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Our gastrointestinal system functions to digest and absorb ingested food, but

it is also home to trillions of microbes that change across time, nutrition,

lifestyle, and disease conditions. Largely commensals, these microbes are

gaining prominence with regards to how they collectively a�ect the function

of important metabolic organs, from the adipose tissues to the endocrine

pancreas to the skeletal muscle. Muscle, as the biggest utilizer of ingested

glucose and an important reservoir of body proteins, is intricately linked

with homeostasis, and with important anabolic and catabolic functions,

respectively. Herein, we provide a brief overview of how gut microbiota

may influence muscle health and how various microbes may in turn be

altered during certain muscle disease states. Specifically, we discuss recent

experimental and clinical evidence in support for a role of gut-muscle crosstalk

and include suggested underpinning molecular mechanisms that facilitate this

crosstalk in health and diseased conditions. We end with a brief perspective

on how exercise and pharmacological interventions may interface with the

gut-muscle axis to improve muscle mass and function.
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Introduction

The gut-muscle axis describes how the gut microbiota can impact muscle mass,

muscle quality and muscle function. The gut consists of trillions of microbial cells, which

plays an important role in many aspects of human health and can influence muscle

health through dietary fiber, proteins and metabolic by-products (1). The gut microbiota
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ferments non-digestible substrates such as dietary fibers to

produce short chain fatty acids (SCFA) which have important

regulatory functions. Emerging evidence suggests a relationship

between gut microbiota and sarcopenia, which is the age-related

loss of skeletal muscle mass and function. The spectrum of

parameters implicated in muscle health ranges from muscle

quantity which is typically measured via the appendicular

lean mass using dual energy X-ray absorptiometry (DXA) or

bioelectrical impedance analysis (BIA); muscle quality which

refers to the amount of fat infiltration into muscle; and muscle

function which measures the components of strength and

physical performance.

Muscle health is important because skeletal muscles are

major sites of insulin stimulated glucose uptake, and thus play

a key role in glucose homeostasis and whole-body metabolism.

Furthermore, low skeletal muscle mass is often associated

with frailty in older adults which increases their susceptibility

to adverse outcomes and negatively affects their quality of

life. It is also associated with many metabolic diseases such

as Type 2 Diabetes Mellitus (T2DM). If it turns out that

the gut microbiome does indeed strongly influence muscle

health via the gut-muscle axis, it can create new avenues of

treatment to improve muscle health through direct means such

as probiotics or indirectly via dietary interventions or prebiotic

supplementation. In this article, we summarize recent animal

and human studies that suggest the role of gut microbiota in

influencing muscle health, and on how gut microbes may in

turn be altered during certain muscle disease states. Insofar,

the aim is not to provide a systematic review but rather to

give a perspective based on existing evidence that exercise and

pharmacological interventions provide benefit by impinging on

the gut-muscle axis.

Associations between gut
microbiome and muscle

Animal studies reveal interesting insights about the gut-

muscle axis. In a study on mice, it was found that germ

free (GF) mice lacking in gut microbiota displayed reduced

skeletal muscle weight, as compared to conventional or specific

pathogen free (SPF) mice which have an intact gut microbiota

and immune system (2). Upon histological examination of the

tibialis anterior and gastrocnemius, fewer but larger muscle

fibers could be seen. In the muscles of the GF mice, there

was reduced expression of the succinate dehydrogenase (Sdh)

gene and reduced activity of the mitochondrial SDH enzyme.

The amount of mitochondrial DNA content also reduced and

there was evidence of dysfunctional mitochondrial biogenesis

and oxidative capacity of the soleus (oxidative) and extensor

digitorium longus (glycolytic). Reduced expression of glycolytic

genes was observed in these muscle groups. However, despite

a possible reduction in oxidative metabolic capacity, the GF

mice performed as well as SPF mice when challenged till

exhaustion, suggesting the involvement of other compensatory

pathways especially during the endurance phase. Importantly,

upon treatment with SCFA, the muscle strength of GF mice

increased as compared to the untreated GF mice, suggesting

that SCFAs may be an important link between gut microbiota

and muscle function. Transplantation of gut microbiota from

SPF mice to GF mice helped to restore muscle mass and

mitochondrial DNA content in GF mice muscle. This suggests

that modulation of microbiota could potentially be used in

humans as a way to treat conditions such as sarcopenia. When

similar experiments were repeated in piglets, the results were

largely similar to what was observed in mice (3). The GF piglets

exhibited a lower growth rate as compared to control piglets

with normal microbiota. A group of GF piglets was treated with

fecal microbiota transplantation (FMT) from healthy adult pigs

and the average body weight of piglets receiving FMT increased

by ∼1.4-fold compared to that of the GF piglet. Although

the FMT did not completely restore growth of the GF piglet,

they showed improved body conditioning and physiological

traits as compared to the GF piglets. As for underpinning

mechanism, the lower proportion of slow twitch muscle fibers of

the GF piglets correlated with reduced SCFA contents pointing

toward a role of gut microbes, specifically butyrate-producers in

influencing slow-twitch muscle fiber development. In addition,

the blood concentrations of triglycerides (TG), glucose and

growth hormones in the FMT piglet were also significantly

higher than that of the GF piglet suggesting that the introduction

of gut microbes improved whole-body metabolic homeostasis in

GF piglets.

In another study, when three different antibiotic regimens

(1. cefoperazone, 2. enrofloxacin/ampicillin, 3. a four-drug

regimen of neomycin, vancomycin, metronidazole and

ampicillin) were administered to mice, there was a decrease

in mass of the gastrocnemius-soleus complex of the mice (4).

