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Immune checkpoint inhibitors (ICI) have been applied in treating advanced

hepatocellular carcinoma (aHCC) patients, but few patients exhibit stable

and lasting responses. Moreover, identifying aHCC patients suitable for ICI

treatment is still challenged. This study aimed to evaluate whether dissecting

peripheral immune cell subsets by Mann-Whitney U test and artificial

intelligence (AI) algorithms could serve as predictive biomarkers of nivolumab

treatment for aHCC. Disease control group carried significantly increased

percentages of PD-L1+ monocytes, PD-L1+ CD8 T cells, PD-L1+ CD8 NKT

cells, and decreased percentages of PD-L1+ CD8 NKT cells via Mann-Whitney

U test. By recursive feature elimination method, five featured subsets (CD4

NKTreg, PD-1+ CD8 T cells, PD-1+ CD8 NKT cells, PD-L1+ CD8 T cells and

PD-L1+ monocytes) were selected for AI training. The featured subsets were

highly overlapping with ones identified via Mann-Whitney U test. Trained AI

algorithms committed valuable AUC from 0.8417 to 0.875 to significantly

separate disease control group from disease progression group, and SHAP

value ranking also revealed PD-L1+ monocytes and PD-L1+ CD8 T cells

exclusively and significantly contributed to this discrimination. In summary,

the current study demonstrated that integrally analyzing immune cell profiling

with AI algorithms could serve as predictive biomarkers of ICI treatment.
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Introduction

T cell checkpoint blockade immunotherapies targeting
CTLA-4 and the axis of PD-1/PD-L1 by therapeutic antibodies
have revolutionized cancer treatment following the clinical
success achieved (1). PD-1 inhibitors, such as nivolumab
and pembrolizumab, got accelerated approval from the Food
and Drug Administration (FDA) of the United States in
treating advanced hepatocellular carcinoma (aHCC) patients
after sorafenib failure based on two phase-II global open-
label clinical trials, Checkmate-040 and Keynote-224 (2, 3).
Later, the FDA approved a combination of bevacizumab and
atezolizumab (a PD-L1 inhibitor) as the first-line treatment
for aHCC patients based on the phase-III randomized
control trial, Imbrave-150 (4). The objective response rates in
the three ICIs are 15% (nivolumab), 18% (pembrolizumab)
and 27.3% (atezolizumab), respectively. The corresponding
median progression-free survival of the three ICIs is 4.1
months (nivolumab), 7.0 months (pembrolizumab), and 6.8
months (atezolizumab).

Despite considerable advancements in the above-
mentioned clinical studies, epidemiologic data and ongoing
clinical trials suggest that most patients receiving immune
checkpoint inhibitors (ICI) do not get clinical benefits
from ICIs (5). Corresponding cellular and molecular
mechanisms underlying the diversity of disease responses
are multifactorial and still not completely understood (6).
Therefore, exploring predictive biomarkers annealing with
immune cell responses for ICIs treatment in aHCC emerged as
a challenging unmet need.

Flow cytometry allows a detailed single-cell characterization
of adaptive and innate immune landscapes, thereby providing
a unique platform to discriminate immune cell subsets
that can be exploited in an immunotherapeutic setting
(7). Previously, we conducted an observational study to
screen the immune cell subsets of aHCC patients and
identified a significantly lower percentage of PD-1+ B cells
in peripheral blood mononuclear cells (PBMCs) from aHCC
patients with disease progression responses than those with
disease control response after nivolumab treatment (8, 9). In
a pilot study of metastatic melanoma, CD14+CD16−HLA-
DRhi monocyte content strongly correlated with disease
overall survival (OS) in ICI-treated patients (10). This study
encouraged us to enroll more aHCC subjects and re-analyze
immunoprofiling from aHCC patients with disease control
and disease progression responses after nivolumab treatment.
Furthermore, by automatically discovering integrated patterns
from sophisticated biomedical data (11), machine learning
(ML) has been applied in identifying biomarkers for predictive
drug responses and disease diagnoses such as cancers (12,
13). Accordingly, the current study aimed to re-compare the
immunoprofiling between aHCC patients with disease control
and disease progression responses to determine the immune

cell subsets regarding the efficacy of nivolumab. Additionally,
we attempted to preliminarily investigate whether analyzing
immunoprofiling of aHCC by ML can predict clinical responses
before nivolumab treatments.

