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Inflammation is a primary component of the central nervous system injury

response. Traumatic brain and spinal cord injury are characterized by a

pronounced microglial response to damage, including alterations in microglial

morphology and increased production of reactive oxygen species (ROS).

The acute activity of microglia may be beneficial to recovery, but continued

inflammation and ROS production is deleterious to the health and function of

other cells. Microglial nicotinamide adenine dinucleotide phosphate (NADPH)

oxidase (NOX), mitochondria, and changes in iron levels are three of the most

common sources of ROS. All three play a significant role in post-traumatic

brain and spinal cord injury ROS production and the resultant oxidative stress.

This review will evaluate the current state of therapeutics used to target

these avenues of microglia-mediated oxidative stress after injury and suggest

avenues for future research.

KEYWORDS

iron, microglia, mitochondria, NADPH oxidase, oxidative stress, spinal cord injury,
traumatic brain injury

Introduction

Traumatic injury to the central nervous system (CNS), including the brain
(traumatic brain injury, TBI) and spinal cord (SCI), affects millions of people every
year, adding to those already living with these injuries (1–3). Microglia are the brain’s
primary immunocompetent cells; these cells’ response to CNS trauma ranges from
restorative to detrimental and studies have shown microglial activity after a traumatic
event shapes recovery and impacts functional and behavioral outcomes (4, 5). Post-
injury phagocytosis, neurotrophic support, and release of mediators of cytotoxicity,
including reactive oxygen species (ROS), fall into the category of microglial responses
(6). In this review, we collect recent efforts to use pharmacological therapies to mediate
microglial production of ROS in the CNS after trauma to improve functional and
behavioral outcomes.

The vast functions of neurons and glia require high energy expenditure that is
dependent upon oxygen for mitochondrial ATP production. However, as an electron
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acceptor, oxygen can form ROS. ROS include but are not
limited to superoxide (O2

−), peroxide (O2
2−), and hydroxyl

radical (•OH). While low levels of ROS act as signaling
molecules, high levels of ROS can cause cellular damage.
To maintain homeostasis, cells increase antioxidants to offset
accumulated ROS.

Within microglia, ROS are associated with proliferation
(7, 8), immune defense (9–11), and redox signaling (12).
ROS-sensitive pathways mediate the activation of nuclear factor-
kappa B (NFκB) and other transcription factors critical to the
inflammatory response of microglia and other phagocytes (13).
Not only do microglia use ROS as a defense against pathogens,
but they activate pathways that allow microglia to respond
to CNS injury. This rapid response of microglia, including
migration to a site of injury, aids the clearance of debris and
dead cells, preventing secondary cell death (14, 15). However,
chronic activation of microglia and the overproduction of ROS
is neurotoxic, precipitating oxidative stress which contributes
to distinct secondary injury cascades, such as lipid peroxidation
and oxidative histone phosphorylation (16) (Figure 1).
Microglia are also a source of the highly toxic peroxynitrite (17).
Activated microglia produce nitric oxide (NO), which rapidly
reacts with superoxide due to its unpaired electron to form
peroxynitrite (ONO2

−), a reactive nitrogen species (RNS) toxic
to both neurons and oligodendrocytes (17, 18).

Oxidative stress is an imbalance between generated ROS and
innate antioxidants. Under oxidative stress, there is a greater
probability that excessive ROS will react with lipids, nucleic
acids, and proteins. These reactions induce lipid peroxidation
and oxidation of proteins and DNA. Lipid peroxidation and
DNA oxidation in particular can disrupt the plasma membrane
and bring about DNA damage capable of inducing apoptosis
after neurotrauma (19, 20). Thus, oxidative stress intensifies
conditions of neurodegenerative disease and injury.

Mechanisms of microglial reactive
oxygen species generation

The production of ROS originating from multiple
intracellular mechanisms must be strictly regulated to minimize
excessive damage to the CNS. A number of these mechanisms
are active in microglia. This review will focus on three of the
most common inducers of ROS identified from microglia,
nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase, iron, and mitochondria (Figure 2).

Nicotinamide adenine dinucleotide
phosphate oxidase

NADPH oxidase (NOX) is a primary ROS-generating
enzyme that microglia express (21, 22). The NOX family consists

of seven isoforms, most of which catalytically transfer one
electron from NADPH to oxygen, producing superoxide. The
antioxidant superoxide dismutase (SOD) can then dismutate
superoxide to hydrogen peroxide (Figure 3), but imbalance in
anti- and pro-oxidant components due to injury or disease can
shift hydrogen peroxide concentrations and lead to oxidative
stress.

Microglia express the isoforms NOX1, NOX2, and NOX4
(23, 24). Membrane bound NOX2 (gp91phox) is requisite for
microglia-mediated neuroinflammation and is considerably
increased after TBI and SCI (23, 25–27). NOX2 is activated in
association with membrane bound p22phox and the translocation
of cytosolic Rac2, p40phox, p47phox, and p67phox.

Plasma membrane bound NOX2 is the principal generator
of extracellular superoxide, as evidenced by the finding
that lipopolysaccharide (LPS)-stimulated microglial cultures
derived from gp91phox−/− rodents fail to increase extracellular
superoxide (28). Activation of NOX2 on the phagosome
membrane releases superoxide into the lumen to be converted
to other reactive species, facilitating anti-microbial function (29,
30). Studies have reported that microglial phagocytosis induces
NOX-dependent superoxide production in response to cellular
debris and IgG antibodies (31, 32).

NOX function is also necessary to activate phosphoinositide
3-kinase, MAP kinases, and NFκB, which upregulate microglial
proinflammatory gene expression (33) and control LPS-induced
phagocytosis (34). NOX-dependent NLRP3 inflammasome
activity regulates the secretion of pro-inflammatory cytokines,
which may mediate the neurodegenerative effects of microglial
oxidative stress (35). Based upon these findings, NOXs
present a significant source of ROS production while NOX
pathways govern microglial functions, both of which influence
neuroinflammation.