However, when the antibiotics were administered to GF mice,

they did not lose any muscle mass as compared to the control

suggesting that the effects of antibiotics on muscle mass is likely

modulated through its impact on the microbiome. This could

be due to the concurrent alteration of the gut microbiota, the

composition of which depended on antibiotics administered.

An intact gut microbiome has also been shown to be important

for skeletal muscle adaptation to exercise (5). Mice treated with

antibiotics to disrupt gut microbiome showed a blunted soleus

and plantaris muscle fiber-type specific hypertrophy in response

to progressive weighted wheel running as compared to those

without antibiotics treatment. Mice which were colonized with

gut bacteria through FMT from high functioning human donors

had a 5.4% increase grip strength as compared to those which

received FMT from low functioning human (6). While animal

studies help with mechanistic underpinnings of phenotypic

observations, it is also important to assess how much of these

findings translate to the human setting.
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It is worth noting that there are also studies the suggest

negative associations between gut microbiota and whole-body

lean mass. In one study when GF mice were colonized by

fecal samples from age matched, conventionally raised mice, the

whole-body lean mass decreased by 7–9% with a 57% increase

in total body fat content. It was also associated with increased

plasma leptin, fasting glucose and fasting insulin levels (7).

In another study, mice treated with pulsed antibiotic

treatment (PAT) either using amoxicillin or tylosin phosphate

developed larger bones with increased lean and fat mass as

compared to controls. It trended toward increased bone in

amoxicillin-treated mice and increased fat in tylosin-treated

mice (8) and this was corroborated in antibiotic treated piglets.

In tylosin phosphate-treated piglets, myofiber density and

expression of genes related to type I and type IIb myofibers as

well as fatty acid uptake in longissimus muscle was observed to

be increased, together with gut microbe changes where the ratio

of Firmicutes to Bacteroidetes was increased, while Prevotella

and Campylobacter were decreased in the cecum (9).

Given its highly complex and multi-dimensional nature,

the microbiota that evolve with different antibiotics and FMT

regimens can exert different corresponding phenotypes. While

gut microbiota does have affect muscle mass and function, these

discrepant findings do suggest the need for more studies to

determine the causality, functionality and directionality of the

microbiota and its constituent members.

Human studies associate gut
microbe changes with metabolic-
and age-related muscle loss

Patients with low muscle mass or sarcopenia, in the context

of organ failure or cancer, were observed to have alterations

in their gut microbiome. It was reported that patients with

chronic liver disease who had lower muscle mass possessed a

lower Firmicutes/ Bacteroidetes ratio than those with normal

muscle mass (10). The levels of Coprobacillus, Catenibacterium

and Clostridium were also lower while Bacteroides was

higher comparing between muscle sub-groups. There was also

a high relative abundance of Gram-negative bacteria and

corresponding lipopolysaccharides (LPS) suggesting a possible

link between gut microbes, inflammation and changes to muscle

mass. There are cross-sectional human association studies that

compare patients with cirrhosis-related sarcopenia with control

subjects. The principal alteration in age-related sarcopenia and

cirrhosis-related sarcopenia was a reduction in SCFA-producing

bacteria. Lachnospiraceae family, consisting of Lachnospira,

Fusicatenibacter, Roseburia, and Lachnoclostridium, significantly

decreased in age-related sarcopenia.

Interestingly, in a study involving nursing-home residents

aged 65 years or older, with increasing frailty, residents had

lower levels of butyrate producing organisms, higher levels of

known dysbiotic species, and higher LPS and peptidoglycan

(PGN) biosynthesis. Amongst the residents, with increasing

age, there was a reduction in mucin-degrading Akkermansia

muciniphila and butyrate-producing Ruminococcus bromii likely

due to a change in diet. With increasing malnourishment,

there is increased abundance of LPS-producing Ruminococcus

gnavus and deceased butyrate-producing Lachnospiracae and

Ruminococcaceae (11). In a separate study on stool samples

from frail old people, Lactobacilli, F. prausnitzii, and Bacteroides

/ Prevotella ratio declined sharply and Enterobacteriaceae

increased (12). Such changes in gut microbial species may

alter the inflammatory tone as Lactobacilli, F. prausnitzii are

largely anti-inflammatory while Enterobacteriaceae induces pro-

inflammatory effects. It has been suggested that age dependent

changes in gut microbiota may be the initiator of frailty

symptoms facilitated by chronic inflammation, since probiotic

rescue reduces inflammation and muscle atrophy (13–15).

Admittedly, metabolic dysregulation and aging are

complex conditions that encompass differences in nutritional

intake, digestion and assimilation, drug use treatments

(usually involving multiple drugs) and background physiology

and inflammation, all of which may profoundly confound

microbiome changes and muscle health. Mechanistic studies

are key to elucidating how the microbiome, and its metabolites,

influence muscle metabolism and survivability. Furthermore,

the gut microbiota diversity may also be affected by protein

intake. Briefly, in a study with professional athletes from an

international rugby union squad compared against healthy

male controls, there was a significant increase in gut microbiota

diversity and this association also correlated with protein intake

and plasma creatine kinase values (16). Greater microbiota

α-diversity has been reported in athletes in associations with

dietary patterns and protein consumption (16, 17).

Involvement of gut microbiota in
cancer-related muscle loss

In patients with advanced gastric cancer, cachexia was

associated with intestinal barrier dysfunction (i.e., greater

intestinal permeability) with a higher degree of bacterial

translocation, as compared to patients with gastric cancer but

without cachexia (18). Levels of Interleukin-6 (IL-6), Tumor

Necrosis Factor α (TNF-α), and Interferon γ (IFNγ ) correlated

with bacterial translocation in patients with cachexia and these

inflammatory cytokines may drive myocyte cell death (19).