Materials and methods

Study design

This study was an extension of our previous one with
two changes; additional seven patients were included, and the
repertoire of analyzed immune cell subsets was modified from
55 to 50 (8). The trial protocol complied with the Declaration
of Helsinki and was reviewed and approved by the Institutional
Review Board of Taipei Veteran General Hospital (approval
code 2018-08-017AC). We enrolled aHCC patients who were
also subjects of the Checkmate-040 trial from National Taiwan
University Hospital (Taipei, Taiwan) and Taipei Veteran General
Hospital (Taipei, Taiwan). Eligible criteria included: (1) older
than 20 years old, (2) histological confirmed aHCC based on
the practical guideline, (3) Child-Pugh class A, (4) Eastern
Cooperative Oncology Group (ECOG) performance status 0 or
1, (5) adequate organ function for Checkmate-040 trial, (6) plan
to receive nivolumab treatment, (7) no therapeutic modalities
within four weeks prior to initial dose of nivolumab, and (8)
did not receive any immuno-modulating medications. Patients
who did not sign the informed consent form were ineligible.
After signing the informed consent form, we collected 20 mL of
peripheral blood from the patients before 3 mg/kg of nivolumab
treatment and recorded their clinical outcomes as treatment
finished based on RECIST version 1.1.

Reagents and antibodies

Ficoll-PaqueTM medium (Ficoll, density 1.077 g/mL,
Cytiva 17544202, Marlborough, MA, USA), bovine serum
albumin (BSA, Sigma-Aldrich A7030, Merck KGaA, Darmstadt,
Germany), and sodium azide (NaN3, Sigma-Aldrich S2002,
Merck) were applied for peripheral blood mononuclear cells
(PBMCs) isolation. FoxP3/Transcription factor staining buffer
set (Thermo-Fisher 00-5523-00, Waltham, MA, USA) was used
in immunostaining of intracellular markers.

A total of sixteen fluorescent-labeled antibodies were used
to identify specific immune cell subsets. The antibodies enlisted
in the following were obtained from Beckman-Coulter (Brea,
CA, USA): Allophycocyanin/Alexa Fluor 700 (APC/AF700)-
conjugated anti-CD56 (N901, B10822), APC/Alexa Fluor
750 (APC/AF750)-conjugated anti-CD14 (RMO52, A86052)
and anti-CD19 (J3-119, A78838), Krome orange (KO)-
conjugated anti-CD3 (UCHT1, B00068) and anti-CD8 (B9.11,
B00067), and phycoerythrin/cyanine 5.5 (PE/Cy5.5)-conjugated
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anti-CD4 (SFCI12T4D11, 6607101). Following antibodies
were obtained from Biolegend (San Diego, CA, USA):
APC-conjugated anti-CD11c (3.9, 301614) and anti-TCRγ/δ
(236A/E7, 331212), fluorescein isothiocyanate-conjugated anti-
TCRα/β (L3D10, 306705), PB-conjugated anti-CD69 (FN50,
310919), PE-conjugated anti-CD25 (BC96, 302606), and anti-
PD-L1 (B1, 329706), and peridinin-chlorophyll-protein/Cy5.5
(PerCP/Cy5.5)-conjugated anti-PD-1 (IP26, 329914). APC-
conjugated anti-FoxP3 (29E.2A3, 17-4777-42) antibody was
purchased from Thermo-Fisher. All antibodies were aliquoted as
received and stored under recommended conditions until use.

Isolation of peripheral blood
mononuclear cells

Isolating protocol of PBMCs was identical to that in our
previous study (8). Briefly, peripheral blood was mixed with
an aliquot of phosphate buffer saline (PBS) and loaded into
Ficoll-preloaded conical tubes. Then, tubes were centrifuged
for 30 min with 400× g and without brake. PBMCs were
collected from the buffy coat, washed twice with PBS, and
suspended in staining buffer (0.5% BSA/ 0.02% NaN3/ PBS)
for immunostaining.

