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Retinal images are themost intuitive medical images for the diagnosis of fundus diseases.

Low-quality retinal images cause difficulties in computer-aided diagnosis systems and the

clinical diagnosis of ophthalmologists. The high quality of retinal images is an important

basis of precision medicine in ophthalmology. In this study, we propose a retinal image

enhancement method based on deep learning to enhance multiple low-quality retinal

images. A generative adversarial network is employed to build a symmetrical network,

and a convolutional block attentionmodule is introduced to improve the feature extraction

capability. The retinal images in our dataset are sorted into two sets according to

their quality: low and high quality. Generators and discriminators alternately learn the

features of low/high-quality retinal images without the need for paired images.We analyze

the proposed method both qualitatively and quantitatively on public datasets and a

private dataset. The study results demonstrate that the proposed method is superior

to other advanced algorithms, especially in enhancing color-distorted retinal images. It

also performs well in the task of retinal vessel segmentation. The proposed network

effectively enhances low-quality retinal images, aiding ophthalmologists and enabling

computer-aided diagnosis in pathological analysis. Our method enhances multiple types

of low-quality retinal images using a deep learning network.

Keywords: image enhancement, convolutional neural network, retinal image, deep learning, generative adversarial

network

1. INTRODUCTION

Retinal images are widely used for the screening and diagnosis of diseases, including diabetic
retinopathy (DR) (1, 2), glaucoma (3, 4), and age-related macular degeneration (5, 6). These
diseases often cause abnormalities in the blood vessels, optic cup, and optic disc. Only high-
quality retinal images are capable of clearly showing the tiny blood vessels and optic disc profile.
Low-quality retinal images, such as those shown in Figure 1, include blur, low illumination, high
illumination, uneven illumination, and color distortion, and they limit the diagnostic capabilities
of ophthalmologists and computer-aided diagnosis (CAD) systems (7). The enhancement of retinal
images can clearly display fundus information including, blood vessels and optic disc, and increase
the accuracy of CAD systems, such as the retinal vessel segmentation network.
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FIGURE 1 | Retinal image instances. (A): High-quality image. (B): Blur. (C): Low illumination. (D): High illumination. (E): Uneven illumination. (F): Color distortion.

Retinal image enhancement methods have been proposed
by numerous researchers, and they can be categorized into
histogram-based, fusion-based, and Retinex theory-based
methods. Among the histogram-based methods, contrast limited
adaptive histogram equalization (CLAHE) is a widely used
method to enhance retinal images. The RGB channel, green
model, and exponential histogram are the optimal choices when
enhancing with CLAHE (8). (9) segmented the fuzzy histogram
of the green plane and improved the average brightness of the
image by using the intensity level of the equalizer sub-histogram.
(10) obtained the brightness gain matrix by gamma correction
and subsequently enhanced the contrast on the brightness
channel with CLAHE. Setiawan (11) used histogram equalization
to enhance the retinal image by increasing the difference between
the maximum and minimum pixels. These methods equalize the
gray-scale distribution of images and give rise to unnatural color
transitions when processing retinal images. The fusion-based
method integrates the image features under different conditions
to enhance the original image. (12) used the transform domain
algorithm to extract the background information image and
fused it with the original retinal image. (13) separately extracted
background brightness and foreground pixels of different
intensities to effectively enhance blurred retinal images. These

methods improve sharpness and can only enhance blurred
retinal images. (14) used self-similar filtering to remove image
noise. (15) generated different degrees of exposure images and
used a weight matrix to fuse the original and the exposure image
to obtain an enhanced result. The low-light image enhancement
(LIME) method (16) combines the original brightness with
prior knowledge to enhance the underexposed image from
the perspective of increasing brightness. These networks are
computationally intensive and slow in the processing of images.
The Retinex theory (17) states that an image is the product of
reflectivity and illumination. (18) removed the low-frequency
illumination component of the retinal image and used single-
scale retinex and multiscale retinex to enhance the retinal
image before applying the classification of retinal vessels. The
RETIC method (19) effectively enhances the low-contrast retinal
image and further enhances the retinal blood vessels based on
the hemoglobin image. However, the image enhanced by the
RETIC method will generate additional noise, which must be
further identified and removed (20). According to the Retinex
theory, (21) performed gamma correction for the retinal image
light-map and then combined it with CLAHE to make color
adjustments in the brightness channel. (22) proposed theMSRCP
method, which applied the MSRCR algorithm to the luminance

Frontiers in Medicine | www.frontiersin.org 2 January 2022 | Volume 8 | Article 793726

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Wan et al. Retinal Image Enhancement

channel to ensure that the pixel value of the enhanced image was
between 0 and 255.

