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Respiratory sound (RS) attributes and their analyses structure a fundamental piece of

pneumonic pathology, and it gives symptomatic data regarding a patient’s lung. A couple

of decades back, doctors depended on their hearing to distinguish symptomatic signs

in lung audios by utilizing the typical stethoscope, which is usually considered a cheap

and secure method for examining the patients. Lung disease is the third most ordinary

cause of death worldwide, so; it is essential to classify the RS abnormality accurately to

overcome the death rate. In this research, we have applied Fourier analysis for the visual

inspection of abnormal respiratory sounds. Spectrum analysis was done through Artificial

Noise Addition (ANA) in conjunction with different deep convolutional neural networks

(CNN) to classify the seven abnormal respiratory sounds—both continuous (CAS) and

discontinuous (DAS). The proposed framework contains an adaptive mechanism of

adding a similar type of noise to unhealthy respiratory sounds. ANA makes sound

features enough reach to be identified more accurately than the respiratory sounds

without ANA. The obtained results using the proposed framework are superior to previous

techniques since we simultaneously considered the seven different abnormal respiratory

sound classes.

Keywords: respiratory sounds, abnormal respiratory sounds, continuous adventitious sounds (CAS),

discontinuous adventitious sounds (DAS), deep CNN

1. INTRODUCTION

Respiratory sound (RS) attributes and their analyses structure a fundamental piece of pneumonic
pathology such as COVID-19 pneumonia, and it gives symptomatic data about a patient’s lung.
Lung sound is produced when air flows during the process of respiration. A couple of decades
back, doctors depended on their hearing to distinguish symptomatic signs in lung audios through
utilizing the standard stethoscope equipment. The typical stethoscope is usually considered a cheap
and secure method for examining the patients, other than setting aside less effort required for the
conclusion. Furthermore, it gives much data about the respiratory organ and the indications of the
sicknesses that influence it (1, 2).

Later on, the auscultation by stethoscope is whimsical because it relies upon the doctor’s
capacity and the low affectability of the human ear hearing. However, non-stationary signs are
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hard to examine and challenging to recognize if not done by
a well-prepared doctor; this may prompt wrong analysis. As of
late, with the guide of electronic stethoscopes combined with
pattern recognition and artificial intelligence, the mechanized
respiratory sound examination has drawn much consideration
since it conquers the confinements of normal auscultation and
gives an effective technique to clinical conclusion (3). Machine
Learning (4) and Deep learning approaches play an essential role
in health care (5) and industrial applications (6, 7) for prediction
and optimization.

1.1. Types of Respiratory Sounds
Since the classification criteria for respiratory sounds was defined
in the 10th International Lung Sounds Association (ILSA)
Conference, the respiratory audios classification step by step
has become the focal point of audio respiratory examination.
Respiratory sounds are partitioned into two different categories
(normal and abnormal).

Normal respiratory sounds are those when a patient has no
respiratory issue. Meanwhile, unordinary sounds when a patient
is suffering from respiratory problems (8). As we talk about their
further subtypes, they have “tracheal,” “bronchial,” and “broncho-
vesicular” sounds. Audio of normal respiration is described
through a commotion in the process of inspiration. Scarcely
discernible clamor is in the process of termination/ expiration.
In rough artery like “tracheal,” ordinary audios of respiration
described through wide range noise, for example, the clamor has
multiple parts of higher-frequency, these are capable of being
heard in the process of inspiratory and expiratory period (1).

On the other hand, the second category of respiratory sounds
is abnormal respiratory sound. They are different from the first
one based on their natural and unique patterns in their behaviors.
They appear when the patient has some respiratory issue and
suffering from respiratory problem (8).

1.2. Subclasses of Abnormal Respiratory
Sounds
Abnormal sounds are unwanted respiratory sounds that are
excessively forced on ordinary breath sounds. Abnormal sounds
have low power or strength during respiration. These sounds
are classified based on some factors that help in the detection of
each class separately. Unusual sounds are broadly categorized as
continuous and discontinuous sounds, and that discrimination
is due to the variance in their duration of occurrence while
breathing (9). Continuous Adventitious Sounds are fallen in
the category of unusual sounds, most of the time having 250
ms, but it is not valid for all the CAS, e.g., rhonchi. Based
on the pitch, these sounds are classified as high pitch (Wheeze
and Stridor)and low pitch (Rhonchi and Squawk) sound. On
the other hand, Discontinuous Adventitious Sounds also fall in
abnormal sounds, just like CAS. DAS is<25ms in duration and is
further categorized as fine crackle, coarse crackle, and pleural rub.