Mechanistically, there are a number of gut bacteria that

have been singled out as gut barrier function disabling and

inflammatory promoting. In lung cancer patients with cachexia,

while gut α-diversity was not significantly perturbed when

compared to patients without cachexia, a few bacteria species

were significantly different. For example, a lower abundance of

Prevotella copri was observed in patients with cachexia and this
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correlated with reduced plasma levels of postulated myogenic

branched chain amino acids (BCAAs) isoleucine and leucine.

Lower levels of Faecalibacterium prausnitzii, a gut bacterium

with known anti-inflammatory effects (20), was also observed in

cancer patients with cachexia and this may tip the balance to a

more proinflammatory state in patients with cachexia. Inversely

significantly higher levels of Klebsiella oxytoca, a bacterium

associated with reduced gut barrier function (21), was seen in

lung cancer patients with cachexia, and together with reduced

gut barrier function, bacterial translocation and inflammatory

cytokines may drive cachexia in patients with cancer (22).

Underpinning mechanisms for gut
microbiome and muscle crosstalk

Most published mechanistic studies leverage on the

pathophysiology of small animals. Altered patterns of

microvillus formation and reduced cell renewal were observed

in mice depleted of gut microbiota. Since microvilli are involved

in absorption of both macro- and micro-nutrients, pathologies

affecting the microvilli may impact overall metabolism

including muscle mass and function (23, 24). In a study, GF

mice had low levels of 25-hydroxyvitamin D (25D), 24,25-

dihydroxyvitamin D (24,25D) and 1,25-dihydroxyvitamin D,

and were hypocalcaemic. After 8 commensal bacteria were

introduced, the levels of 25D and 24,25D increased to the

same extent as conventionalisation. Fibroblast growth factor

(FGF)23 was initially high in GF mice, but eventually reduced

and normalized the vitamin D and calcium levels (25). GF mice

also exhibited increased bone mass due to reduced number of

osteoclast per bone surface, and it normalized with colonization

by normal gut microbiota (26). However, associations between

alterations in gut microbiota and changes in muscle function

could also be mediated by gut-derived metabolites such as

SCFAs, which play an important role in modulating lipid,

carbohydrate and protein metabolism in skeletal muscle.

Although SCFAs are formed in the gut, effective concentrations

can be found circulating in the body (27). SCFAs are formed

from the fermentation of fibers such as non-digestible

carbohydrates, and they include acetate, propionate, and

butyrate. These SCFAs are critical for maintaining the integrity

of the epithelial barrier, the loss of which compromises barrier

permeability and increases the risk of bacteria or bacterial

antigen translocation. This in turn triggers the inflammatory

cascade which may underpin chronic inflammation observed in

obesity and insulin resistance (28).

Butyrate, of which higher levels are found in older adults

with normal compared to low muscle mass, has been shown to

promote mitochondria biogenesis (29, 30). When female mice

were given a dietary supplement containing butyrate throughout

the gestation and lactation phases, mitochondrial biogenesis was

correspondingly enhanced in the offspring, evident by increased

ATP content, mitochondrial DNA-encoded gene expression and

uncoupling protein 3 (UCP3) in the gastrocnemius muscle

of the offsprings (30). Separately, high functioning sedentary

older adults had higher levels of Barnesiella and Prevotella

genera, including the species Barnesiella intestinihominis, as

compared to their low functioning sedentary counterparts.

Notably, Barnesiella and Prevotellaceae were shown to be gut

producers of SCFA (31, 32). Among older persons with low

functional muscle strength, those with higher levels of SCFAs

correlated with greater muscle strength, suggesting that SCFAs

may contribute to the observed enhanced muscle strength (33).

When circulating SCFAs were significantly reduced in

plasma of antibiotic treated mice, exercise endurance in these

mice correspondingly dropped, which was again restored with

acetate infusion. Caecal acetate, propionate, and butyrate were

eliminated in antibiotic treated mice, suggesting that gut

microbe derived SCFAs, especially acetate, may be an important

energy substrate during endurance exercise (34). Besides its

effects on mitochondria, SCFAs also affects muscle health by

altering nuclear gene expression.

Administration of dexamethasone to C2C12 myotubes

resulted in increased Atrogin-1 expression. This effect on

Atrogin-1 expression was reduced when the C2C12 myotubes

were treated with a cocktail of SCFAs, similar to those generated

from fermentation of dietary polysaccharides. In addition,

treatment of GF mice reduced the expression of Atrogin-1 in the

tibialis anterior and increased the expression ofMyoD (2).

Diversified e�ects of microbial
biomolecules for the muscle

Indoxyl sulfate is a gut microbiome derived uremic toxin

and is known for its pro-inflammatory properties in chronic

kidney disease (CKD) patients (35). Administration of indoxyl

sulfate was observed to reduce muscle mass in mice. It

significantly increased intracellular ROS production in C2C12

myoblast cells, which plays an important role for skeletal muscle

atrophy through various mechanisms (36). Also, indoxyl sulfate

caused an increase in expression of myostatin (Mstn) and

Atrogin-1 mRNA through the arylhydrocarbon receptor (AHR)

pathway, inhibiting cell proliferation and myotube formation

(37). Another way in which gut microbiome could negatively

affect muscle health is through LPS. LPS is potent endotoxin

present in the outer membrane of Gram negative bacteria

and is known for its pro-inflammatory properties. Disrupted

intestinal barrier may cause translocation of these bacterial

components into systemic circulation which may in turn result

in inflammation, via the Toll-like Receptor 4 (TLR4) pathway,

resulting in muscle atrophy (38, 39). This is also seen in

chronic diseases where pro-inflammatory factors appear to be

the unifying factor of muscle atrophy (40). It was found that

LPS decreased the formation of multi-nucleated myotubes and
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inhibited myogenic differentiation in vitro (41) suggesting that

changes in gut permeability may allow leakage of bacterial

derived glyco-peptides into the circulation which then affects the

function of distal tissues such as skeletal muscle.

