effect of bevacizumab in patients with EOC and PSPC. The
breast cancer dataset BreCaHAD (26) divides WSIs into six tissue
classifications including mitosis, apoptosis, tumor nucleus, non-
tumor nucleus, tubule, and non-tubule, to support multiclassification
tasks. Another breast cancer dataset, BreaKHis (27), is designed for
baseline classification of tumor benign-malignant and discrimination
of subtype characteristic tissues. These dataset annotations only stay
at the decision level of the metastatic region; the granularity is not
detailed and persuasive enough.

Several pathological datasets aim to provide better clinical
captioning to reflect pathology reports in computational pathology
(19–21), including two categories. One was taken from existing digital
resources, such as pathology textbooks and clinical and research
journal article databases, which are typically represented by PathVQA
(19) and ARCH (20). Such datasets are massive in volume but low
in acquisition cost, poor in quality, and inconsistent in standards.
These two datasets are often used for pre-training representational
learning. During compilation, PathVQA also emphasizes templated
and open-ended generation of visual question answers, compared to
ARCH’s extracted image and image-related text pairs. Another type is
obtained by picking patches from WSI, such as PatchGastricADC22
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FIGURE 1

PathNarratives protocol including a hierarchical fine-grain data structure and a multimodal annotation process with an interactive annotation tool.
(A) Decision-to-reason data structure. (B) Narrative annotation with label terminology. (C) Interactive annotation tool: ParVis.

(28) and BCIDR (21). Among them, PatchGastricADC22 is derived
from the actual clinical case diagnosis reports from the same hospital.
Each instance has two magnifications, so the quality and resolution
are consistent. Each WSI contains unorderly collected patches.
Patches that belong to the same WSI have the same caption. Since
there are only independent patches, there is no way to understand the
mutual reasons for different patches in the doctor’s diagnosis. BCIDR
allows more pathologists to participate in the annotation. The patches
are extracted from eight typical regions and added captions, which
makes their captions more focused on the detailed information at
the cellular level. Thus, all of these datasets do not focus on region-
level reasonable diagnostics. PathLAKE (22) proposes an annotation
best practice that includes hierarchical case-level, region-level, and
cell-level labels on breast cancer annotation but does not take the
doctors’ diagnostic logic or the experience of multimodal inputs
into consideration.

2.2. Narrative annotation model

Narrative annotation focuses on the description of the
relationship between entities, and entity relationships are collected
during the annotation phase. Attributes, relationships, and entities
in the same image are often closely related (29–32). Localized
Narratives (30) connect vision and language by artificially using
mouse scribing to join action connections between entities and make
the captioning in content more hierarchical. It asks annotators to
describe an image with their voice while simultaneously hovering
their mouse over the region they are describing. Using this mouse
trajectory and voice inputs, the narrative dataset performs better
in the caption task. Similarly, TReCS (31) exploits using detailed
and reasonable language descriptions paired with mouse traces to
generate images. More realistic images could be generated using
descriptions and traces compared to those without traces. The
interactions and relationships between objects contribute to a visual
understanding of the main components of object-centric events
(33). MITR (32) shows a framework to jointly model images, text,
and human attention traces, which connects what to say with
where to look by modeling human attention traces. The process of

narrative annotation also contains helpful information in essence. By
exploring the visual attention of doctors browsing and the process of
scanning trajectories, Chakraborty et al. (34) found there are strongly
correlated between the feature regions of algorithm tasks and lesions
in the image to a certain extent, which reflects their diagnostic logic.
The annotators draw the object’s bounding box with the mouse and
add class labels through voice. Significant speed gains are achieved
while maintaining high-quality annotations (35). In addition to
manually adding entity relations during the annotation process, the
models for video action recognition can also be considered partially
auto-generating narrative relations of the entity bounding boxes
(36–38).

2.3. Applications of AI in pathology

Medical classification and segmentation have also actively
been explored (39–45). Gurcan et al. (39) reviewed pathological
image analysis methods for computer-assisted diagnosis, including
pretreatment, nucleus and gland segmentation, feature extraction,
and classification. Veta et al. (40) discussed histological image
analysis methods for breast cancer and conducted additional
discussions on mitosis detection and proliferation assessment.

TABLE 1 Basic information of participating pathologists.

Pathologist Years-of-working Subspecialty

P1 More than 15 years Histopathology

P2 3–5 years Histopathology

P3 3–5 years Histopathology

P4 5–10 years Digestive

P5 10–15 years Digestive

P6 10–15 years Histopathology

P7 3–5 years Histopathology

P8 More than 15 years Histopathology

P9 3–5 years Digestive
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Luo et al. (42) combined the characteristics of tumor cells and
their surrounding organizational form environment to predict
patient survival outcome information experimentally. HAG (43)
was proposed to fuse multiresolution information and speed up
prediction without reducing accuracy. Abu Haeyeh et al. (44)
normalized the staining of RCC and used a weakly supervised multi-
instance learning method. The results show that they can classify
benign-malignant and determine tumor subtypes to support medical
treatment management. Zhou et al. (45) chose TCGA, combing
features at different magnifications, to achieve the classification and
localization of colorectal tumors.