1.2.1. Wheeze

Wheezes are sharp, regular, and constant extrinsic audios having
a pitch with a minimum of 400 Hz. They are usually caused
by airway narrowing, which then causes an airflow limitation.

Wheeze sounds do not necessarily have durations of more than
250 ms. Some have reported that Wheeze can have minimum
durations of around 80–100 ms (10). Diseases associated with
Wheeze are asthma and COPD. If the Wheeze is localized, it
may be caused by a foreign body blocking the airway, like a
tumor (11).

1.2.2. Rhonchi

Rhonchi are low pitched and musical sounds of unusual RS.
Rhonchi encountered continuous adventitious sounds, and they
can be heard during the inspiration phase, mainly in expiration,
or during both phases of respiration (8). They described a
predominant frequency range of around 200 Hz with durations
of around 80–100 and usually nonstop in nature. Rhonchi are
observed on both phases (inspiration and expiration) and caused
by airway thickness in large section (12).

1.2.3. Stridor

Stridorsounds are classified as hilarious inspiratory sounds, and
it is a type of CAS. Stridor sounds are produced in the larynx
or bronchial tree by turbulent airflow and are similar to airway
obstruction (upper). They have their presence at the inspiration
phase due to narrowing the upper airway, and it can be heard
on expiration or even in both phases. Stridor has a pitch of more
than 500Hz and a duration ofmore than 250ms. They are usually
louder and harsher than wheeze sounds. The diseases associated
with Stridor are epiglottitis, croup, and laryngeal edema because
every disease is related to airway obstruction (13).

1.2.4. Squawk

Squawk sounds to DAS usually have short durations and are
hearable at the phase of inspiration. These sounds are low in
pitch (like wheezing sounds), and their frequency ranges from
200 to 300 Hz (8). Squawk observed when patient suffering
from hypersensitive pneumonia or common pneumonia (14).
Fine Crackle: Crackle sounds are the dangerous extrinsic sound
of respiration. Crackles are irregular in their behavior patterns,
described by explicit waveform, span, and position of sounds
in the respiratory cycle. Crackles have two attributes and are
portrayed through their span as “fine pops/ crackle” and “coarse
pops.” Explosive openings of the small airways cause fine crackle
sounds. They have a little span (around 5 ms) with high
frequencies (650 Hz). Fine crackles can be heard on the phase
of inspiration. They usually cause the diseases like pneumonia,
congestive heart failure, and lung fibrosis (12).

1.2.5. Coarse Crackle

Air bubbles generate coarse crackle sounds in large bronchi.
The Coarsesounds are audible when inspiration is in its early
phase/stage and hearable at the expiration phase. “Coarse pops/
crackle” are low pitch, around 350 Hz, and have a long span
(about 15 ms). Coarse crackle sounds can be heard in patients
with chronic bronchitis, bronchiectasis, as well as COPD (15).

1.2.6. Pleural Rub

Pleural rub is non-rhythmic and encounters in the category
of DAS. When pleural aggravated surfaces rub each other in
breathing, then “pleural rub” audio produced has a low pitch,
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generally below 350 Hz, and only appears for 15 ms. The PR
sounds are produced by the friction and audible during both
phases of expiration and inspiration. The pleural rub is usually
caused by inflammation of the pleural membrane, and it can also
cause pleural tumor (8).

In the field of bioinformatics, respiratory sounds classification
(RSC) has become the center of attention. Researchers worked
in the past and still working on RSC (normal and abnormal)
to get precise results. As research goes on and on, researchers
face many difficulties in RS classification. As we talk about RS’s
previous classification research outcomes, the main concern was
the misclassification of RS (specifically between the subclasses of
adventitious RS). This was because they were not distinguishing
the sounds with minor variance (change) in their behavioral
patterns and did not encounter all abnormal respiratory sounds
simultaneously. The study’s goal was muddling the functions of
examination/ analysis and discrimination of ARS (those sounds
showing minor differences in their frequencies and period)
toward the appropriate classification of respiratory sound.