Muscle function in common
gastrointestinal diseases

Diseases of the gastrointestinal tract such as inflammatory

bowel diseases (IBD) and celiac disease (CD) are associated with

a decline in muscle function and cachexia (42). Studies have

shown that the gut microbiota in IBD patients were significantly

altered from that of healthy individuals, and that dysbiosis

of gut microbiota accompanied by disruption of diet-microbe

interactions, results in damage to intestinal microbial barrier.

For instance, in Crohn’s Disease, over 50% of patients presented

with adherent-invasive E. coli colonization in intestinal mucosa

(43). Dysbiosis, defined as a disease associated imbalance in

the gut microbial community, was reported for IBD. Decreased

Firmicutes and Bacteroides, and increased Enterobacteriaceae,

were observed in IBD. This microbe diversity shift disrupted

the intestinal barrier integrity through increased abundance

of mucolytic bacteria facilitating increased penetration of

pathogens into intestinal tissue (44). Furthermore, it has been

reported that more than a third of IBD patients suffer from

sarcopenia. Similar to what was observed in the frail population,

there was a reduction in F. prausnitzii, a SCFA producer

with significant anti-inflammatory function (45). This raises

the possibility that the decrease in anti-inflammatory gut

microbiota with disruption of the epithelial barrier function

in IBD may trigger the inflammatory cascade with release of

proinflammatory cytokines such as TNF-α and IL-6 affecting

muscle mass and function.

Exercise as a potential modulator of
intestinal microbiome composition

While physical exercise directly benefits muscle function,

either anatomically through maintenance of muscle sarcomere

density or metabolically through increase of myocyte energetics,

it has also been suggested have indirect benefits on the muscle

through for example the modulation of gut commensals.

Physical activity performed continuously at low doses can

increase the abundance of health promoting gut bacteria

such as Bifidobacterium spp, R. hominis, A. muciniphilia and

F. parusnitzii (46). However, the relationship between gut

microbiota and muscle health remains complex. In addition

to diet, exercise is a positive modulator of gut microbiota

biodiversity and this has been reviewed extensively (47, 48).

Conversely, frailty, as determined using the Rockwood Frailty

Index, had a negative correlation with gutmicrobiota α-diversity

(49). The microbiota, especially those that produce metabolites

such as SCFA, are important to endurance athletes, because

they can supply around 10% of the energy needed by the

host (50). With regular physical activity, muscle fibers release

myokines such as IL-6, contributing to an overall systemic anti-

inflammatory tone (51, 52). In turn, this may help to protect

themicrobiota from changes caused by inflammatory conditions

such as IBD and T2DM (53). High-fat diet fed (i.e., pre-diabetic)

mice which received fecal microbiota transplantation (FMT)

from actively exercising mice showed improved metabolic

parameters such as insulin sensitivity, suggesting that microbes

obtained from a physically active host contributes positively to

overall metabolic function (54).

While exercise is associated with numerous health benefits,

intense exercise can result in acutely increased gut permeability,

and reduced mucus production, allowing pathogens such as LPS

in ultra-endurance runners to enter the bloodstream and causing

inflammation (55, 56). Exercise-induced gut barrier disruption

is observed with an acute rise in inflammatory markers, such

as plasma TNF-α (57). These changes were however found

to be reversible and thus may not outweigh the benefits of

exercise. Separately, in a 6-week intervention study amongst

older adult males who participated in twice weekly resistance

training, resistance training did not alter much of their gut

microbiome composition (58). Although a subsequent in silico

analysis revealed a paradoxical increase in mucin synthesis,

the study stopped short of validating changes to bacterial

translocation and systemic inflammation (47). Taken together,

more studies with prospective follow-up are required to better

understand the longitudinal impact of these cross-sectional

associations of exercise and nutrition with gut microbes and

systemic inflammation. These studies also point to the judicious

use of antibiotics because inappropriate or excessive use of

broad-spectrum antibiotics is a major iatrogenic contributor to

a deranged gut microbiome.

Other forms of interventions
involving the gut microbiome

Besides physical exercise, alterations either through

microbiome depletion/ reconstitution, FMT, diet interventions

or pre-/probiotics supplementation may offer a new approach

to address the problem of frailty by targeting the gut-muscle

axis (59). Probiotics refer to defined viable microorganisms,

sufficient amounts of which reach the intestine in an active

state and thus exert positive health effects. Prebiotics, on

the other hand, refer to selectively fermented ingredients

that allow specific changes, both in composition and/or

activity in the gastrointestinal microflora that confers benefits

upon host wellbeing and health, such as non-digestible

oligosaccharides (60).
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TABLE 1 List of human and animal studies that relate gut microbes to muscle and its related phenotype.

Study context Muscle and related
phenotype

Gut microbiota References

Human studies

Loss of community associated microbiota in long

stay subjects correlated with increased frailty.

Significant associations with

Barthel Index and functional

independence measure (FIM).