Immunostaining and fluorescent
determination of peripheral blood
mononuclear cells

Isolated PBMCs were incubated with staining buffer
containing targeted antibodies for 30 min under 4oC and
dark environment. Afterward, stained PBMCs were divided
into two: one was determined fluorescence using a flow
cytometer (Navios, Beckman-Coulter), and another was fixed
and permeabilized by FoxP3/transcription factor staining
buffer kit, stained with anti-FoxP3 antibody, and determined
fluorescence by flow cytometer.

Data acquisition and machine learning

Data collection from the flow cytometer and identification
of immune cell subsets were performed by Kaluza analysis
software V1.3 (Beckman-Coulter). A total of fifty immune
cell subsets were identified based on their phenotypes
described in Supplementary Table 1 through a sequentially
gating process shown in Supplementary Figures 1–4. After
gating, the abundance of immune cell subsets was recorded,
used in ML, and tested the statistical difference between
patients with disease control responses and those with disease
progression responses.

The schematic illustration of the ML process was shown
in Figure 2. Three ML algorithms applied in this study were
random forest classifier (14), logistic regression (15), and
support vector machines (16). In brief, we constructed a dataset
that comprised the abundance of immune cell subsets from
each subject. Then, RFECV was used to select featured subsets
for separating aHCC patients with disease control responses
from those with disease progression responses from the dataset
according to the ranking of feature importance of the machine
learning model (17). RFECV starts with full features, then
recursively removes the weakest one until the model develops
poor performance. We apply Random Forest (RF) algorithm
to RFECV as its classifier that helps to add randomness to
subset selections and to offer final predictions based on the
majority voting. Due to the smaller size of the dataset, we
use Leave-One-Out Cross-Validation (LOOCV) in RFECV to
ensure that each specimen has an opportunity to represent the
entire validation set, thus providing a more robust estimate
of model performance. We also take the weighted average F1
score as the evaluation metric of RFECV, which is calculated
by finding the mean of the F1-score through the support of
each class. Subsequently, the featured subsets were applied
for ML model training with the LOOCV in cross-validation
and hyperparameters enlisted in Supplementary Table 2. After
model training, the performance of ML models in distinguishing
aHCC patients with disease control responses from those with
disease progression responses was assessed by receiver operating
characteristic (ROC) analysis. Additionally, the contribution of
featured immune cell subsets in each ML model was weighed
by SHapley Additive exPlanations (SHAP). All packages applied
in ML were open-sourced and available on Github: RFECV,
min-max scaling, random forest classifier, logistic regression,
support vector machines, leave-one-out validator, and ROC
were included in the scikit-learn kit (download link: https://
github.com/scikit-learn/scikit-learn); Optuna1 and SHAP were
independent packages.2

Statistical analysis

The comparison of immunoprofiling between aHCC
patients with disease control responses and those with disease
progression responses was shown in mean± standard deviation
(SD) by Prism V9.0 (GraphPad Software, San Diego, CA,
USA). Mann-Whitney U test was used to analyze the statistical
significance between patients with disease control response and
those with disease progression response which comparisons
with statistical significance were labeled with ∗ or ∗∗ as
p < 0.05 or 0.01.

1 https://github.com/optuna/optuna

2 https://github.com/slundberg/shap
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Results

Baseline characteristic of the subjects

We grouped enrolled patients into disease control and
disease progression groups based on their clinical response
to nivolumab and described their demographics in Table 1.
Briefly, 15 (15 male and 0 female) and 8 (6 male and 2
female) patients were grouped into disease control and disease
progression groups whose age were comparable. All patients
were diagnosed with Barcelona Clinic Liver Cancer stage C
and Child-Pugh class A. Six patients in disease control group
and three patients in disease progression group exhibited portal
vein invasion. Twenty-two patients showed distal metastasis.
Median contents of α-fetoprotein of disease control and disease
progression were 2262 ng/mL and 124 ng/mL, respectively.
Fourteen patients (61%) and four patients (17%) had positive
results in hepatitis B viral antigen assay and anti-hepatitis C
virus antibodies, respectively, which fit the high prevalence of
hepatitis B and hepatitis C viral infections in Taiwan (18). After
nivolumab treatment, five patients showed partial responses,
ten with stable diseases, and eight with disease progression.
Median progression-free survival of two groups were 4.0 months
(disease control group) and 1.4 months (disease progression
group), respectively. We merged the data of immunoprofiling
from patients with partial responses and stable disease into