Respiratory sound examination/classification is a vital part
of the Auscultation process. Doctors perform the auscultation
process through typical techniques, leading them to wrong
decisions due to the different dependencies. Research tells us that
lung disease is the third most ordinary cause of death worldwide,
so it is essential to classify the RS abnormality in an authentic way
to overcome the death rate.

The proposed methodology based on Artificial Noise
Addition technique (ANA) is used to enhance the features of
ARS and helps in feature extraction through feature maps.
Furthermore, “ANA” aid in differentiating the subclasses of
abnormal/adventitious sounds more accurately. As far as we
classified ARS using “ANA” phenomena, classification results
boost, which ultimately smooth the doctor’s progress flawlessly to
carry out the auscultation process. It will support consultants in
the auscultation process to identify the disorders or abnormalities
related to the human respiratory system. When the doctors
identify the disorder in the particular RS, they will diagnose
the associated diseases caused by these sound abnormalities
and prescribe the best treatment to a patient suffering from
the syndrome.

The first thing is to focus on the number of classes of
ARS. As per our knowledge, no such work with several lung
sounds has been done so far; previous researchers classified
few abnormal respiratory sounds, most common in patients’
lungs that ultimately cause abnormality in them. So, we have
incorporated the seven different classes of respiratory (lungs)
sounds in our designed framework for the sake of classification.

The proposed framework based on the spectrogram of each
respiratory sound by applying the Fourier transformation for
the relative spectrogram of sound. Contribution for further
enhancement after getting the required spectrograms, the
framework makes the wave spectrogram more strengthen
and clear through adding some artificial noise of the exact
spectral nature. This process serves as constructive interference
to augment/enhance the actual spectrogram of sounds. An
“Artificial noise addition (ANA)” phenomenon helps prominent
the pattern and aids feature extraction; make it more accessible

and fair. “ANA” does not mean that any traditional background
noise. Finally, feature extraction is done through feature
maps on spectral data and different classifiers (VGG, ResNet,
InceptionNet, and AlexNet) used for classification purposes.

The rest of our manuscript is organized as follows: related
work is discussed in section 2. Section 3 describes the complete
overview of the applied framework and the steps involved in
its deployment. Experimental setup and results are discussed in
section 4, while the conclusion and recommendations have been
discussed in section 5.

2. RELATED WORK

For normal and abnormal respiratory sound classification real-
world dataset is designed to automate the process. By taking
advantage of previous studies, researchers used “spectral” and
“wavelet” techniques for feature extraction without enhancing
the features of a particular sound (2). “Convolutional neural
networks CNN,” “HiddenMarkovModels HMM,” and “Gaussian
Mixture Models GMM” were collaborated for decision level.
Such a scheme could support the classification precision
and outperform to distinguish respiratory sound with 66.7%
precision. Other subclasses of respiratory sounds were not
engaged, i.e., St, Sq, and Rh (16). As research tells us that lung
disease is the third most ordinary cause of death worldwide, so
it is important to classify the RS abnormality in a true way to
overcome the death rate. Short-Time Fourier Transform (STFT)
was used for feature extraction, and two other deep learning
methods were used for classification from spectrogram after
feature extraction. ICBHI database was put into consideration
with different frequencies and noise. Two approaches were
applied; the first used deep CNN for feature extraction and
SVM for classification, whereas the second used a spectrogram.
65.5 and 63.09%, accuracies were recorded for first and second
method respectively (17).

Chronic Obstructive Pulmonary Disease (COPD) and usual
sound classification depend upon respiratory audios using
different machine learning approaches. Twenty-five normal and
thirty COPD sounds are collected and analyzed. Thirty-one
features of audios were extracted and evaluated.COPD breath
audios are categorized by using “Support vectormachine (SVM),”
“k-nearest neighbor (KNN),” “logistic regression (LR),” “decision
tree,” and “discriminant analysis (DA)” algorithms. After the
study’s evaluation results, the linear predictive coefficient and
median frequency are best for classification tasks with an
accuracy of almost 100%—the feature extraction process done
without making them more strengthen. The multi-centered
dataset can reduce the accuracy rate if encountered. Although
they got the highest accuracy in terms of classification, this
approach only classifies “normal” and “COPD” objects in RS.
Other subclasses/subtypes of abnormal respiratory sounds were
not considered, i.e., wheeze and crackle (18). When we look
upon the medical diagnostic solutions for abnormalities, it took
a lot of time and cost; a cheap solution was proposed. Patient
internal sounds were recorded by Stethoscope, lungs, and heart
sounds. These readings proved much and more significant to
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assist the physicians. They determine the disease of the patient’s
lungs based on tagged audios through ML algorithms; through
NN, they achieved the highest accuracy was 77.8%.However, only
three types of sounds are considered (e.g., wheeze, bronchia).
Other abnormal RS classes were not identified, and also accuracy
can be affected due to the nature and size of the dataset, and
multiple point classification is better to use (19).