Microglial activation and subsequent neurotoxicity is in
many cases NOX-dependent (28, 36). Other research suggests
that NOX activity alone may not cause significant neuron death,
but rather requires additional cellular mechanisms such as iNOS
(37). Microglial NOX activity also contributes to the breakdown
of the blood brain barrier (BBB). Astrocyte and endothelial cell
death increases after oxygen-glucose deprivation/reperfusion
when co-culturing with microglia, an effect prevented with NOX
inhibition (38).

NOX2 has been shown to be particularly responsive to injury
in the CNS, including TBI and SCI, with a rapid upregulation
and maximal expression within the first 7 days after injury,
and chronic expression through at least 1 month (23, 24).
NOX2 activity is induced by stimulation of the toll-like receptors
and requires induction of the NFκB and p38 MAPK signal
transduction pathways (39). NOX2 and 4 have both also been
implicated in post-SCI neuropathic pain development (40, 41).

A variety of therapeutics targeting ROS and the primary
inducers of ROS in microglia have been developed, and
a summary of some of these therapeutic approaches is

Frontiers in Medicine 02 frontiersin.org

https://doi.org/10.3389/fmed.2022.1034692
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-1034692 October 29, 2022 Time: 14:52 # 3

Smith et al. 10.3389/fmed.2022.1034692

FIGURE 1

Microglia mediated oxidative stress leads to neurotoxicity.

FIGURE 2

Oxidative stress in microglia. Microglia can produce reactive oxygen species (ROS) through NOX2, mitochondrial oxidative phosphorylation, and
the Fenton reaction with iron. ROS act as signaling molecules to mediate pathways pivotal in microglial functions.

presented in Table 1. Inhibition of microglial NOX attenuates
pro-inflammatory gene expression, ROS, and oxidative
stress (42–44). Reduced or indirectly inhibited function
of NOX explains the anti-inflammatory effects of other
neuroprotective treatments, including antioxidants and

non-steroidal anti-inflammatory drugs (45–47). Although
NOX2 is not the sole generator of ROS within activated
microglia, it presents a possible therapeutic target to reduce
oxidative stress and neuroinflammation after neurotrauma. In
further sections, details of NOX therapy will be discussed.
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FIGURE 3

Reactive oxygen species in microglia. NOX2, the primary
reactive oxygen species (ROS)-generating enzyme in microglia,
produces superoxide. Superoxide dismutase then catalyzes the
dismutation of superoxide to produce hydrogen peroxide. Iron
reacts with hydrogen peroxide, generating hydroxyl radicals.

Mitochondria

Oxidative phosphorylation can generate mitochondrial
ROS (mtROS) within the intermembrane space and matrix.
As electrons are passed through the electron transport
chain to form ATP, both complex I and complex III
can release electrons to form superoxide. The rate of this
ROS production normally remains low, and mitochondrial
SOD reduces mtROS to form hydrogen peroxide, which
glutathione peroxidase then converts to water (48). The
inner mitochondrial membrane transporter, uncoupling protein
2 (UCP2), downregulates mtROS. Decreased expression of
UCP2 increases ROS in other phagocytes to provide infection
resistance (49). Activated microglia increase mtROS via
downregulation of UCP2. In fact, the phasic down- or
upregulation of UCP-2 modulates microglial phenotype, such
that UCP2-silenced microglia exhibit a continuous pro-
inflammatory phenotype (50).

In addition, the co-occurring increase in superoxide
and nitric oxide in activated microglia heightens the
probability of producing peroxynitrite, which inhibits
the electron transport chain (51, 52). Experimental
administration of electron transport chain inhibitors
enhances mtROS production and pro-inflammatory microglial
activation (53, 54).

Like NOX2-induced ROS, increased mtROS can be
transported to the cytoplasm and regulate microglial pro-
inflammatory gene expression via MAP kinases and NFκB
(53, 55). MtROS also activate the NLRP3 inflammasome (56).
These results indicate not only that mtROS govern microglial
activation, but that mtROS present a positive feedback loop
resulting in mitochondrial dysfunction and elevated microglia-
mediated oxidative stress (Figure 2).

Mitochondrial functioning impacts the outcomes of
neurotrauma. For example, chronic inflammation due to
neurotrauma may cause cells to consume the antioxidant,
glutathione, faster than it can be replenished. Reduced
glutathione levels are associated with increased electron
transport chain complex activity without increasing ATP
production as demonstrated with in vivo injections of LPS
(57). Conversely, increased mitochondrial antioxidants can
effectively reduce ROS and attenuate microglia-induced
inflammation (58).

Mitochondrial metabolism is reduced at 1 h after SCI
(59), and mitochondrial dysfunction is noted at 12 h post-
injury in animal models, accompanied by increases in protein
nitrosylation, lipid peroxidation and protein oxidation (60).
However, it is important to note that increases in 3-nitrotyrosine
(3NT), 4-hydroxynonenal (4HNE) and other oxidative stress
markers have been noted prior to this 12 h time point, suggesting
that while mitochondrial ROS certainly plays a role, additional
sources of ROS are also at work. Similar alterations are observed
in TBI, with acute disruptions in mitochondrial function that are
associated with elevated ROS and oxidative stress (61, 62).

Intracellular mtROS production is also associated with
mitochondrial fission in activated microglia (63, 64). LPS-
stimulated microglia release mitochondria fragments that
lead to an increase in astrocyte ROS and mitochondrial
fragmentation (65), propagating oxidative stress.