In recent years, learning-based methods have been widely
applied in medical image processing, such as for the tasks
of image classification, image segmentation, object detection,
and localization (23). (24) used illumination regularization and
structural loss to overcome the problem of uneven illumination
in medical images, and enhanced endoscopic images, corneal
confocal microscopy images and fundus images (25). The
method they proposed was effective for low-illumination and
high-illumination images, but did not apply to other low-
quality fundus images, such as blur and color distortion. A
method combining support vector machine and mathematical
morphology was proposed to obtain a satisfactory classification
accuracy in the quality filtered retinal image dataset (26). (27)
combined vascular extraction with arteriovenous identification
to achieve arteriovenous segmentation in retinal images using the
U-Net semantic segmentation structure. (28) used the support
vector machine to detect the optic disc for further diagnosis
of glaucoma. These studies on retinal image processing are
suitable for clear, high contrast images that can be processed
automatically, and they perform better on high quality retinal
image datasets. (29) used a data-driven method to enhance
blurry retinal images. However, in general datasets, there are
other types of causes for low-quality images, besides blur, that
reduce the feasibility of processing retinal images. In our previous
study (30), low-quality images with artificial noise were enhanced
without distinguishing the categories of quality. Synthetic noise
is easily learned for the convolutional neural network, which is
essentially different from the low-quality images taken by the
fundus camera.

In this article, we propose a learning-based method to
enhance low-quality retinal images from datasets and clinics.
The generative adversarial network (GAN) proposed by (31)
realized the use of neural networks to generate pictures.
However, GAN can neither be controlled by the user nor can it
generate specific pictures. Based on GAN, the cycle-constraint
adversarial network (CycleGAN) (32) used the cycle consistency
to successfully separate the style and content of the image,
hence maintaining the content of the image while changing its
style. The enhancement of the retinal image from low to high
quality is also image translation. We introduce convolutional
block attention modules (CBAM) (33) into CycleGAN and
propose a novel retinal image enhancement network Cycle-
CBAM to enhance five types of low-quality images: blur,
low illumination, high illumination, uneven illumination, and
color distortion. Cycle-CBAM aims to eliminate the factors
that lead to low quality and restore the original condition of
retinal images.

The main contributions of this article study can be
summarized as follows: (a) The ability of image style conversion
prompted us to consider using CycleGAN for retinal image
enhancement. (b) CBAM enhances the feature extraction ability
of the network and intensifies the detailed information of the
enhanced image. (c) Cycle-CBAMdoes not require paired images
to train the network, which greatly reduces the difficulty of
collecting images. (d) Our method uses the powerful feature

extraction capability of deep learning to realize difficult image
enhancement tasks.

2. MATERIALS AND METHODS

In this section, we describe the methods employed to enhance
the quality of retinal images. First, CycleGAN is applied for
the style translation of retinal images to resolve the lack of
paired low/high-quality images. Second, CBAM is introduced to
solve the degeneration of texture and detail caused by training
unpaired images. Third, to verify the enhancement effect of
our method, the enhanced retinal image was applied to the
retinal vessel segmentation network. Finally, the loss function
and evaluation indicators used in our experiments are described.

2.1. Dataset
To train the retinal image enhancement network proposed in this
study, we use the EyePACS (34) dataset and a proprietary dataset.

2.1.1. EyePACS Dataset
The training set of the EyePACS dataset includes 35,126 color
retinal images, of which 8,575 are low-quality and 26,551 are
high-quality (34). The image resolution ranges from 433×289
to 5184×3456. We randomly select 500 low-quality and 500
high-quality images to construct the dataset for the image
enhancement network. The selected images undergo a double-
blind review of the image quality evaluation by three retinal
ophthalmologists. The training set consists of 400 low-quality
and 400 high-quality images. The remaining 100 low-quality and
100 high-quality images form the test set.

2.1.2. Proprietary Dataset
The proprietary dataset is provided by the Affiliated Eye Hospital
of Nanjing Medical University, including 17 sets of low/high
quality paired color retinal images. These are preoperative and
postoperative retinal images of cataract patients taken from the
same perspective. Images were desensitized (anonymized) before
being used in this study. Because different retinal image cameras
were used, there are the following three image resolutions:
2736×1824, 1280×960, and 3456×2304. Since the photographs
anonymization was applied before the study, informed consent
from the patients was waived. Ethical approval has been obtained
for the use of a proprietary dataset.