A semi-supervised approach based on the graph is “one-
class support vector machine (OCSVM),” which indicates the
relationship between the entire sample and describes normal and
abnormal lung sound (LS). “OCSVM” used a minimal amount
of labeled samples for training purposes and tested the approach
with a large number of unlabeled samples for testing purposes
with an Accuracy of 60–80% by increasing the NL’s. If a fair
dataset is processed with this method, accuracy will decrease
gradually because it supports artificial datasets. “OCSVM” was
a detection technique for some classes of abnormal RS and
was only suitable for the identification of ordinary, crackle, and
wheeze sounds. The classification was not performed, and also, it
had not encountered the other sounds, e.g., Stridor, Rhonchi, and
squawk (20). Another method for LS classification introduced
named “Multilevel Wavelet Packet Entropy (MWPE)” uses
many entropy measurements. “MWPE” was a combination of
two existing “Renyi” and “Tsallis” entropy. Feature extraction
was done without making them more prominent. “MWPE”
gained 97.98% accuracy during the classification of RS when
decomposition levels are four (4) by using Shannon, whereas
“MWPE” includes “Renyi entropy” and “Tsallis entropy” gained
93.94%, 57.58% accuracy, respectively. Five classes of RS were
countered, i.e., normal, wheeze, crackle, stridor, and squawk.
Discontinuous abnormal respiratory sound includes fine crackle,
and coarse crackle was not considered (21).

In 2019, a Cancer diagnosis in its early growth stage
was made with a 0.0212 error rate that assumed the least
rate and 99.48% predictive rate recorded by applying soft
Neural computing techniques like “Discrete AdaBoost optimized
ensemble learning generalized neural networks.” Data were
taken from the “ELVIRA” source, mixed with noise and
other anomalies. Removal of noise and anomalies were done
with the help of the normalizing smoothing technique. After
preprocessing, feature selection and dimension reduction to
reduce the complexity of data were made through the Wolf
heuristic features technique. When it considers howmany classes
were successfully detected by “Discrete AdaBoost,” it only detects
the normality and abnormality of a particular sound. The
main focus of the “Discrete AdaBoost” was the detection of
abnormality regardless of classification. Furthermore, subclasses
of abnormal RS were not encountered. An optimized approach
for capturing the data can have better outcomes if used in
the future (22). A study was conducted in 2019 to find out
the environmental factors that impact human health in many
ways. Multiple types of data sources were involved, includes
images of individuals and the information related to the social
activities within a particular environment. Multiple techniques
were introduced and texted to check the impact of environmental
factors on human health. After characterizing many spatially
correlated with deep convolutional neural networks, Deep CNN

has a strong effect on the human health of an individual. Deep
CNN has more potential to do a better job (23). A review was
conducted to check the multiple techniques for extracting the
feature and classifying respiratory sounds. They discuss NN,
ANN, CNN, KNN, and many other algorithms for abnormal RS
analysis. In the end, it has been stated that the “CNN” consider as
the latest approach for implication (24).