Pathological captioning tasks are being studied recently to
automatically generate diagnostic texts based on patient medical
images, assist inexperienced doctors, and reduce clinical errors
(46). The typical representative is still PathVQA (19). PathVQA
first reviews related research in medical radiology, such as
VQA-Med (47) and VQA-RAD (48), and then explores the
experiments of vision questions and answers tasks in pathology.
The PathVQA automatically generates what, why, and other
question-answer pairs to conduct the learning model by extracting
pathological images and corresponding text information. In contrast
to PathVQA, PatchGastricADC22 extracts patches from endoscopic
biopsy specimens of gastric adenocarcinoma and trains an attention-
based pipeline model to predict image features. The physician
diagnostic logics of WSIs or lesion regions have not been extensively
explored in the caption task at present.

3. Data annotation protocol

3.1. Overview

We first analyzed the clinical routines of pathological diagnosis
to formulate the annotation data structure and the protocol of
PathNarratives, as shown in Figure 1. To be specific, we consulted
the WHO pathological clinical guideline (49), analyzed the pathology
report templates from the pathology departments of two top-tier
hospitals, and observed two pathologists for their diagnosis browsing
and thinking practices with permission (P4 and P9 in Table 1). The
goal was to explore how pathological decisions are made, explained,
and concluded into reports, and what granularity of interpretable
annotations can be collected in a natural process.

We then defined the PathNarratives protocol, which includes
a hierarchical decision-to-reason data structure, a multimodal
annotating process, and an interactive annotation tool. It allows
annotators to work in a flexible and multimodal way to mark and
circle lesion areas, look for typical characteristics and outline them,
and describe the basis of judgment, by using clinical tags, voice, pencil
lining, and FOV moving. Following this, the collected data can cover
the types of diagnostic disease and lesion, the decisive morphological
features, and the corresponding pathologists’ logical narrations and
viewing behaviors.

3.2. Data structure

Decision-to-reason annotation
Concluding a pathological diagnosis report involves two layers of

information. The decision-layer information is about the slide-wise

diagnostics (one report may involve several slides of the patient) and
descriptions of lesion regions that appear explicitly in the pathology
report. In contrast, the reason-layer information demonstrates the
underlying typical features and reasons that pathologists use to judge
the lesion and diagnose it. Although the reason-layer information is
essential to explain the rationale, it is usually implicit in pathologists’
knowledge systems and does not show in the report. Only when
pathologists discuss with other doctors will they refer to both
the decision-layer and reason-layer information of the diagnosis,
using multimodal ways such as texts, voice, screenshots, and
mouse/pencil moving.

Besides the two layers of information, we discovered that doctors’
behaviors such as browsing, view zooming-in/out, view shifting, view
pausing, and mouse/pencil hovering represent their attention focus
and thinking logic during the pathological diagnosis process. Such
behavior data also provide informative inputs for AI learning and,
therefore, are also considered in our data structure.

The decision-to-reason data structure to manage the hierarchical
multimodal annotation is shown in Figure 2. The decision-layer
represents the labels around WSIs and lesion regions, where each
WSI can involve multiple lesion regions (one-to-many mapping,
shown as 1. . .N in Figure 2). The reason-layer is related to
the corresponding multiple features labeled with descriptions to
explain the rationale behind judging each lesion decision (one-
to-many mapping, shown as 1. . .N). Multimodal annotations are
supported as clinical tags, free texts, voice, and pencil/mouse moving
traces of the doctor’s annotating behaviors, which are timestamp
synchronized and associated with both the layers of data (many-
to-many mapping, shown as N. . .N). Multiple annotations together
form one comprehensive pathology report (many-to-many mapping,
shown as N. . .N).

Unified terminology
We also considered the need for unified terminology of the two

layers of labels in the data structure design, where the colorectal
tumor is chosen in this study. During the pathological shadowing,
we found that if we allowed two pathologists to input free-text
reasoning labels, their expressions could vary severely even when
they agreed on the tumor types and reasons for the same lesion of a
colorectal WSI. For example, pathologist 4 (P4 in Table 1) described
the features as a “gland fused with a sieve,” while Pathologist 9
(P9 in Table 1) described the same one as a “sieve hole.” Further
interviews with the two doctors proved that they meant the same
thing, though their textual expressions looked quite different. The
variability of labels affects not only the performance of the AI model
but also the normalization of data, and therefore, unified terminology
is necessary.

We analyzed pathological books, published specifications, and
pathology report templates from hospitals and consulted senior
pathologists (P1 and P9 in Table 1 with more than 15 years
of diagnostic experience) to build the decision-to-reason unified
terminology, as shown in Table 2 (refer Supplementary material
for the full version). We first referred to the 2019 WHO
Blue Book (World Health Organization) (50), which defines
the classification of digestive system tumors and borrowed the
colorectal classification terms to form the overall classifications as
“normal, adenocarcinoma and adenoma.” Besides the WHO Blue
Book, comprehensive pathology report templates from two top-
tier hospitals in China are also considered to further define the
finer classification of the decision-layer label, e.g., “Adenocarcinoma”
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FIGURE 2

The decision-to-reason multimodality data structure of PathNarratives. The decision-layer represents the labels around WSIs and lesion regions, where
each WSI corresponds to multiple lesion regions. The reason-layer represents the corresponding multiple features marked and described to judge the
lesion regions.

in the classification is categorized into subtypes such as “Poorly
differentiated adenocarcinoma” and “Moderately differentiated
adenocarcinoma.” In addition, some terms that frequently occur
in pathology reports describing features of lesions, such as
“Tumor invasion,” “Tumor budding,” “vascular invasion,” and “nerve
invasion,” are also set as decision-layer labels to better accommodate
pathologists’ habits and clinical needs.