2.1.3. Retinal Vessel Segmentation Dataset
The training set of the retinal vessel segmentation network
consists of three public datasets: DRIVE (35), STARE (36),
and CHASEDB1 (37). All these three datasets contain multiple
color retinal images and their corresponding retinal vessel
segmentation images. The DRIVE dataset contains 40 pairs of
images with a resolution of 565×584, 30 pairs for training and
10 pairs for validation. The STARE dataset contains 20 pairs of
images with a resolution of 700×605, 15 pairs for training and 5
pairs for validation. The CHASEDB1 dataset contains 28 pairs of
images with a resolution of 999×960, 21 pairs for training and 7
pairs for validation. The 100 low-quality retinal images and their
corresponding enhanced images with the CLAHE, fusion-based,
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TABLE 1 | Dataset details.

Network Dataset Image Type Number Resolution

Image Enhancement

Network

EyePACS dataset High/low quality color retinal images 35126 images 433 × 289 to 5184 × 3456

Proprietary dataset Preoperative and postoperative color retinal images of

cataract patients

17 pairs images 2736×1824, 1280×960, 3456×2304

Retinal vessel

segmentation network

DRIVE
Color retinal images and corresponding

retinal vessel segmentation images

40 pairs images 565×584

STARE 20 pairs images 700×605

CHASEDB1 28 pairs images 999×960

FIGURE 2 | Flowchart of proposed retinal image enhancement algorithm.

MSRCP, LIME, CycleGAN, and Cycle-CBAMmethods were used
as the test set.

The images used in the image enhancement and retinal vessel
segmentation network are all normalized and preprocessed to
512×512 resolution. The detailed information of the dataset in
our study is shown in Table 1.

2.2. Proposed Method
Generative adversarial network is a depth model that executes a
variety of image processing tasks (31). It contains a generative
network that captures data distribution and a discriminative
network that determines the probability that an image originates
from real images. Based on GAN, CycleGAN trains the generator
and discriminator alternately, essentially acting as two mirror-
symmetric GANs forming a ring network. In CycleGAN, there
are two generators, G :A → B and F :B → A, and two
discriminators, DA and DB. CycleGAN employs the concept
of cycle consistency loss. As shown in Figure 2, the low-
quality retinal image inputs GA to generate high-quality images,
which then inputs GB, and are converted back into the low-
quality retinal images. This is a cyclic process of retinal images
alternating from low to high quality. The reconstructed low-
quality image must be the same as the original image.

Generators, GA and GB, are fully convolutional networks,
which can be divided into a downsampling module, Res-CBAM
module, and upsampling module according to the function. The
downsamplingmodule converts the information contained in the
input image into a feature vector. It contains three convolutional
layers, and the numbers of convolution kernels are 64, 128,
and 256, respectively. The first convolution layer uses a (7,7)
convolution kernel with a stride size of 1, and the remaining two
layers use a (3,3) convolution kernel with a stride size of 2. The
Res-CBAMmodule integrates the features again to extract global
high-dimensional information. CBAM adopts the attention
module based on the human visual attention mechanism (38),
and its structure is shown in Figure 3. The proposed method
stacks nine resblocks as feature sorting networks, and each
residual block uses a CBAM network.

The discriminators, DA and DB, reduce the number of
discriminant network parameters by drawing on the method
of PatchGANs (39) without incorporating the CBAM network.
The discriminator determines the sub-graphs of different sizes
intercepted from the original image and obtains the classification
result according to the principle of majority voting. The
discriminator consists of five convolutional layers. The numbers
of convolution kernels are 64, 128, 256, 512, and 1, respectively.
The stride sizes are 2, 2, 2, 1, and 1, respectively. The role of
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FIGURE 3 | The structure of convolutional block attention modules (CBAM).

discriminators is to discriminate whether the input is a real
retinal image in the dataset or a synthetic image.

2.3. Retinal Vessel Segmentation Network
The length, width, and curvature of retinal vessels represent
important information in the diagnosis of DR, glaucoma, and
other ophthalmic diseases (40). To screen for these diseases,
it is necessary to segment retinal vessels from retinal images
and analyze their structural characteristics. Thick and thin
vessels are present in retinal images. The identification of thin
vessels is a challenging task in retinal vessel segmentation. The
enhanced retinal image can improve the performance of this task
(41). To verify the effectiveness of this study, enhanced retinal
images were applied to the classic medical image segmentation
network UNet (42) to perform retinal vessel segmentation
experiments. UNet adopts an encoder-decoder structure. The
encoder is composed of four layers of downsampling, each
of which contains two convolution layers with kernel size of
3 and a maxpooling layer. The decoder is composed of four
layers of upsampling, each of which contains a convolution
layer with a kernel size of 2, a concatenate layer, and two
convolution layers with kernel size of 3. Skip connections are
used to concatenate each layer of the downsampling with the
corresponding upsampling layer. The optimizer used here is
Adam with a learning rate of 0.0001. The loss function used here
is the binary-cross-entropy function.