Fifty to two-hundred Hz is the fundamental frequency range
found for features that are inputted by “Hidden Markov models
(HMM)” and “Gaussian mixture models (GMM)” when they are
joined together in a hybrid form. 39.56 ranking gain from spectral
subtraction for unwanted sounds (noise) removal from multiple
sounds directories in preprocessing. Features are extracted by
removing noise without making them dense or strengthen. They
direct the researcher to work on advanced noise suppression
techniques that will improve the overall score. As it has cleared
that the researcher did not encounter the further subclasses of
abnormal RS, i.e., stridor, squawk, pleural rub, and rhonchi,
only wheeze and undefined crackles (mixed fine and coarse
crackle sounds) were considered (25). The feature extraction (FE)
technique was introduced in 2018 when researchers altered the
traditional Grey Level Difference Matrix (GLDM) in a new form.
Texture analysis (TA) mixed with “GLDM.” Texture analysis
was done using signal ID or the value of a particular pixel.
Performance checked through multilayer perceptron (MLP) in
combination with SVM. 94.9% accuracy was recorded at sample
distance d= 10.When the researcher used five features, “GLDM”
and “cubic SVM.” Taking a look at several classes that were
considered in research was normal, wheeze, faint crackle, and
stridor, other sound classes like squawk, fine crackle, coarse
crackle, and rhonchi were not involved (26). The respiratory
sound classification was done in the presence of multiple types
of noise (includes 3–4 classes, e.g., speaking, coughing, heart
sounds, and many more). An algorithm was proposed for
feature extraction, and that was a fresh nonlinear approach
for better representation and discrimination of RS. Later on,
49.86% accuracy was recorded when applied to classify the
multiple RS sounds having a variety of noise in them, as
mentioned above. However, here is an issue, only four classes
(normal, wheeze and crackles, and crackle plus wheeze) are
considered, and the noise in sounds may confuse its nature
with crackle sounds as well as the other abnormal RS classes
were not considered, i.e., stridor, squawk, pleural rub, and
rhonchi (27).

When researchers examined the asthmatic patients through
ENS, SVM, and Spectral integrated (SI) features, they categorized
patients based on their illness degree (first stage, moderate
stage, or last stage). Fifty-five patient samples were taken for
examination, and multiple Statistical analyses were performed
to check the different patterns/manners of features with
relentlessness stage of different groups. Overall best results gained
by these methods for the first, moderate, and the last stage were
95, 88, and 90%, respectively. Still, that method identifies only
the wheezing sounds (not other abnormal RS subclasses) and
lacks focus on better representation of patterns, e.g., frequency
and phase (28). An Overview of deep learning was done for
radiology for disease detection, classification, quantification,
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and segmentation. Radiology is an intrinsically information-
driven approach. It is beneficial for using information handling
strategies. In this work, the Association of University Radiologists
Radiology Research Alliance Task Force on Deep Learning
reviews deep learning to the radiologist. The article introduces a
review of deep learning in an understandable way to radiologists
to analyze past, present, and future applications, just as to assess
how radiologists may profit from this new tool. These researches
portray a few regions inside radiology wherein deep learning
methods have the most critical effect: malady recognition,
classification, evaluation, and division (29).

COPD is a respiratory illness that is caused by smoking.
Respiratory Database @TR was used to analyze the “COPD”
patients. The second Order difference plot (SODP) method
was introduced for analysis. Performance gain recorded 95.84%
(accuracy), 93.34% (sensitivity), and 93.65% (specificity)
when “Second-Order difference plot (SODP)” designed for
examination levels of COPD sounds. Overall gain is high
because SOPD is based on many factors related to sound’s
three-dimensional quantization. Deep belief networks (DBN)
were used for classification and training purposes (30). Three
approaches (Approach 1: KNN, SVM, and GMD, Approach
2: local binary pattern (LBP), and Approach 3: CNN designs)
perform the critical task of analysis, recognition, and distinction
of LS with 95.50% accuracy. The highest numbers of adventitious
respiratory sounds classes were used in that method till now.
Wheeze, fine crackle, coarse crackle, stridor, and squawk were
involved; only pleural rub was compromised and not countered.
However, the fact is, the researcher used a dataset of 7–8
sounds/recordings to classify the sounds, which is very small
from a research perspective. More consideration is required
for better pattern recognition, and this may be done when we
involve spectrums of sounds and enhance their features through
adding artificial noise in them for further research (1).

Another problem is when a doctor/specialist sees the ECG
waves; there is the possibility of error in the vision of humans
(doctor itself) during reading because of the petite/short
wavelength, tiny span, and arbitrary/random phase shift of
ECG signals. Convolution networks were used and tried to
sort out the particular problem as mentioned above. Eventually,
two approaches were adopted with multiple different factors to
check the maximum accuracy rate of the problem. De-noising
was involved in checking the difference of accuracies between
noised and de-noised data. The first approach gained the 93.53%
accuracy rate when CNN was applied on data with noise and the
second one gained a 95.22% accuracy rate when ECG waves are
free of noise (31).