Reason-layer label terminology was designed under the decision-
layer labels. As the WHO book and pathology reports do not
involve detailed reasoning information, we invited the senior
pathologists to summarize the main features into the reason-layer
annotation description from textbooks (51) with consideration of the
decision labels and pathology reports. As shown in Table 2, “Poorly
differentiated adenocarcinoma” in the decision-layer is further
associated with detailed reason-layer labels describing diagnostic
features such as “Irregular arrangements of glands” and “Mucinous
differentiation.” Specifically, the decision-layer labels under the
“Normal” category are used to describe normal colorectal elements
such as “Fatty tissue,” “smooth muscle,” and “Lymphatic vessel.”
The terminology terms are ordered from histomorphology to cell
morphology for pathologists’ convenience in browsing and selecting
from it.

3.3. Annotation process and tool

The PathNarratives annotation process includes a coarse-grain
phase and a fine-grain phase that follow the decision-to-reason
labeling structure. The design of the two phases is to accommodate
the different clinical application needs such that in the coarse-grain
annotation phase, an annotator browses a WSI and circles large
lesion areas to tag with the classification labels and then makes a
preliminary slide-wise diagnosis description, as shown in Figure 3A.
This annotation phase can be completed quickly by doctors and
an overview diagnosis can be provided. Then, in the fine-grain
annotation phase, an annotator needs to circle the finer subtype

decisions of lesions with typical features as completely as possible and
explain the decisive reasons. They can use a decision-layer subtype
label pencil to circle the typical lesion features, and then either attach

TABLE 2 Label terminology partial (in total, there are 3 classification
labels, 12 subtypes, and 77 reason-layer labels).

Classification
label

Decision-layer
subtype label

Reason-layer label

Adenocarcinoma Poorly differentiated
adenocarcinoma

Irregular arrangement of
glands
Mucinous differentiation
Vacuolated nuclei
. . .

Moderately differentiated
adenocarcinoma

. . .

Tumor invasion Infiltration of single or
several tumor cells
Invasion into the
muscularis mucosae
. . .

Tumor budding
. . .

Tumor budding (grade 1)
. . .

Adenoma Low-grade adenoma Low-grade intraepithelial
neoplasia
Glands lack mature
differentiation
. . .

High-grade adenoma . . .

Normal Normal Fatty tissue
Smooth muscle
Lymphatic vessel
. . .

Specifically, adenocarcinoma is mapped to 9 decision-layer subtypes and 34 reason-
layer labels; adenoma is mapped to 2 decision-layer subtypes and 25 reason-layer labels;
normal is mapped to 1 subtype and 18 reason-layer labels.
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reason tags or record voice explanations to explain the diagnostics.
The decision and reason labels can be directly picked from the
predefined label terminology, as shown in Figures 3B, C. The fine-
grain phase is more sophisticated and requires more time and labor.
Images and annotations can be replayed, compared, and audited
afterward, as shown in Figures 3D–F, respectively.

The above annotation process is carried out using our self-
developed software ParVis for the convenience of pathologist
annotators, auditors, and project managers cooperating on an
annotation project. The software comprises a mobile client for
doctors’ daily annotation/audit and a web server for annotation
project management. Administrators create projects, upload
pathology images, set roles and access rights, and manage
terminologies through the web server. Pathologists use the mobile
client to join projects, submit annotations, review them, and
audit the results.

According to the annotation process, ParVis has four major
functions: label, playback, review, and audit. On the label module
interface in Figures 3A–C, a pathology annotator can start labeling
a WSI for coarse annotation of the slide-level diagnosis description
and use different colors of classification pencils to mark lesion area
contours as in Figure 3A. For further fine-grain annotation, ParVis
provides different colors of subtype pencils for the annotator to circle
the contours of typical lesion features as in Figure 3B, and the icons
of “mic” or “tag” can be clicked to describe the features with voice
or text to generate the reason-layer labels in Figure 3C. In addition
to colors, the pencil tool supports flexible shapes for marking lesion
areas, such as “curve,” “rectangle,” or “brush.” ParVis also provides a
“ruler” to measure the area size according to the needs of pathological
reports. The fundamental functions such as magnification rate, eagle
view, screenshot, location, and metadata view are also provided as
basic functions.