2.4. Loss Function
To obtain enhanced images, we train Cycle-CBAM in a manner
similar to dual learning. According to cycle consistency, the
image reconstructed by the generator must be consistent with
the original image. We utilize the L1 norm to represent
the reconstruction loss of low/high-quality retinal images in
the training set. The reconstruction loss of the generator is
expressed as

Lcyc(FCBAM ,GCBAM) = EA[||FCBAM(GCBAM(a))− a||1]
+ EB[||GCBAM(FCBAM(b))− b||1]. (1)

The purpose of the discriminator is to determine whether the
input is a real or a generated image. The discriminator loss is a
binary loss, as in

LGAN(FCBAM ,DA,A,B) = EA[logDA(a)]

+ EB[log(1− DA(FCBAM(b)))], (2)

LGAN(GCBAM ,DB,A,B) = EB[logDB(b)]

+ EA[log(1− DB(FCBAM(a)))]. (3)

The objective loss function is expressed as

L(GCBAM , FCBAM ,DA,DB)

= LGAN(FCBAM ,DA,A,B)+ LGAN(GCBAM ,DB,A,B)

+ λLcyc(FCBAM ,GCBAM), (4)

where λ controls the weight of reconstruction and discriminator
losses. Ideally, when the input image originates from the
dataset, the discriminator outputs one. Otherwise, when the
input is a generated retinal image, the discriminator outputs
zero. The generator generates as realistic images as possible
to cause misjudgment by the discriminator. Therefore, the
discriminators,DA andDB, mustmaximize the objective function
and the generators, GCBAM and FCBAM , must minimize it. The
reconstructed retinal images must be similar to the original
images, such that the reconstruction loss Lcyc(FCBAM ,GCBAM)
is minimal. The performance of the network is improved
through the competition game between the generators and
discriminators. Our objective function is expressed as.

GCBAM , FCBAM

= arg min
GCBAM ,FCBAM

max
DA ,DB

L(GCBAM , FCBAM ,DA,DB). (5)

2.5. Statistical Evaluation Metrics
The quantitative results are analyzed by statistical methods. SD
measures the extent to which data values deviate from the mean.
A smaller SD represents more balanced data. The SE, also known
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as the root mean square error, is sensitive to values with large
errors. The formulas are as follows:

SD =
√

1

n

∑

i

(xi − x)2, (6)

SE =
SD
√
n
. (7)

where x is the average, xi is the data value, and the range of i is
[0,99]. n is the number of the set of data. In this study, n is 100.
The Kolmogorov–Smirnov test is a non-parametric method used
to test the distribution of data. The unpaired Student’s t-test is
performed to test whether the difference between the two samples
is significant. If the p-value is significantly larger than 0.05, this
means that the two samples are not considerably different.

3. RESULTS

This section presents the comparison experiment of qualitative
and quantitative analysis of the proposed retinal image
enhancement method with CLAHE (11), Fusion-based (15),
MSRCP (22), LIME (16), Cycle-GAN (31) methods, and their

application in the retinal vessel segmentation network. The
CLAHE used in the experiments is its specialization (11). The
specialized CLAHE implements CLAHE only in the G channel
rather than the whole image, based on the unique property of
the retinal image that the G channel has important information.
Then, the enhanced G channel is merged with the R channel and
B channel to obtain the enhanced retinal image. All experiments
in this study are based on the Keras framework. The computer
hardware configuration is an Intel Core i7-7700k CPU, 16GB
RAM, and an NVIDIA RTX 2080Ti 11GB GPU. The computer
software environment is Tensorflow-gpu 1.11.0, Keras 2.2.4,
CUDA 9.0, Cudnn 7.3.0, Python 3.6.4, and Opencv-Contrib-
Python 3.4.2.16. The Adam optimizer is used in the network
training process; the learning rate is 0.0002, and the number of
training rounds is 200.

3.1. Qualitative Analysis Results
In the retinal image with a resolution of 512×512, the width of
the thickest retinal vessel is only 11 pixels, and the blurred retinal
image does not clearly show the vessels (Figure 4A). The image
enhanced by CLAHE shows thickened retinal vessels, which
indicate the clinical manifestation of hypertensive retinopathy.
The image appears green at the edges and near the blood

FIGURE 4 | Blurry retinal image and enhancement results of different methods. (A): Original image. (B): contrast limited adaptive histogram equalization (CLAHE). (C):

Fusion-based. (D): MSRCP. (E): low-light image enhancement (LIME). (F): Ours.
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FIGURE 5 | Low-illumination retinal image and enhancement results of different methods. (A): Original image. (B): CLAHE. (C): Fusion-based. (D): MSRCP. (E): LIME.