Researchers designed a low-cost stethoscope for examining
lung sounds and classify them into different classes. Two
algorithm approaches were used to classify LS (MFCC &
spectrogram). A method of “Mel Frequency Cepstral Coefficient
(MFCC),” with the help of an image spectrogram, classifies the
data of 17,930 sounds. The classification was the main objective
of this work. CNN and the traditional SVM algorithm classify
the four different breathing audio sounds. Normal, Rale, and
Rhonchi audios were classified with different precision results.
Other classes such as stridor, squawk, and pleural rub were

not considered. As we talk about results, “MFCC” gain results
in a range for four classes; first-class CNN 86%, SVM 86%,
second class CNN 76%, SVM 75%, third class CNN 80%, SVM
80%, and last class have CNN 62%, SVM 62% accuracy rate,
respectively (15). The machine learning approach was used in
the next research, and the researcher classifies the normal and
wheezing sounds from the data, which consist of 43 samples
of recordings. They got minimum samples to detect wheezes;
they did a data augmentation step on the sample for data
enlargement. WD CNN architecture used minimal steps and
took no time to preprocess the data to remove the anomalies.
It is also an insensitive method to shifting lung sound, and
noise observed externally from environmental factors. As a
result, automatic wheeze detection in lung sounds through CNN
Achieved an accuracy of 99%, but only Wheezing sounds are
detected here. Low pitched sounds are not detected through
this mechanism (32). For pulmonary issues detection, different
methods and techniques are used to analyze the spectrum of
RS. Fast Fourier Transform (FFT), AutoRegressive (AR), and
the AutoRegressive Moving Average (ARMA) were used for
calculating the densities of the spectrum of RS. Feature vectors
were given as input to ANN. Spectrum analysis performance
was recorded in classification accuracy (CA) as 85.67% for AR,
84.67% for ARMA, and 80.33% for FFT, but that accuracy is
only for limited data points new or large test data inputted, then
accuracy is not guaranteed. It only checks the normal and COPD
individuals, not identifying the other abnormal RS classes such as
wheeze, rhonchi, and stridor (33).

Lung sound classification is often done by applying the
technique of signal processing (SP). Multiple “SP” methods were
applied to RS/LS and classified them based on their nature and
behavior. “Multi-scale Hjorth descriptor (MHD)” was introduced
to classify RS in a particular class. “MHD” measured LS signal
complexity. Signal complexity and accuracy weremeasured based
on scale 1–5 and “Multi-scale Hjorth descriptor” measurements
took with 96.06% accuracy, but the accuracy will not improve
by enlarging the scale (34). Radiographs are usually very tiny
in size; used for reliable classification of different most relevant
images to medical science. Here the approach adapted where the
techniques in computer visions and deep learning were bridged.
It was a challenge for developers and researchers, which was
tackle through deep-CC. The researcher divided the dataset into
three groups for training, testing, and validation purposes. They
applied the data augmentation technique for data enlargement
as deep CC needs massive data for their processing. After
experimentation, Deep Convolution Network (DCN) gained
97.73% accuracy when it is integrated with different GoogleNet
and ImageNet (35). The following study examined the three
different classes of respiratory sounds and evaluated them based
on their distinctive nature and exclusive patterns. Experiments
were conducted on thirty (30) dataset items with the help of an
artificial neural network (ANN). “ANN” worked as a classifier
in experimentation. Mel-frequency Cepstral coefficients (MFCC)
pull out the statistical features from a dataset of RS. Further, the
attributes for impure lung sound were acknowledged. They have
discovered that their recently examined attributes were stronger
than existing ones and showed better precision. Every single
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class of adventitious RS was not occupied here. The considered
classes of RS were normal, wheeze, and faint crackle. CNN with
wavelet-based features and MFCCs classify the sound and got
an accuracy of 94.98, 97.83, and 97.6% for normal, wheeze, and
crackle, respectively (36).

Pattern recognition classifies LS through “Genetic Algorithm
(GA),” “Fisher’s Discriminant Ratio (FDR)” was used to
overcome the dimensionality of LS, and “Higher-order statistics
(HOS)” used for feature extraction in this research. “k-nearest
neighbor” algorithm used for pattern event recognition with
an accuracy of 94.6% invalidation. Pattern recognition can be
enhanced for more classes of respiratory sounds to improve
classification performance. Four classes such as “normal,” “coarse
crackle,” “fine crackle,” and “wheeze” were considered and
recognized whereas, St, Sq, Rh, and PR were omitted (37).
Identification of crackle in respiratory sound causes pulmonary
abnormalities in the human body. PC has a minimal period
and discontinuity, which usually appear at the inspiration
and expiration phases. Multiple entropies did detect these PC.
However, the “Tsallis entropy” was utilized as a feature extraction
technique and achieved 95.35% accuracy for pulmonary crackle
sound detection. The significant edge of using the Tsallis entropy
was that it produces fewer features, but it took a minute dataset.
Plus, it had not encountered all classes for abnormal sounds (just
functional for faint crackle sound) (38).