ParVis forms the structural multimodal annotation data for
further analysis, playback, review, and audit. It also periodically
records the timestamps of browsing and moving behavior events
during labeling (with doctors’ prior permission) for further
synchronization. The behavioral tracking includes events such as
“FOV center change,” “voice recording,” “magnification,” “pencil
switching,” “undo,” and “delete” over time during the doctor labeling
process. These data can support application modules of playback (to
replay the annotation process), comparison (for medical students
to review and learn from multiple experts or teachers to examine
multiple Students’ work simultaneously), and audit (for auditors to
review and refine the annotations), as shown in Figures 3D–F. Most
importantly, the synchronized events such as magnification and focus
center shifting implicitly recorded can be used to analyze physician
behaviors. For example, visualizing the FOV center trajectory shows
the length of stay is positively correlated with the difficulty of the
lesion area, which is consistent with the conclusion in Wang and
Schmid (37). Behavioral data indicate the logical thinking of doctors
and their attention to assist the interpretability of AI.

The audit is an essential step for the annotation process to ensure
data quality and consistency, which needs to be conducted by senior
pathologists. The ParVis audit module is designed following the
general practice of the pathology department. A senior pathologist
clicks the Audit button and selects the items marked by primary
pathologists and checks for missing or wrong annotations. If there
is a problem, they need to revise, add, or delete the labels to finalize
the submission. We use Kappa, Dice, and BLEU to evaluate the

consistency of different levels of annotations in section “4.1 Data
source and overall statistics.”

During the annotation practice, we kept optimizing the process
according to observed issues. One important issue is the cost of fine-
grain annotation to label all the reasoning tags, which is tedious and
expensive for pathologists even though it provides more details and
explanations. Since many adjacent glands or lesions share similar
characteristics, we added a “Bundle pencil” tool to support annotators
to circle adjacent lesion regions of similar reasoning tags, so that a
pathologist can simply apply a one-off description to all the lesions
and features within the bundling circle. This setting saves annotation
time to a considerable degree in practice.

4. Dataset

4.1. Data source and overall statistics

Based on the PathNarratives protocol, we recruited eight
pathologist annotators (P1–P8 in Table 1) to build a colorectal tumor
dataset, CR-PathNarratives, which includes 174 annotated colorectal
WSIs with a length of 8,000–90,000 pixels and width 6,000–60,000
pixels, all with the decision-to-reason and multimodal data structure.

We selected colorectal cancer because it is characterized by high
incidence and mortality. Colorectal cancer has become the second
leading cause of cancer death worldwide, with 930,000 deaths in
2020. In 2020, the new incidence rate of colorectal cancer in China
was 12.2% and the fatality rate of colorectal cancer was 9.5% (52).
In addition, colorectal tissue sections present explicit morphological
variance and cover wide categories of tumor types with well-
established pathological diagnostic guidelines and standards for
database design and practice.

The WSIs were obtained from one first author’s cooperative
hospital with approval. The chief pathologist selected 891 H&E-
stained slides from 300 patients and randomly sampled 300
pieces to scan into WSIs at 20X objective magnification. At
present, the collection of annotated data containing 174 WSIs
has been completed.

We conducted the basic statistics of CR-PathNarratives on the
distributions of classification types, decision-layer subtype labels,
reason-layer labels, labeled areas, and diagnostic captions composed
with reasoning labels. The dataset covers all three class types:
adenocarcinoma, adenoma, and normal. The detailed categories and
numbers are shown in Table 3.

Each WSI contains a simple overall caption, several decision-
layer labels, and tens to hundreds of reason-layer labels. In total,
in 174 WSIs, 108 contain adenocarcinoma areas ranging from well
differentiated to poorly differentiated, 38 contain adenoma areas, 17
contain both adenoma and adenocarcinoma, and 45 are normal slides
with only normal areas labeled. There are in total 11 types of decision-
layer labels and 75 reason-layer labels, including free-text tags. For the
whole dataset, there are 23,532 regions manually circled, and some
are grouped as 539 bundles in total (a bundle consists of multiple
or single regions sharing the same features and captions, which can
effectively reduce the labeling efforts, as mentioned in section “3.3
Annotation process and tool”). In total, there are 878 different kinds
of captions associated with all the labeled regions, and each caption
comprises 4.4 label terms on average (max = 19 and min = 1), as
shown in Figure 4F.
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FIGURE 3

Decision-to-reason annotation functions of ParVis. (A) Label module: Lesion area circled on WSI by an annotator in the coarse-grain annotation phase,
with preliminary diagnosis descriptions. (B) Label module: Decision-layer subtype labels as different colors of pencils in the fine-grain annotation phase.
(C) Label module: Reason-layer features circled and labeled by clicking on the reason-layer terminology tags or recording voice explanations, in the
fine-grain annotation phase. (D) Playback module to replay the annotation events on the WSI image which is structural and can be searched and
analyzed. (E) Comparison module to view and compare different doctors’ annotations. (F) Audit module for senior doctors to review and correct
previous annotations.

Whole-slide image-wise statistics show that on average, a WSI
contains 3.1 labeled bundles (max = 41 and min = 1) that
reflect 135.2 regions. For further AI algorithm computation, each
WSI scanned at 20 × magnification was cut into patches of
256∗256 pixels. In statistics, the averaged labeled regions contain 76
patches (the diversity ranged from max = 2,477 to min = 1). On
average, one WSI is associated with 8.93 different kinds of captions
(max = 40 and min = 1) and involves 12.03 reason label terms
(max = 42 and min = 1).