To counter unfavorable mitochondrial functioning,
microglia treated with mitochondrial division inhibitor show
normalized glycolysis and oxidative phosphorylation and
reduced ROS (66). In addition, UCP2 overexpression is
neuroprotective in brain injured mice and in vitro cortical
neurons subjected to oxygen glucose deprivation (67). From
these data, it is apparent that the level of mtROS determines
mitochondrial activity and dysfunction in altering microglial
function and oxidative stress.

Iron

Iron is an essential cofactor and molecular component for
many intracellular mechanisms of neurons and glia. Iron is
necessary for the function of NOX, oxidative phosphorylation,
and the citric acid cycle (68, 69). The iron-binding protein,
ferritin, sequesters intracellular iron, preventing iron toxicity.
Free iron that is unbound to ferritin impairs phagocytosis (70)
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TABLE 1 Therapeutics targeting microglial reactive oxygen species (ROS).

Model Species Therapy Outcome References

Microglia cell culture;
Midbrain cell culture

Rat Diphenyliodinium Reduced microglial ROS, pro-inflammatory
cytokines and NO

(42)

Intracerebroventricular LPS
injection

Mouse Apocynin Change in microglial activation state toward
anti-inflammatory

(43)

Microglia cell culture Rat Melatonin Inhibition of p47 phosphorylation, reduction of ROS (45)

Microglia cell culture Mouse Mdivi-1 (mitochondrial
division inhibitor)

Normalization of mitochondrial membrane
potential, reduced ROS and cytokines.

(66)

Microglia cell culture Rat Gp91ds-tat Reduced cytokines, reduced ROS (75)

Microglia cell culture Mouse Milk-fat globule-Epidermal
growth factor – factor 8 (Nrf
stimulant)

Reduced cytokines, reduced ROS (109)

Alzheimer model; microglia
cell culture

Mouse Ibuprofen Reduced oxidative stress markers, reduced NOX
assembly in microglia

(46)

TBI (CCI) Mouse Apocynin Improved sensorimotor function, reduced lesion
volume, reduced NO.

(47)

TBI (CCI) Mouse Apocynin Reduced microglial activation, oxidative stress, and
beta-amyloid.

(44)

TBI (CCI) Mouse Microglia depletion Cognitive function improved, reduced lesion
volume, reduced NOX2 expression

(98)

TBI (CCI) Mouse NOX2 KO Reduced lesion volume, reduced apoptosis, reduced
oxidative damage

(16)

TBI (CCI) Mouse NOX2 KO, gp91ds-tat Improved motor function, reduced inflammation,
reduced microglial inflammation

(118)

TBI (CCI) Mouse NOX2 KO, Apocynin Reduced oxidative damage, reduced lesion volume,
reduced inflammation.

(117)

TBI (CCI) Mouse Gp91ds-tat Reduced edema, reduced cell death (44)

TBI (CCI) Mouse NOX2 KO; apocynin & tBHQ Improved locomotor function, smaller lesion
volume.

(106)

TBI (weight drop) Rat Apocynin Reduced microglial activation, BBB disruption, and
neuronal loss

(116)

TBI (weight drop) Mouse tBHQ Improved neurological function, decreased oxidative
stress

(110)

TBI (weight drop) Mouse tBHQ Reduced NFκB, reduced inflammation, reduced
apoptosis

(111)

TBI (CCI) Rat tBHQ Reduced microglia, reduced cytokines, reduced
astrocytes

(112)

TBI (weight drop) Rat MitoQ Reduced pathology (125)

TBI (CCI) Rat Ubiquinol Reduced apoptosis (126)

TBI (weight drop) Mouse MitoQ Improved function, reduced neuronal apoptosis,
increased Nrf2

(127)

Intracerebral hemorrhage Mouse MitoQ Anti-inflammatory (58)

TBI (weight drop) Mouse SS-31 Decreased ROS and oxidative damage, improved
sensorimotor function

(131)

TBI (CCI) Rat Deferoxamine Reduced histopathology, reduced function
impairment

(135–138)

TBI (weight drop) Rat Minocycline Improved neurological and motor function (140)

TBI (weight drop) Mouse Minocycline Reduced inflammation (141)

TBI (CCI) Mouse HBED Reduced microglia activation (139)

TBI (weight drop) Mouse Reutaecarpine Reduced microglial activation, neurological
improvement, reduced oxidative damage

(114)

TBI (weight drop) Mouse Ramelteon Reduced lesion volume, neurological improvement,
NRF2 elevation

(115)

SCI (compression) Rat Methylprednisolone Reduced oxidative damage, improved motor
function

(152)

(Continued)
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TABLE 1 (Continued)

Model Species Therapy Outcome References

SCI (contusion) Mouse Iron chelator salicylaldehyde
isonicotinoyl hydrazine

Reduced iron, limited motor function improvement (85)

SCI (weight drop) Rat Deferoxamine Mild improvement in motor function (169)

SCI (contusion) Rat Deferoxamine Motor function improvement (170)

SCI (contusion) Rat Diphenyliodinium Reduced oxidative stress (24)

SCI (contusion) Mouse Gp91dst-tat Functional recovery, reduced microglial ROS (27)

SCI (contusion) Mouse Apocynin Improved motor function (159)

SCI (contusion) Mouse Gp91ds-tat Improved motor function, reduced inflammation,
reduced oxidative stress

(160)

SCI (contusion) Mouse NAC Reduced microglial ROS, reduced microglial
activation, reduced microglial mitochondria
dysfunction

(164)

SCI (contusion) Rat Ketogenic diet Improved motor function (165)

SCI (contusion) Mouse HV1 knockout Reduced NOX2 expression, ROS production and
inflammation, improved motor function

(162, 163)

SCI (contusion) Mouse Microglial depletion Reduced ROS, improved motor function (158)

SCI (crush injury) Mouse Microglial depletion Worsened motor function (15)

and contributes to oxidative stress. The Fe2+ iron ion reacts with
the hydrogen peroxide generated from oxidative respiration or
NOX to produce a hydroxyl radical in a catalytic conversion
known as the Fenton reaction (Figures 2, 3).