Rational Dilation Wavelet Transform (RDWT) Discriminate
the crackle, normal and wheeze sounds gained the accuracy of
95.17% for the total sound signal type. Q-factors were excluded
in this approach because they cannot cope with the oscillatory
signals (rapidly changing). Lung sounds were classified, and
the feature was extracted without enhancing them, and while
taking a look at several classes that were put in approach, were
only three as mentioned above. The approach was suitable for
high-pitched RS because low-pitch RS was not well-thought-
out and performance reduced due to superimposed (cover-up)
crackle and wheezes. So researchers still need a method and
more consideration to tackle the issue if they overlapped to each
other (39).

In 2015, automatic analysis of lung sound recordings
(captured through electronic gadgets) involves and classification
was done with the help of characteristics of LS signals.
Feature extraction was done on a tool named “MATLAB” and
classification through a combination of “artificial neural
networks (ANN)” with “neuro-fuzzy inference systems
(ANFIS).” The system successfully classified different RS/LS
and gave 98.6% of accuracy. Results can be enhanced if
correlation involves order, let alone the complexities in the
feature extraction process (40). Pulmonary chaos/issues
analysis based on auscultation to classify respiratory sound.
The classification was done on normal and continuous
RS includes Wh, Rh, St, and Sq. Discontinuous sounds
like FC, CC, and PR were not put into the study. Features
extraction was done on time-frequency based with an average
set of frequencies. Spectro-temporal features extraction
was used and got classification results for inspiratory
and expiratory parts separately though “Support Vector
Machine.” When SVM was applied on actual recordings, the

accuracy recorded for inspiration is 97.7% and for expiration
98.8% (41).

The main objective of this study was to detect pneumonia
inpatient which is already suffering in “COPD.” Almost 50
patients were examined in the study as an initial dataset. A hybrid
approach was adopted to detect contemporaneous pneumonia.
The approach was a combination of “principal component
analysis (PCA)” and “probabilistic neural networks (PNNs).”
Short-time Fourier transform (STFT) is used to extract features
from the dataset. Dimensions were reduced through “PCA”
and “PNN” used for training classifiers. Results show 72% of
sensitivity and 81.8% of specificity on cross-validation (42).
The empirical classification (EC) method was introduced for
respiratory sound analysis. Undefined normal and abnormal
respiratory sounds come across for classification purposes,
excluding their subclasses. The principle of multi-scaling was
applied for signal enhancement and helped feature extraction
while combined to imprison the inconsistency of sound signal.
The empirical classification was dependent upon the principle
of multi-scaling dimension reduction to boost the actual signal.
EC applied on 689 recorded segments and gained 98.34% for
classification (43).

In their research work, the researcher presented the “pattern
recognition (PR)” scheme for the classification of RS. As
a dataset, they took only normal and wheezing sounds for
classification. Post-pre-processing was applied to raw data to
enhance the process of classification. Feature extraction schemes
were evaluated and compared with each other includes FT, LP
coding, and MFCC. “GMM” with “ANN” was applied, and
they used a “threshold” value for differentiating the wheezing
sounds from normal ones. Their experiment results showed
better performance from previous work (44). Texture-based
classification named “LAC” was done on discontinuous sounds,
i.e., fine crackle, coarse crackle, and squawk, to capture the
changes in pulmonary acoustic, which is helpful in pathology.
De-noising was applied to remove the background noise effect
from discontinuous sounds. Four lung sound databases were
used in studies includes 25 cases with 365 sounds. LAC was
so simple because it introduced “texture” analysis for DAS. As
talk about results of this approach, three databases out of four
successfully classify the FC< CC and SQ. 100% accuracy for FC-
SQ, 99.62% accuracy for CC-SQ, and 99.77% accuracy for FC-
CC-SQ achieved, but only three classes were captured for “LAC”
texture-based classification (45).