We also investigated the texts and captions frequently used
in annotation statistics. The most commonly used label terms are

“Stratified or pseudostratified arrangement of nuclei” (7.21%), “Rod-
shaped nuclei” (7.02%), “Increased layers of epithelial cells” (5.78%),
and “Chromatin condensation of cells” (5.50%). For reason-layer
labels, the most commonly used captions are “Mitosis visible, mucous
differentiated, vacuolated nuclei,” “Markedly reduced cytoplasm,
stratified or pseudostratified arrangement of nuclei, increased layers
of epithelial cells, rod-shaped nuclei, oval nucleus,” and “Cribriform.”

We also evaluated the consistency of doctors’ annotations for
the quality of the datasets. For 10% of the annotated samples (18
WSIs), we asked a senior doctor P4 to review and label the same WSIs
annotated by a senior doctor P5 and a junior doctor P2. Three levels
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TABLE 3 Subtype distribution and data scale table.

Classification Decision subtype Number of WSIs in the subtype Total

Adenocarcinoma Well differentiated 20 108*

Poorly differentiated 23

Moderately differentiated 26

Well-moderately differentiated 16

Moderately-poorly differentiated 23

Adenoma High-grade adenoma 25 38*

Low-grade adenoma 13

Normal 45 45

*Indicates that 17 lesion slides contain both adenocarcinoma and adenoma.

of annotation consistency are analyzed as shown in Figure 4 (WSI
number sorted by their consistency value for illustration): consistency
of WSI classification in (c), (d), consistency of lesion regions for
coarse-grain classification labels in (c) vs. fine-grain subtype labels
in (d), and consistency of reason descriptions of lesion features in
(e), measured with the Kappa, Dice, and BLEU values, respectively.
For the consistency of WSI classification, the types decided by both
doctors are all the same for the 18 WSIs, which achieves an overall
Kappa = 1. For the consistency of lesion regions, the patch-level
classification labels and decision subtype labels achieve an average
Kappa of 0.91 (max = 1, min = 0.66) and 0.85 (max = 1, min = 0.42),
respectively, while the pixel-level consistency of the same-label lesion
area achieves Dice values of 0.96 (max = 1, min = 0.85) and
0.92 (max = 1, min = 0.61) for classification and subtype labels,
respectively. Both the patch-level Kappa value and the Dice value
are with an average beyond 0.85, and the variance among different
WSI is considered due to the difficulty levels of different cases. For
consistency of reason descriptions represented by lesion caption, the
BLEU1 value is mostly beyond 0.4 with an average of 0.78, as shown
in Figure 4E.

Annotation auditing is widely used in clinical practice. When
inconsistency occurs, the primary annotator needs to double
check, and if there is still a dissenting opinion, the senior and
primary annotators need to communicate with each other to
achieve a consensus.

4.2. Decision-to-reason annotation

The two layers of decision-to-reason data are shown as examples
in Figure 5. A doctor would rather look at the typical reason-layer
features first to quickly conclude the diagnosis and lesion areas, and
then spend much more time explaining with subtype details, typical
features, and reasons. For example, the doctor looked at the lesions
on a WSI that present visual features such as “Cribriform,” “nucleus
stratified or pseudostratified arrangement,” and “polar disorder” and
then quickly marked the whole WSI as “moderately differentiated
adenocarcinoma” and circled two adenocarcinoma regions and one
adenoma region. Then they refined to circle more reasoning feature
regions and select the detailed reason-layer labels for fine-grain
annotation.

Artificial intelligence training requires the annotations to be as
complete as possible. Coarse-grain labeling is simpler and costs less
time because doctors roughly scan the lesions and add labels to the

low-resolution WSI, which takes only tens of seconds. In contrast,
though it contributes necessarily detailed reasoning information,
fine-grain labeling inevitably takes a longer time in marking all the
circles and label terms. Experiments show the time of coarse-grain
labeling per WSI is on average 1.7’ as shown in Figure 4G, ranging
from 0.29’ to 2.97’, while the time spent for fine-grain labeling is on
average 46.17’, ranging from 14.69’ to 98.83’ as shown in Figure 4H,
which is 20+ times of that for coarse-grain one.

Fortunately, by applying the proposed “Bundle pencil” to group
similar small lesion regions for the one-off application of the same
labels as shown in Figure 5C, the fine-grain annotation time can be
significantly reduced down to 1/6–1/2 of the original one. We also
found it uses more time for the doctor to label adenomas than to label
adenocarcinomas because the lesion areas of adenocarcinomas are
often tangled and cannot be labeled separately. It also took much time
to zoom back and forth to inspect a large lesion area and label all the
typical details at different views. Based on this finding, we proposed
the following methods to further reduce the burden of doctors. (1)
Use the “Bundle pencil” to circle lesion areas with similar features
and (2) Future exploration of AI technologies to provide automatic
hints for circling and labeling.

Taking the WSI shown in Figure 5 as an example, the WSI was
marked with 12 adenocarcinoma areas, 9 adenoma areas, and an
overall cost of 1’12” for coarse-grain labeling, and the adenoma was
described with the text “Low-grade intraepithelial neoplasia.” During
fine-grain annotation, the doctor marked 83 well-differentiated
adenocarcinomas, 45 low-grade adenomas, and added 8 bundle tags,
which overall cost 7’42”. In another example case, annotating a WSI
takes a doctor 12” to circle 3 lesion regions with classification labels,
while annotating the fine-grain 488 typical features with diagnostic
reasons take up to 31’24” for no-bundle-circle annotation vs. about
half of it for bundle-circle annotation. In contrast, by simply applying
the “Bundle pencil” to group similar small lesion regions and one-
off label them, the annotation time is significantly reduced to 14’52”,
which is less than half of the previous time.