TABLE 1 Demography of the enrolled subjects.

Disease
control
group

Disease
progression

group

p

Total 15 8

Median age (range, in y) 63 (38–68) 62 (41–75) 0.2912

Gender (male/total, n) 15/15 6/8

Child-Pugh class (A/total, n) 15/15 8/8

BCLC (B/C, n) 0/15 0/8

Portal vein thrombosis
(positive/total, n)

6/15 3/8

Distal metastasis
(positive/total, n)

14/15 8/8

Median AFP (range, in
ng/mL)

2262 (14 – 69195) 124 (2 – 17866) 0.0695

HBsAg (positive/total, n) 8/15 6/8

Anti-HCV (positive/total, n) 2/15 2/8

Best objective response
(CR/PR/SD/PD, n)

0/5/10/0 0/0/0/8

Median PFS (range, in
month)

4.0 (1.5 – 36) 1.4 (1.0 – 4.0) 0.0313

The comparison between disease control and disease progression groups were performed
by Mann-Whitney U test. AFP, α-fetoprotein; anti-HCV, anti-hepatitis C virus antibody;
BCLC, Barcelona Clinic Liver Cancer; CR, complete response; HBsAg, hepatitis B viral
antigen; PD, progression disease; PFS, progression free survival; PR, partial response;
SD, stable disease.

the disease control group and applied them in the following
analysis.

The axis of increased PD-1+ cells and
decreased PD-L1+ cells were observed
in advanced hepatocellular carcinoma
patients carrying disease progression
responses

We compared the percentages of fifty immune cell subsets
between the disease control and disease progression groups
to identify immune cell subsets with significantly different
abundances. Higher percentages of PD-1+ CD8 NKTs were
observed in the disease progression group than in the disease
control group (Figure 1A). Additionally, lower percentages of
PD-L1+ CD8 T cells, monocytes, and CD8 NKTs were found
in the disease progression group than in the disease control
group (Figures 1B–D). Altogether, the increased percentages of
PD-1+ cells and decreased percentages of PD-L1+ cells were
observed in aHCC patients with disease progression response
after nivolumab treatment.

Machine learning algorithm identified
five immune subsets for discriminating
advanced hepatocellular carcinoma
patients with disease control disease
progression responses

To integrally analyze immunoprofiling, we constructed
an ML platform to discriminate the disease control and the
disease progression groups. As shown in Figure 2, the ML
platform comprised one feature selection method (RFECV),
one hyperparameter optimization method (Optuna), three ML
algorithms (random forest classifier, logistic regression, support
vector machines), and one model explanation method (SHAP).

We used RFECV to determine the minimal number of the
featured immune cell subsets for discriminating the disease
control and the disease progression groups and the members
of featured immune cell subsets among the fifty immune cell
subsets. As shown in Figure 3A, RFECV analysis got the highest
score at five selected features, indicating that five immune cell
subsets were enough to distinguish the disease control group
from the disease progression group. The five featured immune
cell subsets selected by RFECV were regulatory CD4 NKTs
(CD4 NKTreg), PD-1+ CD8 T cells, PD-1+ CD8 NKTs, PD-
L1+ CD8 T cells, and PD-L1+ monocytes (Figure 3B). Via the
Mann-Whitney U test, we observed that aHCC patients carrying
disease progression response to nivolumab treatment exhibited
an immunoprofiling of lower percentages of PD-L1+ CD8 T
cells, PD-L1+ monocytes, and higher percentages of PD-1+
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FIGURE 1