(F): Ours.

vessels (Figure 4B). The enhanced image using the fusion-based
method is not sufficiently clear and seems to be shrouded in fog
(Figure 4C). The MSRCP algorithm over-enhanced the image,
resulting in exposure at the bottom edge. The blood vessels
are bright red, and the optic disc area is blurred (Figure 4D).
The LIME method does not effectively improve the clarity and
produces noise at the boundary between the foreground and
the background (Figure 4E). Our algorithm improves the visual
resolution of retinal images and maintains the original structure
of the blood vessels (Figure 4F). The clear boundary between the
optic cup and optic disc is convenient for pathological analysis by
ophthalmologists and CAD systems.

Figure 5 shows the enhancement results of different
algorithms on low-illumination retinal images. Figure 5B

appears green overall, which is inconsistent with the natural
condition of the retina. The overall brightness of Figures 5C–E
is improved; however, eyelash artifacts obscure the lower half
of the image. In addition, exposure occurs around the optic
disc in Figure 5D, and the left edge of the optic disc cannot be
observed. In contrast, our algorithm (Figure 5F) significantly
improves image brightness and contrast. The image enhanced by
our algorithm eliminates eyelash artifacts and enables the clear
display of blood vessels, the optic disc, and macula.

Figure 6 shows the high-illumination retinal image and
the enhancement results achieved by different methods. The
image enhanced by CLAHE shows pink around the image and
the macula, which is the darker area of the original image
(Figure 6B). The brightness and contrast of the images enhanced
by fusion-based (Figure 6C) and MSRCP (Figure 6D) methods
have not been improved, and there seems to be no enhancement
compared with the original image. This indicates that these two
methods cannot enhance high-light retinal images. The LIME
method excessively restores the color of the image, and the high
saturation masks the color information of the original image
(Figure 6E). Our method (Figure 6F) restores the blood vessels
in red while retaining the color saturation of an original image,
which is closer to the real situation of the retina.

Figure 7 shows the uneven-illumination retinal image and
enhancement results obtained by different methods. The CLAHE
method improves the contrast of the original image; however,
the visibility in low light remains low (Figure 7B). The fusion-
based method improves the overall brightness of the image;
however, the visual resolution of the enhanced image is poor
(Figure 7C). In the MSRCP-enhanced image, blood vessels in
low-light areas appear black, and blood vessels in high-light
areas appear red (Figure 7D). The color of retinal blood vessels
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FIGURE 6 | High-illumination retinal image and enhancement results of different methods. (A): Original image. (B): CLAHE. (C): Fusion-based. (D): MSRCP. (E): LIME.

(F): Ours.

changes which is not consistent with the real retina. The LIME
method generates noise at the junction of the foreground and
background (Figure 7E). Our algorithm (Figure 7F) improves
the overall brightness and contrast of the image and maximizes
the clarity of thin blood vessels.

Figure 8 shows the color-distorted retinal image and the
enhancement results obtained by different methods. The original
image (Figure 8A) has a whitish tone, which does not match
the red of the real retina. (Figures 8B–E) adjusts the brightness
or contrast; however, none of them improve the color tone of
the original image. Among them, MSRCP (Figure 8D) causes
overexposure due to excessive brightness enhancement. The
images enhanced by our method (Figure 8F) show red tones,
which are closer to the real retinal situation. Our algorithm
restores color information with high color saturation, where
other algorithms fail.

3.2. Comparison Results Between
CycleGAN and Cycle-CBAM
To verify the effectiveness of the CBAM module, we compare
the enhancement results of CycleGAN (without CBAM) and
Cycle-CBAM (our method) (Figure 9). The first row shows
the CycleGAN-enhanced images with zoomed-in views of

selected regions (white rectangles). The second row depicts the
corresponding images enhanced by Cycle-CBAM. The selected
areas mark the ends of blood vessels (the first two columns)
or the optic disc (the last two columns). The CycleGAN-
enhanced blood vessels (Figures 9A,B) are not distinguishable
and fractured, making it difficult for the ophthalmologist to
observe the morphology of the endings. At the same position
in the same image, the blood vessels enhanced by Cycle-CBAM
(Figures 9E,F) are coherent and have clear textures. The optic
disc has dense blood vessels and is where the main blood
vessels are in confluence. In Figures 9C,D, blood vessels are
disconnected at the edge of the optic disc, which does not
conform to the continuity of the blood vessels. The intersection of
vessels is blurred and cannot be diagnosed. In Figures 9G,H, the
edges of the optic disc are easily distinguishable, and the blood
vessels are coherent and clear. Cycle-CBAM enhanced images
have reddish colors and high saturation.