4.3. Multimodal data

Besides decision-to-reason data, CR-PathNarratives also covers
multimodal annotation data. Each WSI in the PathNarratives dataset
has visual information on the image feature regions and language
information of the physician’s annotations described in section “4.2
Decision-to-reason annotation.” On the contrary, the PathNarratives
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FIGURE 4

(A) The typical number of annotations contained in a single WSI of coarse-grain phase. (B) The typical number of annotations contained in a single WSI
of fine-grain phase. (C) Consistency of different annotators with Kappa and Dice values of coarse-grain annotation data. (D) Consistency of different
annotators with Kappa and Dice values of fine-grain annotation data. (E) Consistency of different annotators with BLEU1 of description data.
(F) Distribution of caption length and number. (G) The time spent on a single WSI annotation of the coarse-grain phase. (H) The time spent on a single
WSI annotation of the fine-grain phase.

dataset also contains voice information and behavioral trajectory
information, according to doctors’ preferences. From the example
shown in Figure 6, we found that voice information mainly consists
of the following two types of purposes: explaining diagnosis by
thinking or labeling via voice. We observed that after his annotation,
the doctor turns on the voice record button and tries to elaborate
on his observation for teaching purposes, e.g., “Open the whole
WSI and find that the right side is somewhat abnormal. Click to
enlarge and observe to confirm the adenocarcinoma. On the left
side, there are irregular glandular and tubular arrangements and
invasion of the muscle layer.” Junior physicians can replay and listen

to learn the voice-input recordings about WSI colorectal diagnostic
methods, which shares similarity to the AI learning process. The
voice-transcribed text labels contain richer information among the
marked areas and complement the textual label terms. However, our
experiment does not involve the special natural language processing
needs for pathological text recognition, which is an in-depth research
area. Instead, we only recruited human medical students to perform
that transcribing tasks.

The behavior-tracking data of doctors are stored in a structured
time-series record of labeled behaviors such as time stamps, visual
field centers, magnifications, labeling tools, toggle label colors,
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FIGURE 5

Examples of decision-to-reason annotation data. (A) The annotation of coarse-grain phase. (B) The annotation of the fine-grain phase. (C) The
annotation of fine-grain phase with bundle label.

markers, coordinates, deletions, and modifications during their
labeling process. When a doctor labeled a WSI, we continuously
recorded his FOV window changing, visual scan path, and resolution
zoom in and out information. We visualized the doctor’s attention
distribution of diagnosis by aggregating the pixels of the doctor’s
viewport boxes, combining them with the center points of the
viewport boxes, checking the time, zooming into incorporating scan
path, and plotting a behavioral trajectory heatmap as shown in
Figure 4, 5. The attention heatmaps echo the areas that the doctors
observed the most with higher heat scores. In comparison, tracks of

junior physicians demonstrate more back-and-forth browsing and
reluctance than those of the senior pathologists who are experienced
to make diagnoses rapidly.

5. Classification and captioning tasks
on the narratives-annotated dataset

To investigate the potential clinical applications that the CR-
PathNarratives dataset can support, we selected a classification task
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FIGURE 6

Multimodal information in the dataset: WSI, annotated information, voice, caption, ratio of decision-labeled and center point trace of the viewport, ratio
of detailed labeled, and center point trace of viewport and corresponding generated heat map.

and a captioning task and trained the baseline AI models. We
also conducted an evaluation of Human-AI collaboration experience
to explore the doctor subjects’ trust and acceptance when being
provided with comprehensive decision-to-reason suggestions by AI
models. The experimental baseline AI model is shown in Figure 7.

Task 1: Classification of coarse-grain and
fine-grain labeling data

Task definition
Given a WSI with coarse-grain classification labels vs. fine-

grain subtype labels defined in Table 2, the goal is to compare
their performances of classification (normal, adenocarcinoma, and
adenoma) to explore the impact on different levels of labeling details.
For ideal clinical use, false negatives should be avoided, which means
a WSI containing adenocarcinoma should not be misjudged as an
adenoma or benign case.

Methods
Each WSI is assigned a universal ID. We used the OpenSlide

tool (53) to extract patches of 256∗256 pixels from WSIs at 20 ×

magnification. Macenko stain normalization (54) is used for pre-
processing to ensure uniform WSI quality. The OTSU algorithm (55)
is used to separate foreground and background, ensuring that all valid
patches come from the foreground tissues.

The training and test sets are first divided into the WSI grade
to avoid patches from the same patient being included in both sets.
The total cropped tissue patches for training were counted, where a
patch is regarded as a labeling type if its central pixel falls into the
region labeled with that type. For each WSI, the patches with one
labeling type were randomly sampled according to the overall ratio of
the type in the dataset. Normal patches are guaranteed to come from
normal WSIs rather than normal areas of tumor slides. The test set is
composed of four WSIs with two adenoma and two adenocarcinoma
ones, cropped as patches with stride 256 in X and Y directions without
overlap area. The numbers of sampled patches are shown in Table 4.