Long stay care environment subjects had high

proportion of Bacteroidetes, whereas individuals

living in the community dwelling had a high level

of Firmicutes. Long stay care subjects had

significantly less diverse microbiota with less

SCFA-producing bacteria compared to

community and rehabilitation subjects.

(64)

Gut microbe changes in patients with sarcopenia

compared to age-matched healthy cohort.

Grip strength < 28 kg (male) or <

18 kg (female).

Ruminococcus positively correlated with grip

strength in sarcopenic cohort.

(65)

Alterations in gut microbiome after weight loss in

human subjects

No measure of muscle mass other

than correlations of general

adiposity.

High levels of Firmicutes in obese subjects. Low

levels of Bacteroidetes in obese individuals

partially normalized with weight loss.

(66)

Obese monozygotic and dizygotic twins have

reduced phylogenetic diversity.

No measure of muscle mass. Lower proportion of Bacteroidetes and increased

abundance of Actinobacteria while the levels of

Firmicutes remained unaltered.

(67)

Type-2 diabetes mellitus Reduced muscle insulin sensitivity. Proportions of the Firmicutes, and specifically the

Clostridia class, were reduced, while the

Bacteroidetes and the class Betaproteobacteria were

enriched in a group with T2DM compared with

controls.

(68)

Moderate degree of gut dysbiosis, characterized by

an increase in certain opportunistic pathogens,

such as number of Clostridium spp. in addition to

important gut microbes including Akkermansia

muciniphilia, Bacteroides spp. and Desulfovibrio

spp.

(69)

Frailty in older adults was associated with

reduced gut microbiota diversity.

Measures of frailty index (FI)

including Rockwood Frailty Index.

Enterobacteriaceae were increased, whereas

Bacteroides/Prevotella and the bacterial species

Faecalibacterium prausnitzii sharply declined.

(12, 49)

Chronic liver disease patients with low skeletal

muscle mass had lower branch chain amino acid

(BCAA) synthesis genes, by 16S RNA, compared

to chronic liver disease patients with normal

skeletal muscle mass.

Skeletal muscle. Lower Firmicutes/ Bacteroidetes ratio.

Coprobacillus, Catenibacterium and Clostridium

were also lower while the Bacteroides was higher.

Microbiome characterized by high relative

abundance of gram negative bacteria with LPS

(10)

In patients with advanced gastric cancer, cachexic

patients had a higher prevalence of bacterial

translocation than non-cachexic patients.

Cachexia measured as weight loss

of >10% of the pre-illness state.

Bacterial DNA detected from the portal vein

indicative of reduced intestinal permeability and

increased bacterial translocation in subset of

cachexia patients. Higher alteration of intestinal

flora was noted in cachexic patients.

(19)

Cachectic lung cancer patients Loss in overall muscle mass. Prevotella copri showed significantly lower

abundance in cachectic patients. Klebsiella oxytoca

is significantly higher in lung cancer patients with

cachexia Fecalibacterium prausnitzii is

significantly more abundant in non-cachectic

patients. Significant enrichment of microbiota LPS

biosynthesis pathway.

(22)

Elderly older than 65 years old with low muscle

mass

Skeletal muscle (based on body

composition, grip strength, gait

speed and flexibility).

Firmicutes/Bacteroidetes ratio was significantly

reduced in the low muscle mass group.

Marvinbryantia spp. (SCFA producer) was

decreased significantly, Flavonifractor spp.

(flavonoid degrader) was enriched and Fecal

butyrate was significantly diminished and

correlated with skeletal muscle mass index

(29)

(Continued)
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TABLE 1 (Continued)

Study context Muscle and related
phenotype

Gut microbiota References

Muscle impairment in older adults Physical frailty, based Short

Physical Performance Battery

(SPPB), low appendicular muscle

mass (aLM), and absence of

mobility disability (i.e., ability to

complete the 400-m walk test).

Increase in Oscillospira and Ruminococcus and

decrease in Barnesiellaceae and Christensenellaceae

in physically frail subjects.

(70, 71)

Sedentary women subjected to

exercise interventions including

aerobic exercise training

(brisk-walking).

Relative abundance of Bacteroides significantly

increased in sedentary women after 12 weeks of

aerobic exercise. Abundance of Bacteroides

positively correlated with an increased physical

performance assessed by the 6min walking test

Chronic alcohol consumption had a loss of

muscle strength

Handgrip strength was

significantly lower in the alcohol

overconsumers group compared to

control patient group.

Higher relative abundance of Proteobacteria,

Sutterella, Clostridium and Holdemania. Lower

relative abundance of Faecalibacterium with

reduced fecal SCFAs levels

(72)

Difference in gut microbiota profile between

women with active lifestyle and sedentary

women.

Sedentary women performed <3

days of exercise per week for

30min at moderate intensity.

Higher abundance of health promoting bacterial

species in active women, including

Faecalibacterium prausnitzii, Roseburia hominis

(butyrate producers), Bifidobacterium spp and

Akkermansia muciniphila.

(46)

Active women performed at least

3 h of physical exercise per week.

Lower Bacteroidetes in the active group.

In a 6 week endurance exercise study without

dietary changes amongst previously sedentary

overweight women, metagenomic analysis

revealed taxonomic shifts.

Non-significant increase inM.

vastus lateralis thickness

Increase in Dorea, Anaerofilum and Akkermansia.

Decrease in Porphyromonadaceae, Odoribacter,

Desulfovibrionaceae and Enterobacteriaceae

(73)

Athletes vs. normal individuals Overall impact of exercise on gut

microbiome.