Axis of increased PD-1+ cells and decreased PD-L1+ cells was observed in advanced hepatocellular carcinoma (aHCC) patients carrying disease
progression after nivolumab treatment. Peripheral blood mononuclear cells (PBMCs) from twenty-three aHCC patients were stained with
targeted antibodies followed by analyzing the fluorescent pattern and used such pattern in gating immune cell subsets by flow cytometer,
Kaluza analysis software, and definitive markers enlisted in Supplementary Table 1. The abundance of immune subsets in the subjects was
measured, compared between the disease control and disease progression groups using Mann-Whitney U test, and shown in scatter plots with
mean ± standard deviation (SD) by Prism. Four immune cell subsets, including PD-1 + CD8 NKT cells (A), PD-L1+ CD8 T cells (B), PD-L1+

monocytes (C), and PD-L1+ CD8 NKT cells (D), which abundances were significantly different between the disease control and disease
progression groups. Immune subsets with statistical significance were labeled with ∗ or ∗∗ as p < 0.05 or p < 0.01.

CD8 NKTs (Figures 1A–C). These two results indicated that
increased PD-L1 positivity on CD8 T cells and monocytes and
decreased PD-1 positivity on CD8 NKTs might render aHCC
patients more sensitive to nivolumab treatment.

Five selected features efficiently
distinguished advanced hepatocellular
carcinoma patients with disease
control response from those with
disease progression response

We applied five selected features for training three
ML algorithms (random forest classifier, logistic regression,
support vector machines) and determined their performance of
discriminating aHCC patients with disease control and disease

progression responses via ROC analysis. aCCAAfter The AUC
of ROC analysis among the three ML algorithms was 0.8417
(random forest classifier; Figure 4A), 0.8583 (logistic regression;
Figure 4B), and 0.8750 (support vector machines; Figure 4C)
respectively. This result indicated that the performance of
the three ML models in discriminating disease control and
disease progression groups was excellent (19). To evaluate the
contribution of the five featured immune cell subsets within
each ML algorithm, SHAP was used to rank the importance
of the five featured immune cell subsets among the three ML
algorithms. As shown in Figures 4D–F, SHAP values of the
disease control and disease progression groups were distributed
on the different sides of the Y-axis without overlapping,
respectively. PD-L1+ CD8 T cells and PD-L1+ monocytes
got the highest rank from the random forest and the logistic
regression (Figures 4D,E). PD-1+ CD8 NKTs and PD-L1+
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FIGURE 2

Schematic illustration of the process of machine learning and artificial intelligence. We collected data from all subjects (dataset) and removed
the string variables inside (cleaned data). Featured subsets which were critical for distinguishing “disease control group” and “disease
progression group” were selected from cleaned data by recursive feature elimination with cross validation (RFECV). Then, featured subsets
proceeded with normalization (for support vector machines), hyperparameter optimization to determine the optimal parameters among three
machine learning (ML) algorithms, and model training. Finally, the performance of the trained ML models and the ranking of the featured
subsets among the models were carried out by receiver operation characteristic (ROC) and SHapley Additive exPlanations (SHAP), respectively.

CD8 T cells got the highest rank in support vector machines
(Figure 4F). Collectively, PD-L1+ CD8 T cells were highly
ranked in the three ML algorithms, which pointed out that
PD-L1+ CD8 T cells were highly critical in distinguishing the
disease control group from the disease progression group. In
summary, the ML platform efficiently discriminated the disease
control group from the disease progression group, and the five
featured immune cell subsets applied in the ML algorithms
highly overlapped with the results of the Mann-Whitney U test.