3.3. Quantitative Analysis Results
Quantitative analysis is carried out using non-reference and full-
reference image quality assessment. For non-reference metrics,
Blind/Referenceless image spatial quality evaluator (BRISQUE)
(43) and HUE are used to evaluate the enhanced images of
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FIGURE 7 | Uneven-illumination retinal image and enhancement by different methods. (A): Original image. (B): CLAHE. (C): Fusion-based. (D): MSRCP. (E): LIME.

(F): Ours.

100 retinal images in the test set by different methods. Brisque
is an image quality assessment metric, and HUE adopts the
HSV color space. Table 2 shows the quantitative evaluation
results of non-reference metrics. BRISQUE and HUE scores are
obtained for each image, and the average value is taken as the
final score of 100 images. Subsequently, statistical significance
tests were performed on the BRISQUE and HUE scores. Our
approach achieved the highest BRISQUE score, which indicates
a superior image quality. The image quality enhanced by our
method is balanced with an SD of 0.1006 and an SE of 0.0071.
In the box-plot (Figure 10), the distribution of image scores
enhanced by our method is concentrated, and the median
(green line) is higher than that of other methods, which is
consistent with the results presented in Table 2. The MSRCP
algorithm has the most concentrated scores; however, it has
a large number of outliers (the circles in Figure 10). In the
unpaired Student’s t-test, a p-value larger than 0.05 indicates
that there is no significant difference between enhanced images
and original images. The p-values of the CLAHE, Fusion-
based, CycleGAN, and Cycle-CBAM are 0.8561, 0.1703, 0.8198,
and 0.3505, respectively, which do not differ significantly from
the original images. In contrast to traditional algorithms, the
proposed deep learning algorithm can retain pixel-level details.

Cycle-CBAM also achieved the highest HUE score, which means
it has the best color information. In Figure 11, our upper and
lower quartiles (the upper and lower edges of the box) are higher
than those in other algorithms, and the data distribution is
concentrated. For the Kolmogorov–Smirnov test, the hue scores
follow a normal distribution. The SD and SE of Cycle-CBAM
are 3.9964 and 0.2826, respectively, both of which are lower
than those of traditional algorithms. In the unpaired Student’s t-
test, the p-values of CLAHE and Cycle-CBAM are close to zero,
indicating that the hue of the enhanced image significantly differs
from that of the original.

Peak signal to noise ratio (PSNR) (44) and structural similarity
(SSIM) (45) are commonly used full-reference metrics for
evaluating images. In our study, these two metrics are used to
evaluate the cataract images of the proprietary dataset (Table 3).
The high-quality image taken in the same position after the
operation is taken as the ground truth. The larger the PSNR, the
smaller the image distortion, whereas a larger SSIM indicates a
higher image similarity. Our method obtains optimal values in
both the metrics, indicating that the enhanced image exhibits
the least distortion and best preservation of the structure of the
original image. It takes an average of 35 ms to enhance each
image, which is faster than traditional algorithms.
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FIGURE 8 | Color-distorted retinal image and enhancement results of different methods. (A): Original image. (B): CLAHE. (C): Fusion-based. (D): MSRCP. (E): LIME.

(F): Ours.

The enhancement of retinal images serves to assist
doctors in pathological analysis. Therefore, the quality of
the enhanced images was evaluated by three ophthalmologists.
The ophthalmologists determined the quality of the enhanced
images as follows: the main structures and lesion areas of the
original images were not lost, added, or changed, and were
clearly visible. Each of the 100 images in the test set corresponds
to six enhancement results. Each ophthalmologist independently
voted for the best enhanced image. Each doctor held 100 votes;
hence, the three doctors held a total of 300 votes. The votes of
the three ophthalmologists were accumulated to obtain the final
votes for the six methods (Table 4). The result shows that our
method obtained 61% of the votes, which is significantly higher
than the other five methods.