Higher levels of SCFAs (acetate, propionate,

butyrate and valerate) in athletes relative to

controls. Concentrations of propionate strongly

correlated with protein intake. Concentration of

butyrate was shown to have a strong association

with the intake of dietary fiber.

(74)

In male runners, multistrain probiotic

supplementation significantly increased running

time to fatigue. In addition, probiotic

supplementation lead to small to moderate

reduction in intestinal permeability and

gastrointestinal discomfort.

Run time to fatigue. Probiotic supplementation consisting of

Lactobacillus acidophilus, Lactobacillus rhamnosus,

Lactobacillus casei, Lactobacillus plantarum,

Lactobacillus fermentum, Bifidobacterium lactis,

Bifidobacterium breve, Bifidobacterium bifidum,

and Streptococcus thermophilus

(57)

High performing martial arts athletes have

significantly different gut microbial richness and

diversity as compared to the lower-level martial

arts athletes

Elite atheletes. Genera Parabacteroides, Phascolarctobacterium,

Oscillibacter and Bilophila were enriched in the

higher-level athletes, whereasMegasphaera was

abundant in the lower-level athletes. The

abundance of the genus Parabacteroides was

positively correlated with the amount of time

participants exercised during an average week.

(75)

Athletes had relative increases in pathways (e.g.,

amino acid and antibiotic biosynthesis and

carbohydrate metabolism) and fecal metabolites

(e.g., microbial produced SCFAs acetate,

propionate and butyrate) associated with

enhanced muscle turnover and overall health

when compared to control groups.

Althetes vs. control. Higher levels of microbial derived SCFAs (17)

(Continued)
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TABLE 1 (Continued)

Study context Muscle and related
phenotype

Gut microbiota References

Frailty associated changes in gut microbiota

amongst community dwelling adults.

Confirmed with Fried et al.

definition for frailty.

As compared to controls, the frailty groups had

higher Akkermansia, Parabacteroides, Klebsiella

and lower Faecalibacterium, Prevotella, Roseburia,

Megamonas, Blautia.

(76)

Intensive, prolonged exercise causes gut dysbiosis

in female endurance runners

15 female Japanese elite runners

with mean monthly running

distance of 547 km.

The abundance of Deferribacteres was

significantly higher in the endurance runner

group. Concentration of succinate (an undesirab

gut bacteria metabolite) is significantly higher in

female endurance runners.

(55)

6 weeks of resistance training of older adult males DXA whole and lower body lean

mass and leg extensor peak torque

increased.

Increase in mucin biosynthesis. No change in

microbiome diversity, LPS levels, SCFA, and

mucin degradation

(58)

High fiber diet may be involved in mechanisms

related to whole body lean mass and physical

functioning in older adults

Physical function measured by

short physical performance battery

and grip strength.

Higher levels of Ruminococcus, Lachnospira, and

Clostridia, and genes related to butyrate and SCFA

production

(77)

Prebiotic 1-ketoase resulted in recovery of muscle

atrophy in super elderly patients with sarcopenia

Increased total muscle mass, trunk

mass, skeletal muscle index,

skeletal muscle mass increased, as

measured using multi frequency

bioimpedance analysis device.

Increased Bifidobacterium longum in intestine

after 1-ketose administration for 12 weeks

(62)

Prebiotic administration improved frailty criteria

amongst elderly

Improvement in self-reported

exhaustion score and better

handgrip strength in the dominant

hand.

Mixture of inulin and fructoligosaccharide intake

over 13 weeks

(78)

Animal studies

Genetically obese (ob/ob) mice have altered gut

microbiome when compared to lean (ob/+)

littermates.

High fat to lean mass ratio. Higher proportions of Firmicutes and lower levels

of Bacteroidetes

(79)

Fewer but larger muscle fibers compared to germ

free (GF) mice.

Tibialis anterior (Fast oxidative

muscle).

GF mice with conventionalisation. (2)

Increased expression of FoxO3, Atrogin-1 and

Murf-1 encoding E3 ubiquitin ligases, which are

known to be involved in muscle atrophy in GF

mice, reduced with transplantation of gut

microbes.

Similar trend also observed in

soleus (slow oxidative muscle) and

extensor digitorium longus (fast

glycolytic muscle).

GF mice with conventionalisation. (2)

Reduced expression of myosin heavy genes and

glycolytic genes, restored with transplantation of

gut microbes.

Quadriceps (fast glycolytic) muscle. GF mice with conventionalisation. (2)

Slower growth rates and transplant restored

growth in later days.

Reduced growth of lean mass. GF piglet with conventionalisation. (3)

Lower total SCFAs content in the colon Muscle

mass smaller and muscle fibers thinner

Longissimus dorsi muscle GF piglet with conventionalisation. (3)

Increased muscle mass, grip strength, and

endurance swimming time

Increased overall muscle mass and

function.

Long term lactobacillus plantarum TWK10

supplementation in mice

(80)

Obese mice treated with prebiotic, oligofructose. Increase in lean and skeletal muscle

mass.

Associated with increases in family-level

Prevotellaceae, and genus-level Prevotella and

Barnesiella

(81)

(Continued)
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TABLE 1 (Continued)

Study context Muscle and related
phenotype

Gut microbiota References

Mouse model of leukemia (transplantation of

BaF3 cells containing ectopic expression of

Bcr-Abl), treated with probiotic supplements.

Decreased muscle atrophy gene

expression (i.e., Atrogin-1, MuRF1,

LC3, Cathepsin L), and increased

muscle mass.

Lactobacillus spp. led gut dysbiosis was treated

with Lactobacillus reuteri and Lactobacillus gasseri

supplementation.

(13)

Microbiota from high functioning (HF) older

adults transplanted into GF mice led to increased

muscle strength.