ResNet-50 (49) is used for patch feature extraction and
classification in our experiments. The same setting (batch size = 128,
classes_num = 3) is used to perform the classification of the tumor,
carcinoma, and normal cases. We used Adam to optimize the model
with an initial learning rate of zero and â taken from the set of (0.9,
0.999). After five warm-up epochs, the learning rate reached 0.001.
Then, CosineAnnealingLR was chosen as the learning rate decay
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FIGURE 7

The AI model consists of two parts: feature extraction and classification using CNN. Captioning with transformers. Clustering can be performed based on
the regions annotated by doctors. After each patch is classified and clustered, the captioning of clustered areas can be performed.

TABLE 4 The number of sampled patches for the training set and test set for the classification task.

Normal Adenocarcinoma Adenoma

Training set with coarse-grain classification labels 133,312 133,321 133,286

Training set with fine-grain subtype labels 133,312 133,322 133,252

Test set 15,244 4,197 10,603

strategy, and after 25 epochs, it decayed to zero. Experiments were
run with PyTorch on a machine with a V100 graphics card.

Evaluation
We evaluated the performance with precision, recall, and

accuracy indicators. Precision is to measure how many of the positive
predictions are positive. Recall tells how many positive cases in the

test set are predicted correctly. Accuracy reflects the overall ratio of
correct predictions (adenoma, adenocarcinoma, and normal).

Results
Table 5 shows that fine-grain prediction enhances the overall

classification accuracy from 79.56 to 85.26%, with a +5.7%
improvement compared with the coarse-grain one. In specific, for
normal class, the recall measure of fine-grain prediction outperforms
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TABLE 5 Confusion matrix of prediction results for models trained with coarse-grain classification labels vs. fine-grain decision-layer subtype labels.

Prediction

Ground truth Normal Adenoma Adenocarcinoma #Recall

Coarse-grain class data Normal 5317 483 2039 67.83%

Adenoma 28 1687 16 97.46%

Adenocarcinoma 624 26 5517 89.46%

#Precision 89.07% 76.82% 72.86% 79.56%

Fine-grain subtype data Normal 6202 297 1340 79.12%

Adenoma 69 1622 40 93.70%

Adenocarcinoma 565 8 5594 90.71%

#Precision 90.37% 84.17% 80.21% 85.26%

Recall and precision numbers are calculated, and the two boxed numbers represent the overall accuracies of the two models, respectively.

TABLE 6 Partial caption prediction result.

BLEU4 Predicted caption Original caption

0 The cytoplasm was markedly reduced, karyorrhexis, thickened
chromatin, screen mesh. Moderately differentiated adenocarcinoma.

Nuclei remain polar, nucleus stratified or pseudostratified arrangement, tubular structure,
increased epithelial cell hierarchy, low grade intraepithelial neoplasia. Low grade adenomas.

0.3 Irregular glandular duct arrangement, cribriform structure, the nucleus
of tumor cells are round, nucleoli were more prominent, necrosis.
Moderately differentiated adenocarcinoma.

Some tumor cells with round nucleus, nucleoli were more prominent, some cribriform
arrangement, some papillary arrangement, necrosis, some tumor cells rod-shaped, stratified
arrangement. Moderately differentiated adenocarcinoma.

0.45 Irregular glandular duct arrangement. Moderately differentiated
adenocarcinoma.

Infiltration into the submucosa. Moderately differentiated adenocarcinoma.

0.5 Nuclei rod-shaped, nucleus stratified or pseudostratified arrangement,
tubular structure. Low grade adenomas.

Nuclei rod-shaped, nucleus stratified, tubular. Low grade adenomas.

0.99 Nuclei rod-shaped, nucleus stratified or pseudostratified arrangement,
tubular structure. Low grade adenomas.

Nuclei rod-shaped, nucleus stratified or pseudostratified arrangement, tubular structure. Low
grade adenomas.

FIGURE 8

Captions generated for each clustered area. These captions are used to describe the lesion detail features of the clustered area.

that of the coarse-grain prediction up to +11.29%, from 67.83 to
79.12%. For adenocarcinoma, coarse-grain prediction results in a
small false negative, reaching the recall of 89.46%, while fine-grain

one further improves it up to 90.71%. The fine-grain recall measure
of adenoma is also good at 93.70%, though is −3.76% inferior to the
coarse-grain one, and one possible reason is that some tumor stroma
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characteristics are difficult to identify. In conclusion, experimental
results show that fine-grain annotations can achieve an overall good
performance of classification and indicate more details of the present
lesions.

Task 2: Caption generation for explaining
diagnosis rationale

Task definition
Besides classification, we further verify the effectiveness of

reason-layer data in explaining details for the classification rationale
in order to support clinical scenarios of pathologists-AI collaboration.
We designed a captioning experiment to compare the descriptions
annotated by the doctor with the region captions generated by the
AI model. We also conducted a subjective evaluation for doctors to
review the captions generated.