Discussion

In this study, significantly lower percentages of PD-L1+

CD8 T cells, monocytes, CD8 NKTs, and higher amounts
of PD-1+ CD8 NKT were observed in aHCC patients with
disease progression response than those with disease control

response after nivolumab treatment via Mann-Whitney U test.
Through RFECV method, five featured immune cell subsets,
including CD4 NKTreg, PD-1+ CD8 NKTs, PD-1+ CD8 T
cells, PD-L1+ CD8 T cells, and CD-L1+ monocytes, were
selected from analyzed fifty immune cell subsets for ML
training and been highly overlapping with ones identified
by Mann-Whitney U test. This result implied that altering
amounts of PD-1+ CD8 NKTs, PD-L1+ CD8 T cells, and
CD-L1+ monocytes in peripheral blood might change the
susceptibility of aHCC patients to nivolumab treatment. Trained
ML algorithms committed valuable AUC from 0.8417 to
0.875 to significantly separate the disease control group from
the disease progression group, and SHAP value ranking
also revealed that PD-L1+ monocytes and PD-L1+ CD8 T
cells exclusively contributed to this discrimination. Altogether,
dissecting immunoprofiling with ML algorithms is promising

Frontiers in Medicine 06 frontiersin.org

https://doi.org/10.3389/fmed.2022.1008855
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-1008855 November 2, 2022 Time: 14:22 # 7

Lee et al. 10.3389/fmed.2022.1008855

FIGURE 3

Five featured immune cell subsets had good performance in discriminating disease control and disease progression groups. A total of fifty
immune cell subsets were screened by Recursive Feature Elimination with Cross-Validation (RFECV) to determine the number and the members
of featured immune cell subsets in discriminating the disease control and disease progression groups. The screening result of RFECV were
represented in the weighted average F1-score versus number of cell population subsets (A). The highest score (0.7931) of average F1-score
appeared while numbers of selected immune cell subsets was five. Therefore, the number featured immune cell subsets was five, and the
featured immune cell subsets were enlisted in (B).

FIGURE 4

Machine learning algorithms efficiently distinguished aHCC patients with disease control responses from those with disease progression
responses. Featured subsets for distinguishing disease control and disease progression groups were selected by recursive feature elimination
and used to train the three machine learning models, which detailed procedure was described in Materials and Methods. After model training,
the performance of random forest (A), logistic regression (B), and support vector machines (C) in distinguishing the disease control and disease
progression groups were tested receiver operating characteristics. Also, the contribution of each featured subset in distinguishing disease
control and disease progression groups model training among random forest (D), logistic regression (E), and support vector machines (F) was
ranked by SHapley Additive exPlanations (SHAP), respectively.

for accurately predicting clinical responses of aHCC patients
before receiving nivolumab treatment.

Several biomarkers, such as intratumoral expression of
tumor neoantigens and PD-L1, tumor mutation burden, and

DNA damage response pathway, are proposed to predict clinical
responses to ICI treatments (20). However, the correlation
between these predictive biomarkers and clinical outcomes of
aHCC patients with ICI treatment is not strong (21), which
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indicates that selecting aHCC patients suitable for ICI treatment
is still an unmet medical need. Several studies have revealed that
altered amounts of specific immune cell subsets are associated
with the drug responses of ICI treatment (22). Therefore,
predictive biomarkers in the immune-cell profiling used to
predict clinical responses of ICI treatment for aHCC patients
are promising. HCC patients who got clinical benefits from ICI
treatment exhibited higher percentages of CD4 effector memory
T cells, CD8 effector memory T cells, PD-1+ CD8 T cells, HLA-
DR+ dendritic cells (DCs), lower amounts of CD14+ MDSCs,
CD14+CD16− and CD14+CD16+monocytes than whoever did
not get clinical benefit from ICI treatment (23, 24). Our previous
study indicated that aHCC patients with disease progression
response carried an immunoprofiling of higher percentages of
PD-1+ B cells (8). After enrolling additional aHCC patients
and modifying the repertoire of analyzed immune cell subsets,
we further observed that aHCC patients carrying disease
progression response exhibited decreased positivity of PD-L1 on
CD8 T cells, monocytes, CD8 NKTs, and increased positivity of
PD-1 on CD8 NKTs (Figure 1). The five immune cell subsets we
identified could be applied in selecting aHCC patients suitable
for nivolumab treatment.