Forelimb grip strength. Genus level Paraprevotella, Akkermansia,

Barnesiella, Eubacterium, Prevotella and

Coprobacillus were higher in the HF-mice

compared to LF-mice one-month after

transplantation.

(6)

Antibiotic induced dysbiosis of the gut

microbiome blunted hypertrophic response of

type 1 fibers. It does not impair skeletal muscle

fiber type shift in response to training

Soleus muscle. Antibiotic (metronidazole, neomycin, ampicillin,

vancomycin, streptomycin) treated mice had

reduced microbiota composition and resulted in

enlarged caecum.

(5)

Antibiotics blunted hypertrophy, myonuclei

accretion, satellite cell abundance and fiber-type

shift to type 2a fibers.

Plantaris muscle. (5)

Klebsiella oxytoca is increased in tumor bearing

mice with cachexia independently of anorexia.

Loss in overall muscle mass. Klebsiella oxytoca (21)

GF mice has increased bone mass GF mice have decreased frequency

of CD4+ T cells and CD11b+/GR

1 oesteoclast precursor cells in

bone marrow.

Conventionalisation of GF mice normalizes bone

mass.

(26)

Maternal butyrate supplementation throughout

gestation and lactation did not affect offspring

weight but Type 1 myosin heavy chain,

mitochondria transcription factor A,

PPAR-coactivator-1a and uncoupling protein 3

(UCP3) increased in the gastrocnemius muscle of

rats.

Gastrocnemius. Implications on butyrate-producers in maternal

gut.

(30)

Low gut-derived acetate leads to reduced exercise

endurance.

Overall impact on exercise

endurance in mice.

2 weeks antibiotic treatment reduced exercise

endurance. In the cecum, acetate, propionate and

butyrate became almost undetectable. Antibiotic

treatment associated with a larger population of

Firmicutes and a smaller proportion of

Bacteroidetes. Exercise capacity was restored by

continuous acetate infusion (but not by butyrate

infusion), suggesting that plasma acetate may be

an important source of substrate during

endurance exercise.

(34)

6 week low microbiome-accessible carbohydrate

(LMC) significantly reduced exercise capacity, and

fecal and plasma SCFA concentrations. Ratio of

Firmicutes: Bacteroidetes was also higher.

(34)

In LMC-fed group, there were more Lactococcus

and Allobaculum and lower Prevotella (which

generates SCFA) and S24-7. Low dietary

fermentable fiber content alters the composition of

the microbiome in favor of bacteria that produces

less SCFA

(34)

In hemodialysis patients, serum levels of indoxyl

sulfate or p-cresol suphate may be reduced by

either pre-biotics or pro-biotics administration.

Indoxyl sulfate inhibits myotube

formation and increases factors

related to skeletal muscle

breakdown. P-cresol negatively

affects the vascular endothelium.

Pre-biotics (oligofructose enriched inulin).

Pro-biotics (Bifidobacterium longum).

(36, 82, 83)

Disruption of intestinal barrier leads to the

development of metabolic disease.

Reduced muscle insulin sensitivity. Bacterial lipopolysaccharides in systemic

circulation.

(84)

(Continued)
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TABLE 1 (Continued)

Study context Muscle and related
phenotype

Gut microbiota References

High fat diet induces change in the composition

of gut microbiota

Implied alteration to fat: lean mass

ratio.

Reduction in Bifidobacterium spp. and

Eubacterium rectale–Clostridium coccoides

(Gram-positive bacteria) as well as Bacteroides

(Gram-negative bacteria).

(85)

Negative correlation between Bifidobacterium spp.

and plasma LPS levels has been observed, and an

increase in bifidobacterial induced by prebiotic

intake reduces endotoxaemia.

(85)

Decrease in Bacteroidetes and an increase in

Firmicutes

(85)

Colonization of GF mice with fecal samples from

age matched conventionally leads to reduction in

whole body lean mass by 7–9%, with a 57%

increase in total body fat content.

Reduced lean mass. Conventionalisation results in elevations in liver

mRNAs encoding two key enzymes in de novo

fatty acid synthesis pathway. It also results in

microbial suppression of intestinal fasting-induced

adiposcyte factor (Fiaf) which promotes adiposity.

(7)

Exercise changes microbiota composition and

increases n-butyrate concentration in the rat

cecum.

Voluntary wheel running. Increased n-butyrate, with no change in SCFA

concentrations.

(86)

Diet exerted more influence than exercise in

shaping the gut microbiota. The beneficial effects

of diet and exercise are transmissible via FMT.

HFD mice receiving FMT from normal diet

exercised donor mice had reduced weight and

improved whole-body metabolic profiles.

Fat weight. Transmissible effect of FMT were associated with

bacterial genera Helicobatcer, Odoribacter and

AF12 and overexpression of oxidative

phosphorylation and glycolysis genes. FMT has

comparable effect to exercise in reducing body and

fat weight in mice fed with high fat diet.

(54)

As Odoribacter is a known producer of SCFA, such

as acetate, propionate and butyrate, increased

Odoribacter may contribute to decreased

inflammation,

(87)

Differences in gut micriobiota of GF mice after

FMT from children donors of different

nutritional status

Nutritional status assessed based

on weight-for-height Z-Score

(WHZ).

Faecalibacterium prausnitzii were predominant in

higher muscle mass recipient mice donated by

healthy infants, while Clostridium neonatale were

predominant in recipients donated by

malnourished and underweight infants.