Methods
The captioning model consists of a Resnet-18 (49) backbone

network and a transformer (56). Between the two modules, we
inserted a clustering filter module to aggregate patches belonging to
the same lesion area into ac luster. The model accepts random patches
as input, extracts features via the backbone network, and predicts
the classification type (normal, adenoma, and adenocarcinoma) of
the patch. The clustering filter will then aggregate adjacent abnormal
patches into clusters representing the lesion areas. Each cluster
contains several patches, which are regarded as a bag of unordered
patches. All the patch features in this bag are fed into the transformer
to generate the corresponding caption.

All the labeled lesion areas were divided into several patches
with corresponding captions for training purposes. For tokenization
purposes, patches in each caption bag are sampled to a fixed number.
Specifically in the experiment, we set the number of patches per
caption as up to 64. During the testing phase, the DBSCAN (57)
clustering filter was used after the backbone was completed. Each
cluster generated by the clustering filter was into the transformer to
generate the caption. We used a Tesla V100 graphics card for training
with batch size = 4; AdamW was used as the optimizer with a learning
rate of 1e-5. In the test stage, we sampled up to 256 patches per cluster
for caption prediction.

Evaluation
The bilingual evaluation understudy (BLEU) (58) score was

adopted for quantitative region-level algorithm evaluation. BLEU
value is used to measure the similarity between a set of machine-
generated translation sentences and a set of human-translated
sentences. A higher score reflects a better agreement between the
caption produced by the model and the ground-truth description by
the annotator.

bleun =

∑
c∈candidates

∑
n−gram∈c Countclip(n− gram)∑

c′∈candidates
∑

n−gram′∈c′ Countclip(n− gram′)
(1)

Results
We used four grades of BLEU values B1, B2, B3, and B4 to

quantify the captioning results. Experiments showed that the model
achieved B1 =0.56, B2 = 0.49, B3 = 0.44, and B4 = 0.36, for which the
predicted captions demonstrated good similarity to the ground truth

descriptions (BLEU around or higher than 0.4). Some examples are
shown in Table 6 for better illustration.

Task 3: Human-AI collaboration
experience

We also engaged physicians in qualitative evaluation of the
captions at the cluster level. For a certain WSI for testing in Task 1,
after completing the ResNet-based classification, we used DBSCAN
to cluster the patches and visualize the clustering result as shown
in Figure 8. All lesion regions are clustered into 13 large typical
areas, represented by different colors in Figure 8. Eight pathologists
(P1-P8 in Table 1) were recruited to rate the trust in the algorithm
for classification and generating caption results with the subjective
Likert Scale (59). For AI-assisted diagnosis, the baseline average score
was 3.88 for the trustworthiness and confidence of AI classification
results, while with the visualization results of the AI classification
algorithm trained by the CR-PathNarratives dataset, the trust and
confidence scores in AI-assisted diagnosis provided with more details
raised from 3.88 to 4.63. By providing more auxiliary diagnostic
information step by step (reason-layer text description, reason-layer
text description, and behavior trajectory thermal map), pathologists’
trust in AI auxiliary diagnosis increased from 4.25 to 4.38. It shows
that CR-PathNarratives with decision-to-reason detail benefit the
interpretability of AI by doctors.

In conclusion, our dataset can be applied to the basics of
classification and captioning scenarios. Experiments show that
adding more comprehensive reason information not only achieves
better classification gains, identifies detailed features such as cancer
stroma, and reduces the false positive rate, but also enhances
the trustworthiness and confidence of doctors to understand and
collaborate with pathological AI models.

6. Conclusion

Pathological diagnosis is the gold standard for tumor diagnosis.
The continuous development and progress of AI have brought new
possibilities for pathology diagnosis. However, there is a relative lack
of datasets in the field of computational pathology. We proposed a
data annotation protocol PathNarratives with a hierarchical decision-
to-reason data structure and a multimodal annotating process
and tool. This data annotation schema focuses on the labeling
process of the physician with audit capability, records the behavioral
information of the physician, and supports analyzing and discovering
the diagnostic ideas and logic of physicians. Based on the protocol
we have built the colon-rectal dataset, CR-PathNarratives, which
contains 174 H&E-stained WSIs. Each WSI was annotated with
decision-to-reason labels and multimodal information on vision,
language, voice, and behavioral trajectories. Voice explanations and
behavioral trajectories make the data more descriptive. Furthermore,
we use the decision-to-reason labels of this dataset to perform
classification (adenoma, adenocarcinoma, and normal) experiments,
as well as region-level and cluster-level captioning experiments for
lesion description. Experiments show that our dataset can be applied
to multiscenario algorithmic experiments. Refined annotations
facilitate machine learning of more detailed information and reduce
the false positive rate of classification. Visualization of comprehensive
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reasoning details enhances the trustworthiness and confidence of
doctors to collaborate with pathological AI models, aiming for better
human-AI collaboration.

In the future, we plan to optimize the tools for the annotation
process, such as adding automated suggestion hints to speed up the
annotation. The WSIs in the datasets are expected to be expanded
on 300–800 slides, and then we consider using the proposed
annotation model to prepare datasets in other pathological domains.
Advanced algorithmic models can be further investigated, e.g.,
better utilizing behavior tracking as training inputs to optimize the
classification results.
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