Iron combined with mitochondrial oxidative stress can
cause microglia to undergo ferroptosis, an iron-dependent
programmed cell death (71, 72), or induce ferroptosis in other
cells via iron dysregulation or NO release (73, 74). Recent
research from our laboratory demonstrated that iron induces
ROS production in microglia and amplifies ROS of stimulated
microglia (75). Both NOX2 and NOX4 inhibitors prevent the
effects of iron treatment on microglia.

Not only does iron exacerbate oxidative stress, but
inflammatory states and ROS alter iron levels. Under
physiological conditions, microglial ferritin levels are associated
with levels of free iron (76). Prior studies have found mixed
results determining whether microglial ferritin expression is
decreased (77) or increased (78) with oxidative stress and
LPS activation. Divalent metal transporter-1 (DMT1) and
transferrin receptor-mediated endocytosis transport Fe2+

and Fe3+, respectively, to regulate intracellular iron levels
(79). Meanwhile, ferroportin is the primary iron exporter.
Pro-inflammatory stimuli cause an increase in intracellular iron
accumulation and induce an upregulation of DMT1 in neurons,
astrocytes, and microglia (80). Additional investigations
revealed that microglia increase iron influx in response to both
pro- and anti-inflammatory cytokines (81). Microglia may
alter substrate preference for transferrin-bound iron under
pro-inflammatory states or non-transferrin-bound iron under
anti-inflammatory states (79). While Urrutia et al. (80) found
neither TNF-α, IL-6, nor LPS significantly altered ferroportin
expression among microglia, Holland et al. (78) found that

IFNγ reduced microglial ferroportin. Microglial iron uptake
is initially neuroprotective by reducing free extracellular
iron and ROS (82, 83); however, the resulting interactions
between iron and oxidative stress mediators within microglia
contribute to microglia-mediated neurotoxicity. Future studies
are essential to evaluate whether microglial uptake of iron
impacts ferroptosis among other CNS cell types.

Excessive iron accumulation may also contribute to post-
injury oxidative damage. Liu et al. demonstrated that iron was
a primary contributor to hydroxyl radical formation within
5 h after spinal cord contusion injury (84). Iron staining
has shown that there is an increase in iron phagocytosis by
microglia/macrophages in the lesion site through 14 days post-
injury (85). Magnetic resonance imaging showed that iron
deposits are present through 35 days post-injury, both in the
lesion site and distant to it, in macrophages/microglia, astrocytes
and oligodendrocytes (86). In addition to uptake within cells,
diffuse staining with Prussian blue suggests deposition of iron
in the extracellular matrix (86). Iron homeostatic proteins are
upregulated after injury, including ceruloplasmin (CP), which
is increased at 1 day and remains elevated through 21 days
post-SCI in astrocytes and macrophages near the lesion site and
ferritin protein, which is increased from 3 days post-injury (85).

Targeting microglia-mediated
oxidative stress as a therapy for
traumatic brain injury

Traumatic brain injury is associated with microglial
activation and oxidative stress. Oxidative damage post-TBI can
impair neuronal functioning, disrupt the BBB, and potentiate
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cell death (87). Postmortem analysis on human TBI brains
found elevated cortical expression of microglial NOX2 and
increased 8-hydroxydeoxyguanosine (8-OHdG), a predominant
form of ROS-induced oxidative damage to DNA (88). A rodent
TBI model, using the controlled cortical impact (CCI) showed
increased cortical 8-OHdG in rats within 15 min of the injury
(89). Other markers of protein and lipid oxidation, 4HNE and
3NT, vary with injury models, with studies showing an increase
by 3 h and resolving by 24 h after blast injury (90) and others
peaking between 24-48 h after a CCI injury (91). 4HNE was
observed in the brain within 6 h after blast exposure (92, 93).
Human brain tissue collected within 91 h of a TBI also displayed
prominent evidence of oxidative stress (94). These elevations
in markers of oxidative stress were often associated with areas
of microglial activation (90). Oxidative damage is not just an
acute response, and has been noted through 42 days after blast
exposure (95). After a CCI, mice show evidence of oxidative
stress in neurons and microglia through 8 months after injury
(96). However, despite temporal variations between injury
models, oxidative stress is an established pathophysiological
process in human and animal models of TBI.

This section will highlight recent research that examined
therapies and pharmacological agents targeting microglia-
mediated oxidative stress in experimental models of TBI.

Microglial depletion or general
anti-oxidant treatment in traumatic
brain injury

Chronically activated microglia are observed in patients
with a TBI up to 17 years after a single injury (97). Microglial
depletion may be a mechanism to reduce chronic microglia
mediated oxidative stress. Using microglial depletion,
Henry et al. (98) showed, in a mouse CCI injury model,
that depleting microglia during the chronic phase of TBI
followed by repopulation resulted in marked improvements
in downstream neurological dysfunction and reduced
posttraumatic neurodegeneration. Coinciding with the
behavioral and cognitive improvements, histological analysis
revealed a significant reduction in the lesion volume and an
increased density of neurons in the cortex and dentate gyrus.
Transcriptional analysis documented various oxidative stress-
related genes that were differentially expressed in the cortex
2 months post-injury, including a reduction of oxidative stress-
inducing genes and an increase in antioxidant-related genes.
Furthermore, repopulated microglia presented as less reactive
with significantly more ramifications, less hypertrophy, and a
reduction in the expression of NOX2 characteristic of a less
inflammatory response. The results from this study implicate
reactive microglia in oxidative stress, cognitive/behavioral
dysfunction and neuropathology associated with TBI. However,
microglial reduction as a therapeutic approach is limited,

considering the necessity of microglia in normal physiology
of the brain. Further work in this field is necessary to truly
understand the overall contribution of microglia to TBI.