In the current study, we identified augmented percentages
of PD-1+ NKTs in the aHCC patients with disease progression
response than those in the disease control response (Figure 1A).
Non-small-cell lung cancer and advanced melanoma patients
carrying increased PD-1+ NKTs exhibited shorter OS after
nivolumab treatment (25, 26). The increased percentages of
PD-1+ NKTs were under exhausting conditions and could be
invigorated by anti-PD-L1 antibodies (27, 28). These results
implied that anti-PD-L1 antibodies such as atezolizumab might
benefit aHCC patients with disease progression response to
anti-PD-1 treatment in the clinics.

Additionally, lower percentages of PD-L1+ CD8 T cells
were identified in the aHCC patients with disease progression
response than those with the disease control response
(Figure 1B). Lower positivity of PD-L1 on T cells (including
CD4 T cells and CD8 T cells) and monocytes were linked to
shorter OS in patients with various cancers after ICI treatments
(mainly PD-1 inhibitors) (29, 30). Of note, Jacquelot et al.
reported that melanoma patients who got clinical benefits
from ipilimumab (CTLA-4 inhibitor) had lower positivity of
PD-L1 on CD8 T cells than whoever did not get clinical
benefits from ipilimumab (31). These two studies reveal that
melanoma patients with PD-1 inhibitors treatment failure
may get clinical benefits from ipilimumab treatment, and
the case report published by Sakai et al. confirmed this
concept (32). The current study was the first report addressing
the correlation between disease progression response after
nivolumab treatment in aHCC patients and the lower positivity
of PD-L1 on CD8 T cells, and those aHCC patients with disease
progression response may get clinical benefits from ipilimumab
treatment.

We reported the first study attempting to integrally parse
the immunoprofiling of aHCC using ML algorithms. Zhou
et al. use a random forest classifier and Least absolute
shrinkage and selection operator (LASSO)-Cox regression and
determine that increased neutrophils, CD8 T cells, but decreased
plasmacytoid DCs, monocytes, and NKT are linked to shorter
OS in cancer patients after ICI treatment (33). Additionally,
Peng et al. use RFE and LASSO to find immune subsets
correlating with the major-pathological responses (MPR) of
ICI treatment for NSCLC patients. In their study, increases in
NKTs, CD4+CD45RA− T cells, but decreases in B cells and
CD4+CD45RA+ T cells are associated with MPR after ICI
treatment (34). These studies indicate that the ML algorithms
can help us identify cancer patients suitable for ICI treatment
through the hidden patterns parsing from immunoprofiling.
We identified five featured immune cell subsets (CD4 NKTreg,
PD-1+ CD8 T cells, PD-1+ CD8 NKTs, PD-L1+ CD8 T
cells, and PD-L1+ monocytes) that applied in ML model
training via RFECV (Figure 3B). ML algorithms significantly
discriminated the disease-control and the disease-progression
groups after training with the five featured immune cell
subsets (Figure 4). These results reinforce the feasibility of
applying the ML algorithm in parsing immunoprofiling from
aHCC. Furthermore, significant decreases in PD-L1+ CD8
T cells and monocytes but increases in PD-1+ CD8 NKTs
were observed in aHCC patients carrying disease progression
response (Figures 1A–C). This result implied that changing the
positivity of PD-1 and PD-L1 on definite immune cell subsets in
peripheral blood might alter the susceptibility of aHCC patients
to ICI treatment.

Conclusion

Our preliminary investigation posed that applying
computational analysis in dissecting sophisticated
immunoprofiling and serving as predictive biomarkers of
ICI treatment for aHCC patients is feasible. Furthermore,
the changing of PD-1 and PD-L1 expression upon definite
immune cell subsets may correlate to the susceptibility of aHCC
to nivolumab treatment. Although the results of the current
study were promising for predicting the treatment response
of immune checkpoint inhibitors (ICIs), several studies
reported some limitations in machine learning applications,
such as overfitting (35). To attenuate the risk of overfitting
and promote the performance, we applied the recursive
feature elimination with cross-validation (RFECV) and leave-
one-out methods in this study (36, 37). Nevertheless, the
small sample size and lack of external validation still caused
the inevitable risk of overfitting in the current study. We
continuously collected new data for model refinement and
external validation.
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