We also applied these images to the deep learning model
Multiple Color-Space Fusion Network (MCF-Net) (46) for
quality assessment. The model integrates RGB, HSV, and Lab
color spaces to categorize the quality of retinal images into
good, usable, and reject. Retinal images with clear features of
retinopathy are classified as good. Images that are not of good
quality but have clear primary structures, such as blood vessels,
macula, and optic disc, are sorted as usable. Images that are
so poor in quality that cannot be used by ophthalmologists

for diagnosis are classified as reject. Table 5 shows the results
of quality assessment of retinal images enhanced by different
methods. The good, usable, and reject categories of the original
images are 0%, 34%, and 66%, respectively. Compared with the
other five image enhancement methods, Cycle-CBAM method
is the best, with the largest number of good images and the
least number of reject images. For the images enhanced by
traditional methods, there are less than 10% good images, while
the reject grade still accounts for more than half. However,
of the images enhanced by the proposed method, 57% were
classified as good and the number of reject images reduced from
66 to 12%.

3.4. Results of Retinal Vessel
Segmentation Application
Retinal vessel segmentation is crucial for the screening of eye
diseases. To verify the effectiveness of image enhancement,
we applied the enhanced retinal images to the retinal vessel
segmentation task. Figure 12A shows the low-illumination
retinal image, where only a few large vessels were recognized with
short vessel lines (Figure 12B). Images enhanced by CycleGAN
(Figure 12G) and Cycle-CBAM (Figure 12H) can be segmented
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FIGURE 9 | Visual comparison of enhancement results of CycleGAN and Cycle-CBAM on retinal images. (A–D): Enhanced by CycleGAN. (E–H): Enhanced by

Cycle-CBAM.

TABLE 2 | Evaluation results of non-reference metrics.

Metrics CLAHE Fusion-based MSRCP LIME CycleGAN Cycle-CBAM

BRISQUE

score 0.5699 0.5549 0.5120 0.4772 0.5696 0.5836

SD 0.1095 0.1065 0.0879 0.1624 0.0946 0.1006

SE 0.0077 0.0075 0.0062 0.0115 0.0067 0.0071

p 0.8561 0.1703 0.0000 0.0000 0.8198 0.3505

HUE

score 86.2863 99.4257 99.9469 98.0184 105.5443 106.9730

SD 7.2309 7.0586 7.2729 8.0034 3.5790 3.9964

SE 0.5113 0.4991 0.5143 0.5659 0.2531 0.2826

p 0.0000 0.5121 0.8868 0.0573 0.0000 0.0000

into complete blood vessels. In Figure 12G, there are some
messy thin blood vessels, which are not continuous. This may
be caused by the misidentification of noise in the enhanced
image. Figure 12H can accurately segment the thick and thin
blood vessels. The veins are coherent and can reveal the true
structure of blood vessels. Figure 13 demonstrates the results
of retinal vessel segmentation of blurred image and images
enhanced by different methods. Figure 13B shows only the

main blood vessels, which can also be easily identified by the
naked eye in Figure 13A. The results of the enhanced images
(Figures 13C–G) show more blood vessels, but the segmentation
of small vessels is insufficient. By comparing the red boxes
at the same position in each subgraph, only the proposed
method (Figure 13H) can clearly display the complete vessel
structure and show the small vessels in the red box, which
indicates the successful application of the proposed method
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FIGURE 10 | Box-plot of Blind/Referenceless image spatial quality evaluator (BRISQUE).

FIGURE 11 | Box-plot of HUE.

TABLE 3 | Evaluation results of full-reference metrics.

Metrics CLAHE Fusion-based MSRCP LIME CycleGAN Cycle-CBAM

PSNR 19.0088 17.5748 11.5473 21.2084 22.4953 24.7386

SSIM 0.5920 0.7693 0.6452 0.7762 0.7643 0.8103

Time (ms) 40 4820 1010 1302 35 35

in retinal vessel segmentation and the effectiveness of our
enhancement method.

Table 6 lists the accuracy of vessel segmentation when
images enhanced by different methods were applied. High-
quality represents the high quality of the original images of

the datasets, and low-quality represents the low-quality of
the retinal images generated by Cycle-CBAM. We trained
the network independently using the DRIVE, STARE, and
CHASEDB1 datasets. Compared with the other enhancement
methods, the proposed algorithm achieved the highest accuracy
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TABLE 4 | Subjective evaluation by ophthalmologists.

Method CLAHE Fusion-based MSRCP LIME CycleGAN Cycle-CBAM

vote 0 20 14 19 64 183

proportion 0 6.67% 4.67% 6.33% 21.33% 61%

TABLE 5 | Quality assessment by Multiple Color-Space Fusion Network (MCF-Net).