In addition to non-specific microglial depletion, non-
microglial specific oxidant reduction has been tested as a
therapeutic target. Nuclear erythroid 2-related factor 2 (Nrf2)
is known to bind to the antioxidant response element to
upregulate antioxidant gene expression and counter oxidative
stress. Increasing evidence suggests Nrf2 also modulates the
functions of both mitochondria and NOX2 (99, 100). Protein
levels of Nrf2 are increased after weight drop and blast models
of TBI in rats and mice (101, 102), peaking at 1 day post-
injury in neurons and 7 days post-injury in microglia near
the nucleus, which suggests active transcriptional activity (103).
However, Nrf2 may be downregulated during chronic stages of
TBI (104). Nrf2 KO mice had greater neurological impairment,
increased lesion volume, and higher levels of oxidative stress
markers (4HNE, 8-OHdG, and protein carbonyls) in response to
a CCI injury (105, 106). Nrf2 KO mice also showed exacerbated
neuroinflammation, 4HNE, and 3NT 1 day following a fluid
percussion injury (107). In vitro studies have confirmed that
Nrf2 suppresses the microglia pro-inflammatory phenotype
(108, 109).

Oxidative stress and microglial activation post-TBI
can be altered with Nrf2 activators, of which tertiary
butylhydroquinone (tBHQ) is the most well studied. Three
doses of tBHQ (50 mg/kg) prior to mouse weight drop TBI
improved neurological function, decreased the oxidative stress
marker malondialdehyde (MDA), and increased SOD activity
(110). One week of a tBHQ-supplemented diet before a weight
drop injury reduced NFκB, proinflammatory cytokines, and
apoptotic cell death (111). TBHQ (25 mg/kg) given at 5 min or
2 h post-CCI followed by a second dose at 24 h improved motor
functioning but had no effect on lesion volume. However, lesion
volume was reduced by combining the treatment with apocynin
(106). Daily administration of tBHQ (25 mg/kg) beginning
24 h post-CCI significantly reduced CD68 + /Iba1 + microglia
immunostaining concurrent with attenuated proinflammatory
cytokine levels in rats 3 days post-injury. Treatment also
reduced astrocyte activation at 7 days post-injury and lesion
volume at 28 days post-injury (112). The results of these
studies suggest tBHQ activates Nrf2 to offset oxidative stress
and provide neuroprotective effects after TBI. Unfortunately,
Nrf2 affects a multitude of intracellular targets, making it
difficult to pare down Nrf2-targeted treatments to a particular
effector such as the mitochondria or NOX2. A limitation of
tBHQ is its debated genotoxicity, but it is approved for human
consumption in small concentrations (113).

More recently, additional therapeutics targeting Nrf2 have
been identified that may also hold promise after TBI, although
the specific cellular target remains unclear. In these studies,
approaches including rutaecarpine and ramelteon, have been
shown to reduce neuronal oxidative damage and microglial
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related inflammation via Nrf2 pathway activation after TBI in
mice models (114, 115). Additional study to identify mechanism
of action and cellular source is necessary to continue to refine
therapies and translate to clinical trials.

NOX2 knockout or inhibition in
traumatic brain injury

NOX2 activity is involved in post-TBI neuropathology and
oxidative stress damage (16, 44, 116). Rodent studies of TBI
show elevated microglial NOX2 expression within days (16,
117) and sustained at 28 days (118) and 12 months post-injury
(119). Activated microglia expressing NOX2 are present in the
periphery of a lesion up to one year following an injury (119).
To study the pathophysiological contributions of NOX2 in a
TBI, multiple studies have used NOX2 knockout (KO) mice in a
CCI model. Dohi et al. (16) found that 2 days post-injury, NOX2
KO mice had reduced lesion volume and peri-lesional apoptotic
cells. This was associated with decreased oxidation products
ethidine and 3NT in CD11b + microglia and infiltrating
macrophages. Kumar et al. (118) extended these findings,
showing a reduced lesion volume and neuronal cell death at
21 days post-injury. Injured NOX2 KO mice also demonstrated
improved motor function at 14 and 21 days post-injury.
Genomic analysis of inflammatory markers in the cortex 1-day
post-injury revealed a marked reduction in proinflammatory
(NOS2, TNFα, IL-6, IL-12b, IL-1β) and increased anti-
inflammatory genes (IL-4Rα, SOCS3, and Ym1). Moreover,
the number of Iba1 + microglia/macrophages expressing the
pro-inflammatory-associated CD16/32 cell surface marker was
diminished at 7 days post-injury. In a separate study, Wang
et al. (117) corroborated the neuroprotective effects of knocking
out the NOX2 enzyme, by showing that NOX2 KO TBI mice
displayed less oxidative damage (shown by reduced 4HNE) as
well as increased neuronal survival and reduced lesion volume at
4 and 7 days after injury. Furthermore, this was associated with
significantly downregulated pro-inflammatory-associated genes
(CD16, CD32, CD86, iNOS) and significantly upregulated anti-
inflammatory-associated genes (CD206, Ym1). Interestingly,
when microglia were isolated from KO and wild-type TBI
mice, the microglia from the former were less pro-inflammatory
and more anti-inflammatory compared to the latter, with cells
expressing less pro-inflammatory associated CD86 and more
anti-inflammatory associated CD206. Lastly, in vitro studies
showed that healthy neurons co-cultured with microglia from
injured NOX2 KO mice were healthier, displayed less neuronal
apoptosis, and cytotoxicity compared to neurons co-cultures
with microglia from injured wild-type mice. This suggests that
the activation of the NOX2 receptor on microglia in part,
mediates the neurotoxicity observed in the in vivo injury model.

A limitation of these studies is the NOX2 KO mouse is a
complete knockout of the NOX2 gene and not microglia specific.