(88)

Antibiotic administration increased the myofiber

density and expression of genes related to type I

and type IIb myofibers in longissimus muscle

Longissimus muscle. Antibiotic treatent, decreased Ternericutes,

Dialister, Asteroleplasma, Prevotella,

Campylobacter, Selenomonas, Misuokella,

Acidaminococcus, and increases Firmicutes,

Bacteroidetes, Phascolarctobacterium,

Paraprevotella, Oscillibacter, Coprococcus, Blautia,

Ruminococcus.

(9)

Probiotics (Fecalibacterium prausnitzi) increased

muscle mass in mice

Gastrocnemius muscle harvested

and weighed.

Oral F. prausnitzii increased muscle mass which

could be due to enhanced mitochondrial

respiration, improved insulin sensitivity, modified

gut microbiota composition with increased

abundance of Lactobacillus and Streptococcus, and

improved intestinal integrity.

(89)

Probiotic delays the appearance of senescence

and age-related muscle mass deposition in

SAMP8 mouse, and age-related decline in muscle

strength

Muscle strength evaluated using

the four-limb hanging and grip

strength tests.

Administration of Lactobacillus casei Shirota by

oral gavage for 12 weeks.

(61)

(Continued)
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TABLE 1 (Continued)

Study context Muscle and related
phenotype

Gut microbiota References

Pulsed antibiotic treatment (PAT) (either 1.

Tylosin or 2. Amoxicillin or 3. Mixed) produced

mice with larger bones and higher lean mass than

control. It trended toward

increased fat in tylosin-treated mice and bone in

amoxicillin-treated mice.

Lean mass. PAT decreased richness and Shannon eveness after

one antibiotic pulse. Bacteroidetes in the mixed

group and some on tylosin were dramtically

reduced. It was relatively unchanged in the

amoxicillin mice.

(8)

On high fat diet (HFD), members of the phylum

Firmicutes increased at the expense of

Bacteroidetes in untreated mice. Many similar

families were changed, but the changes were not

significant in amoxycillin-treated mice on HFD. In

tylosin mice on HFD, changes were partially in the

same direction (Streptococcaceae, Clostridiales

other, Firmicutes other and Prevotellaceae) and

partially in the opposite direction

(Erysipelotrichaceae, Ruminococcaceae,

Rikenellaceae, Bacteroidales other and

Bacteroidetes other) compared to untreated HFD

mice.

(8)

Since increased gut permeability is seen in cachexic mice

and patients, supplementation with probiotics may restore gut

barrier dysfunction thereby lowering pathogen leakage and

systemic inflammation. Supplementation with Lactobacillus and

Bifidobacillus has the potential to reduce age-induced and cancer

induced muscle loss, while supplementation with lactobacillus is

suggested to ameliorate muscle wasting via increasing butyrate

production and decreasing gut permeability.

Most recently, two studies have revealed interesting insights.

The SAMP8 mouse is commonly used as a pre-aging animal

model because it starts to display an aging phenotype from

4 months of age. Probiotic supplementation of Lactobacillus

casei Shirota (1 × 108 or 1 × 109 CFU/mouse/day by

oral gavage) decreased the senescent scores and increased

muscle mass in SAMP8 mice. Furthermore, it helped to

maintain muscle strength in the aged mice, as seen from

the higher grip force. It also reduced age related increases in

inflammation by down regulating the proinflammatory cytokine

TNF- α and upregulating the anti-inflammatory cytokine IL-

10. In contrast to the fall in SCFAs usually seen in aging,

Lactobacillus casei Shirota helped to maintain the butyrate

levels in the aged mice (61). This study involved a small

case series of six non-agenarian older adults (mean age: 90.8

± 5.4 years) with sarcopenia who were administered the

prebiotic 1-kestose (10 g/day for 2 weeks), there was an

increase in the intestinal Bifidobacterium longum population

along with increased skeletal muscle mass index and reduced

body fat percentage (62). This study provided proof-of-concept

evidence regarding the potential clinical benefit of prebiotic

supplementation even in the oldest-old age group. Although

treatment with prebiotics and probiotics may be promising in

improving the gut microbiota (63), there are too limited studies

at the moment to associate, let alone validate, whether its gut

microbe effect carries on to muscle health amongst people with

frailty syndrome.

Conclusion

In this perspective, we start with a brief overview on how

gut microbiota can influence muscle health through various

mechanisms and on how various microbes can be altered in

certain muscle disease states. We discuss recent experimental

and clinical evidence in support of microbiome impacting

muscle mass, with an overall consensus that gut microbes

impact muscle mass, either positively or negatively, depending

on the microbe strain. This is supported by evidence that

microbiome manipulation through either FMT or antibiotic

administration can reverse phenotypes in GF and SPF mice,

respectively. Meanwhile, human studies are beginning to show

that microbiome composition is associated with muscle mass

and function, paralleling changes in inflammatory markers

in patients with frailty and other cachexic conditions. We

looked into as many relevant papers as possible without bias

or application of any exclusion criteria (i.e., not a systemic

review) when gathering evidence for this perspective, but in

doing so may have inadvertently missed a few relevant papers.

This remains a limitation of this piece. Nevertheless, while much

remains unknown about howmicrobiome interacts withmuscle,

this emerging field of research holds promise for improving

our understanding of sarcopenia and other age-related muscle

loss. Information on human, and animal, gut-muscle axis

are now compiled into a single table (Table 1). Importantly,

clinical studies will be needed to determine whether microbiome

modulation via diet modification or pre/probiotic supplements

can improvemuscle health in humans.With continued research,
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wemay 1 day be able to usemicrobiomemanipulation to combat

sarcopenia and other disorders of muscle loss.
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