Method Original CLAHE Fusion-based MSRCP LIME CycleGAN Cycle-CBAM

Good (%) 0 3 7 6 7 45 57

Usable (%) 34 44 41 20 42 38 31

Reject (%) 66 53 52 74 51 17 12

FIGURE 12 | Results of retinal vessel segmentation in the low-illumination and enhanced images by different methods. (A): Low-illumination image. (B): Segmentation

result of the low-illumination image. (C–H): Segmentation results of images enhanced by different methods. [(C): CLAHE. (D): Fusion-based. (E): MSRCP. (F): LIME.

(G): CycleGAN. (H): Ours].

on all the datasets, and the accuracy values were 0.9612,
0.9649, and 0.9669, respectively. The accuracy was even higher
on the STARE and CHADEDB1 datasets compared to the
original high-quality images (the ones in bold denote the
best values).

4. DISCUSSION

Color retinal images are the most commonly used imaging
data for screening and diagnosing ophthalmic diseases, and
they are usually captured using fundus cameras. Because of
factors such as exposure discomfort, equipment parameter
setting errors, improper operation, and varying medical
staff experience during the image acquisition process,
there are many low-quality retinal images in the current

retinal image database. Retinal image enhancement can
improve the quality of the retinal image database and
be used to train high-quality diagnostic models. It can
also improve the quality of retinal images collected in
ophthalmology clinics for artificial intelligence analysis and
clinical diagnosis.

Our literature review indicates that learning-based methods
have been barely explored for the enhancement of retinal images.
In this study, a deep learning method was used to enhance
various types of low-quality retinal images to improve their
quality. Similar to the public dataset, the dataset used in this
study contains retinal images taken before and after cataract
surgery collected from the clinical work of the research team.
This study found that CLAHE improves the overall contrast of
the image; however, it thickens the blood vessels. Changes in the
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FIGURE 13 | Results of retinal vessel segmentation in the blurred and enhanced images by different methods. (A): Blurred image. (B): Segmentation result of the

blurred image. (C–H): Segmentation results of images enhanced by different methods. [(C): CLAHE. (D): Fusion-based. (E): MSRCP. (F): LIME. (G): CycleGAN.

(H): Ours].

TABLE 6 | Accuracy of retinal vessel segmentation on public datasets.

Database DRIVE STARE CHASEDB1

High-quality 0.9624 0.9560 0.9631

Low-quality 0.9327 0.9419 0.9501

CLAHE 0.9516 0.9455 0.9578

Fusion-based 0.9580 0.9521 0.9618

MSRCP 0.9431 0.9500 0.9573

LIME 0.9568 0.9489 0.9591

CycleGAN 0.9455 0.9476 0.9575

Cycle-CBAM 0.9612 0.9649 0.9669

The bold values denote the best values.

original shape of blood vessels may lead to undesirable results
in the CAD system. The CLAHE method showed significant
differences in the HUEmetric from the original image, but visual
analysis showed that these differences are caused by the excessive
increase of gray information. These images did not receive the
votes of fundus doctors in the voting experiment. The p-value
of the fusion-based method in the BRISQUE is larger than 0.05
(p = 0.1703), which is significantly different from the original
image. However, fusion-based and MSRCP methods improve
the image quality by adjusting the illumination, whereas they
cannot enhance blurred and high-illumination retinal images.
LIME has good enhancement results for uneven-illumination
images; however, it produces noise at the junction of foreground
and background, which will interfere with the CAD system
diagnosis of diseases. Traditional methods cannot restore the

color of the images. Our method even succeeds in enhancing
the color distortion of retinal images. Figure 9 shows that the
introduction of the CBAM module enables the network to have
stronger feature extraction capabilities and improves the ability
to enhance details, such as tiny blood vessels and optic discs.
The extraction of color is also significantly improved, which
is crucial for color retinal images. The images enhanced by
the proposed method can be segmented into complete blood
vessels, exhibiting good performance in the task of segmentation
(Figures 12, 13).

5. CONCLUSION

This study adopts cycle-constraint adversarial network
CycleGAN to realize retinal image enhancement. To improve
feature extraction and detail representation, CBAM is
embedded in the main architecture. This method breaks
through the limitation of current image enhancement
algorithms, which only succeed at enhancing a single type
of low-quality retinal image. Our deep learning method
overcomes the shortcomings of traditional methods, such
as color distortion and complex calculations. The proposed
method does not require paired images and addresses the
problem of finding a large number of paired low/high-
quality retinal images. In future studies, we aim to collect
more types of retinal images in clinics and attempt to repair
defects, such as bright spots and eyelash artifacts. We plan
to integrate the retinal image enhancement network with the
classification network to build an end-to-end fundus disease
diagnosis system.
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