Therefore, effects may be partially mediated by additional
cell types. Given that neurons also express NOX2, some
neuroprotective effects of NOX2 KO could be related to direct
intracellular effects on neurons. Additionally, studies used
markers that cannot distinguish microglia from macrophages,
which could be contributing to results. In fact, Kumar et al.
(118) determined that macrophages accounted for 25% of NOX2
expression post-CCI while microglia accounted for 8%. Further
research is needed to investigate the contributions of microglial
versus macrophage NOX2 following TBI.

Researchers have also tested the therapeutic potential of
targeting the NOX2 enzyme with various pharmacological
modulators. The specific peptide inhibitor, gp91ds-tat, has been
utilized to target NOX2 in CCI injury models. Administration
of gp91ds-tat (250 µg/mouse) 20 min prior to CCI reduced
edema 1-day post-injury and cell death 4-days post-injury (44).
Consistent with the aforementioned KO studies, administration
of gp91ds-tat (5 mg/kg) at 24, 48, and 72 h post-CCI reduced
CD16/32 expression in the cortex (120) and promoted
an anti-inflammatory microglia phenotype, indicated by
increased anti-inflammatory Arg1 and Ym1 expression in
P2Y12 + /CD11b + microglia (118). Treatment was associated
with improved performance in spatial working memory tests
but had no improvement on fine motor function within the first
week post-injury (118).

Apocynin is a medicinal compound isolated from the plant
Picrorhiza kurroa and inhibits NOX activity in neutrophils
and macrophages by preventing p47phox and p67phox subunit
translocation (121). Choi et al. (116) showed that rats pre-
treated with apocynin (100 mg/kg) fifteen min before a
weight drop model of TBI had reduced microglial/macrophage
activation in the CA1 region of the hippocampus 7 days
after injury. Additionally, this was associated with reduced
BBB dysfunction and fewer degenerating neurons in the
hippocampus. Using a CCI mouse model of TBI, researchers
found that administration of apocynin (4 mg/kg) 20 min before
injury or 2 h post-injury significantly reduced immunostaining
for oxidative stress markers 4HNE, 8-OHdG, and p-H2AX
in the cortex and CA1 regions of hippocampus 2 days post-
injury (44). The decrease in oxidative stress was followed
by reduced microglia/macrophage activation in the cortex
and CA1 region of the hippocampus 4 days post-injury.
Another CCI mouse study found that apocynin (5 mg/kg)
administered for 4 consecutive days prior and 1 day post-injury
significantly decreased ROS (measured with hydroethidine)
within CD11b + microglia/macrophages (117).

Although these results suggest apocynin has NOX-mediated
anti-inflammatory effects on microglia, the effects of apocynin
are not specific to a single NOX isoform and have off-
target effects (122). For this reason, the favorable outcomes of
apocynin treatment may indicate a benefit of general antioxidant
treatments for TBI. In addition, global NOX2 or NOX inhibition
may have negative immune suppressive effects. Reports of
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gastrointestinal disorders or dysfunction of neutrophils have
been reported with NOX2 inhibition (123), which suggest that
additional research is needed to better target NOX2 inhibitors
to microglia or to the brain after injury.

Targeting mitochondria in traumatic
brain injury

Treatments aimed to alter the function of mitochondria
or its electron transport chain may limit ROS production
and suppress oxidative stress. Cortical mitochondria isolated
post-CCI show phasic dysfunction, with significant oxidative
damage beginning at 24 h, allowing for a larger therapeutic
window for treatments (124). Antioxidant compounds present
one treatment strategy to target mitochondrial dysfunction
post-TBI. Here we will discuss just a few mitochondria-
targeted antioxidants.

Coenzyme Q10 (CoQ10), or ubiquinone, is an essential
part of the electron transport chain, but it also acts as an
antioxidant. TBI outcomes have been assessed following
treatments with CoQ10, its reduced form ubiquinol, and
mitoquinone (MitoQ) which is composed of covalently
bound CoQ10 and triphenylphosphonium ions. CoQ10
(10 mg/kg) administered immediately after a weight drop
injury reduced MDA, generated a non-statistically significant
increase in SOD, and attenuated TBI-induced histopathology
(125). Ubiquinol (100 mg/kg), administered to rats 30 min
before a CCI mitigated mitochondrial damage and reduced
apoptosis (126). Administration of MitoQ (4 mg/kg &
8 mg/kg) 30 min after injury reduced neuronal apoptosis and
improved neurobehavioral function at 1 and 3 days post-injury.
MitoQ also reduced post-TBI oxidative stress, increasing the
antioxidant activity of glutathione peroxidase and SOD, while
decreasing MDA. MitoQ also increased Nrf2 activity and
upregulated downstream proteins of Nrf2 signaling (127).
Although the above studies did not confirm the association
between treatments and microglial activation, MitoQ did
have neuroprotective effects and anti-inflammatory effects on
microglia in vivo after intracerebral hemorrhage (58). Despite
these results, separate studies have found that MitoQ can
cause mitochondrial damage due to increased inner membrane
permeability (128) and increase mitochondrial ROS driven
by complex I activity (129). Further research is necessary
to corroborate the effects of CoQ10-based treatments on
microglial functions and microglia-mediated oxidative stress.

SS-31, also known as elamipretide or bendavia, is a
synthetic antioxidant peptide that binds to cardiolipin of the
inner mitochondrial membrane where it inhibits cytochrome
c peroxidase activity, inhibits mitochondrial permeability,
and reduces mitochondrial ROS (130). SS-31 (5 mg/kg &
10 mg/kg) administered to mice 30 min after a weight drop
injury decreased ROS, 8-OHdG, MDA, and increased SOD

(131). Treatment also improved sensorimotor functioning and
reduced apoptosis as well as intracellular iron loads. SS-31
(5 mg/kg) given to mice 30 min before an intracerebral LPS
injection followed by three daily doses attenuated ROS, MDA,
and pro-inflammatory cytokine levels while also increasing SOD
in the hippocampus (132). LPS-stimulated microglia pre-treated
with SS-31 showed attenuated mitochondrial fragmentation,
iNOS and COX2 expression, and ROS production (133). Mice
subject to brain ischemia/reperfusion immediately followed by
SS-31 treatment (5 mg/kg) had reduced microglia/macrophage
activation in the injured hemisphere (134). Safety or efficacy of
SS-31 for the treatment of neurotrauma has not been confirmed
in humans, but clinical trials may be forthcoming.

Targeting iron in traumatic brain injury

Although iron is essential to the healthy brain, iron overload
can exacerbate oxidative stress. Accordingly, iron chelation
therapy has been tested as a treatment of TBI. Administration of
the iron chelator, deferoxamine has demonstrated some efficacy
in improving histological and functional outcomes of CCI,
lateral fluid percussion, and weight drop models of TBI on mice
and rats, but investigations of deferoxamine’s effects on oxidative
stress and microglial activation remains incomplete (135–138).
Mixed findings are likely a result of deferoxamine being limited
to access the CNS in areas of BBB damage.

Hydroxybenzyl ethylenediamine (HBED) is an iron chelator
which can cross the BBB. HBED (100 mg/kg) followed
with bidaily doses (50 mg/kg) for 3 days post-CCI had a
neuroprotective effect with reduced microglial activation but
had varying results on functional outcomes (139).

Minocycline, an antibiotic that has iron chelation properties
and can also stabilize mitochondrial function, improved
neurological and functional outcomes of a weight drop model
of TBI on rats using multiple dose concentrations (140).
A separate weight drop study using mice found minocycline
(45 & 90 mg/kg) reduced inflammation but had no effect on
the glutathione reduction ratio as a marker of oxidative stress
(141). Minocycline reduced microglial activation in human TBI
patients but also increased neurofilament light, a marker of
neurodegeneration in humans (142).

In humans, iron chelators used for the treatment of iron
overload syndromes have painful and potentially neurotoxic
side effects (143). After lateral fluid percussion in rats, long-
term term iron deposits and chronically activated microglia
are associated with BBB leakage, which suggests treatments
aimed at treating BBB dysfunction would be a more efficient
target for both iron and overall neuroinflammation (144). In
conclusion, although iron chelation may attenuate microglia-
mediated oxidative stress, iron-targeted treatments may not
be as effective or protective as other oxidative stress targets
involved with TBI.
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Targeting microglia-mediated
oxidative stress as a therapy for
spinal cord injury

Injury to the spinal cord results in acute and long-lasting
oxidative stress at both the lesion site and surrounding tissue.
Interestingly, measurements of local oxidative stress have shown
higher levels of ROS, lipid peroxidation and mitochondrial DNA
oxidation in spinal cord after SCI than in cortical tissue after
brain injury (145), suggesting that spinal cord tissue may be
particularly sensitive to oxidative damage or contain cells that
are primed toward a shift to oxidative stress. In blood samples
from patients with cervical SCI, markers of oxidative stress were
elevated acutely and up to 7 days after injury, while antioxidant
levels were reduced (146). In rats with contusion SCI, markers
of oxidative stress, including 3NT and 4HNE, were elevated by
3 h post-injury (147). The expression of these markers expanded
throughout the tissue, into both gray and white matter, through
72 h post-injury. This expansion of expression began to decline
by 2 weeks post-injury. In rabbits with spinal cord ischemia,
markers of DNA oxidation (8-OHdG) were found to be elevated
by 8 h after reperfusion, and peaked at 24 h (148). In a study of
multiple models of SCI, contusion, dislocation and distraction
injuries in rats were all found to increase oxidative stress
markers within 3 h after injury, particularly in neurons, with
slight differences in foci (149). Peroxynitrite after SCI shows an
increase by 1 h that was sustained through 1 week, with a peak
at 24 h (150).

Oxidative stress is not just an acute response to CNS injury,
however. Analysis of SCI tissue at 1 month after SCI showed
reductions in antioxidants (glutathione, alpha tocopherol) and
increases in oxidative stress markers (epi-prostaglandin F2
alpha); these alterations remained present through 12 months
after injury (151).

Treatment to reduce oxidative stress after SCI has
been varied. One of the first treatments approved for SCI
treatment, methylprednisolone, was found to significantly
reduce oxidative damage in the injured spinal cord (152).
However, methylprednisolone was found to impair systemic
inflammatory responses and have other negative systemic
effects. Therapies that have focused on directly scavenging
oxidants after SCI have also proven somewhat successful in
preclinical trials (153), but therapeutic windows for these
approaches seem to be short and focused on the acute burst of
ROS production (154). Therefore, treatments focusing on spinal
cord specific oxidative stress may be more beneficial.

Microglial depletion in spinal cord
injury

Directly reducing microglia in the injured spinal cord
by microglial depletion has been met with conflicting results

and appears to be heavily dependent on timing of the
depletion initiation. Acute depletion or depletion prior to injury
using PLX3397 or genetic manipulation was found to reduce
functional recovery and impair neuronal survival after SCI
(15, 155, 156). A recent study demonstrated that deletion of
microglia prior to SCI led to a disruption in the glial scar (157).
These data suggest that acute activity of microglia is essential to
injury recovery.

However, delayed depletion using PLX5622 reduced
microglial ROS and improved outcomes (158). This study
demonstrated that PLX5622 administration starting at 1 day
post-injury, in which microglia were depleted by 7 days post-
injury, significantly improved motor function of mice after
SCI and reduced long-term expression of inflammatory and
apoptosis markers. Therefore, one can conclude that microglia
within the injured spinal cord play a complicated and nuanced
role that can not be overlooked or eliminated for therapeutic
efficacy. Targeting specific microglial functions, such as ROS
production, may then optimally improve outcomes.

NOX2 knockout or inhibition in spinal
cord injury

NOX2 inhibition has been shown to reduce oxidative
stress and improve functional recovery after SCI (24, 27).
Using the non-specific NOX inhibitor apocynin, Zhang et al.
(159) showed that acute systemic NOX inhibition improved
functional recovery in aged, but not young, female mice,
suggesting an age-related impact of treatment. These functional
improvements were associated with significant reductions in
macrophage invasion and macrophage-related ROS production.
Interestingly, we have shown that in young male mice,
NOX inhibition with gp91ds-tat acute intrathecal infusion did
significantly improve functional outcomes in young mice (160),
accompanied by significant reductions in local ROS markers
and microglial numbers. This difference suggests that location
(systemic vs. intrathecal) of treatment may also have a marked
impact on treatment efficacy. Alternatively, sex may play a role,
as systemic administration of gp91ds-tat significantly improved
motor function in young adult male mice after a T10 contusion
injury (27); this beneficial effect was associated with a significant
reduction in ROS production in Iba1 + cells, although whether
these cells were microglia or macrophages was not determined.
The therapeutic approach to targeting NOX may also be the
reason – apocynin is a non-specific approach; gp91ds-tat, which
directly blocks NOX2 activity by binding the p47phox cytosolic
component instead of allowing for p47phox to bind to the
enzymatic core gp91phox, may be a more efficient method for
inhibition (161).

In addition, targeting of the microglial proton channel
HV1, which has been linked to NOX2 generated ROS, for
genetic depletion has been shown to reduce NOX2 expression,
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ROS production and neuroinflammatory gene expression and
improve motor function after SCI (162, 163).

Targeting mitochondria in spinal cord
injury

Therapies targeting mitochondrial ROS have also been
shown to reduce SCI oxidative stress and improve functional
outcomes. Administration of n-acetylcysteine (NAC) has been
shown to reduce ROS production by microglia in vitro and in
SCI, accompanied by reduced microglial activation and reduced
microglial mitochondrial dysfunction (164). Ketogenic diets,
in which β-hydroxybutyrate metabolites are presumed to be
able to bypass damaged metabolic pathways and enter the
TCA cycle in mitochondria to assist in production of ATP,
have been shown to improve functional outcomes after SCI
(165). The ketogenic diet was also found to increase antioxidant
availability and reduce cytokine production. Administration of
minocycline, which is reported to stabilize mitochondria and
inhibit the release of cytochrome c, has also been reported
to reduce oxidative stress and improve outcomes after SCI
(166–168).

Targeting iron in spinal cord injury

Iron chelation therapy has proven effective in reducing
oxidative stress in the injured spinal cord (85). Systemic
administration of the lipophilic iron chelator salicylaldehyde
isonicotinoyl hydrazine twice a week starting 1 h after
SCI significantly reduced iron presence in the injured cord
(85). However, despite this reduction, improvement in motor
function was limited, with a significant but only 1 point
improvement in the Basso Mouse Scale by 42 days post-
injury. Deferoxamine, another iron chelator, administration
after SCI was found to have similar results – depressing
iron accumulation and inducing mild improvements in motor
function (169). Increasing the frequency of treatment with
deferoxamine may improve outcome – daily administration
of deferoxamine starting 30 min prior to SCI was shown
to significantly reduce iron load in the injured cord and
significantly improve motor scores by at least 2 points (170).
Daily administration after spinal cord compression was also
found to improve recovery and induce vascularization (171).
A recent study showed that deferoxamine administration after
SCI improved Basso, Beattie and Bresnahan scale locomotor
scores and reduced iron accumulation in the brain as well,
reducing oxidative stress in the motor cortex (73). More
importantly, deferoxamine administration has been shown to
specifically act on microglia to reduce oxidative stress in an
SCI-pain model (172). However, other studies have shown
that oral administration of iron chelators, such as deferasirox,

have moderate to no effect on motor function after SCI,
and that high doses can be toxic (173). Therefore, additional
research, particularly focused on non-systemic administration
routes, is needed.

Conclusion

It is important to note that much of the early work
in characterizing oxidative stress temporo-spatial dynamics
was performed in female animals; the contribution of sex-
differences in oxidative stress responses is not well understood.
Sex has been shown to play a significant role in several post-
injury inflammatory responses, including cytokine release (174),
inflammasome formation (175), and T and B cell responses
(176). In SCI, recent work by Stewart et al. demonstrated that
while male mice demonstrate an elevated number of microglia
in the injured spinal cord vs. females, female mice showed
more NOX2 gene expression than males (177). These data
suggest that oxidative stress may differ substantially between the
sexes. Further work is warranted to identify how these variables
affect ROS production.

Targeting of microglia mediated oxidative stress enhances
behavioral and functional outcomes after both SCI and TBI
and shows promise as a possible clinical therapy. While
many of the studies detailed above do not specifically target
just microglia, the complementary microglial depletion
work demonstrates several of the same effects, suggesting
that microglia may be a key target of global antioxidant
therapies. The current research identifies Iba1 + cells as
major ROS producers, but more studies are needed to
identify the differential effects of macrophages compared with
microglia. It is clear that additional research is needed to
understand the best circumstances for beneficial outcomes
when inhibiting microglial ROS production, including
NOX, iron or mitochondrial dysfunction. Longitudinal
studies are needed to identify the impact of therapies at
longer time points to ensure short term improvements
are not being traded for negative long-term consequences.
This work would be a necessary foundation to support the
expansion into clinical trials. Resolving or understanding the
mechanisms that drive mixed results is integral to moving
therapies into human use.

To date, several therapeutics have been met with mixed
results. More research is needed to identify how to appropriately
target ROS sources to reduce post-injury oxidative stress, and
this remains a rich area for study and therapeutic targeting.
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