The analysis was drawn for respiratory sounds RS to
check the ongoing RS methods and research. The researcher
reviewed different technological and therapeutic experiences.
The analysis involved a range of trends and techniques used
to gather respiratory sounds RS for involuntary recognition
gear development. Current tools are based on “fuzzy system
(FS),” “artificial intelligence (AI),” “genetic algorithms (GA),”
and “artificial neural networks (ANN).” Finally, they tried
to find out some gaps in previous trends to facilitate the
researchers for further enhancement in this area of RS
identification, recognition, classification, and tool development
for their analysis (46). Furthermore, researchers introduced a
new technique or method for lung audios analysis by combining
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TABLE 1 | Comparison and overview of exiting “ARS” classes.

References Abnormal respiratory sounds Approach

Continuous adventitious sounds Discontinuous adventitious sounds

Wh Rh St Sq UC FC CC PR De Cl

Ntalampiras (16) X X

Haider et al. (18) X X

Lang et al. (20) X X X

Rizal et al. (21) X X X X X

Jakovljević and

Lončar-Turukalo (25)

X X X

Rizal et al. (26) X

Serbes et al. (27) X X X

Nabi et al. (28) X X

Altan et al. (30) X X X

Aykanat et al. (15) X X X

Bardou et al. (1) X X X X X X

Kochetov et al. (32) X X

Göǧüş et al. (33) X X X

Sengupta et al. (36) X X X

Naves et al. (37) X X X X

Rizal et al. (14, 34) X X X

Ulukaya et al. (39) X X X

Rajkomar et al. (35) X

Jin et al. (41) X X X

Xie et al. (43) X

Hadjileontiadis (45) X X X X

Bahoura (44) X X

Kandaswamy et al. (47) X X X X

Research methodology X X X X X X X X

the two previous frameworks to maximize results. ANN joint
with wavelet transforms in this approach. The procedure was
simple; with the help of wavelet transform, they divided the
audio dataset of lungs into its multiple sub-spectrums and learn
the features of sounds from those spectrums. Researchers built
a standard 19-40-6 for this framework. 91.67% accuracy was
recorded through distribution WC-ANN architecture, but all
types of abnormal RS are not identified and considered here,
e.g., fine crackles, coarse crackles. Moreover, only ANN is used
here (47). A comparative study was conducted to analyze and
built libraries for normal and pathological. Feature extraction
for healthy and pathological recordings was done through
autoregressive (AR) schemes. By “AR,” a Quadratic classifier
and KNN (two classifiers) were designed and analyzed. The
performance was evaluated on multiple models (48).

As we talk about the phenomena of “Artificial Noise Addition
ANA” used for training neural networks. Training of ANN
with noise injection done to avoid over-fitting of curves and
in results this phenomena gives better outcomes for resolving
the over-fitting issues (49). On the other hand, the problem
arises with labeling features, a layered design that adapts the
“Noise” as a positive factor, named “Noise adaptation layer.”
Features enhanced by “noise adaptation layer” and correct labels

which make the training process of NN easier (50). Also, to
increase the resilience of NN, the ANAmethod was applied to the
patterns of particular objects (51). Another research shows how
the artificial noise adding to the signal (input) positively impacts
NN performance. This technique improves the measurements
that are needed for secret keys (52). The detail comparison and
overview of exiting “ARS” classes are given in Table 1.

3. MATERIALS AND METHODS

In research methodology, the classification of adventitious
respiratory sounds was done using the respiratory sound data set
from multiple sources. Sequence and detail of all leading points
are given below.

3.1. Preprocessing of Sounds
The practice begins with audio dataset loading—raw data taken
frommultiple sources and preprocessing. In preprocessing phase,
all audio files were converted into “wav.” format. The motivation
behind this conversion is to perform further modification on
sound samples. Redundancies were also removed and bring the
data in normalized form.
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3.2. Sound Signaling
The variation in the air produces sound. As “RS” are produced
during the respiration cycle of a human being. When these
sounds have represented the variation concerning time (t), it
forms a sound signal. The extraction of information from a
complex sound was done by converting the sound into analog
or digital signals form. RS conversion into its first spectrogram
(waveform representation) was done through the sound signaling
process. Here the RS were converted into sound waves/signals
having the information about their amplitude and time. Each
respiratory sound has a different period and amplitude as
they belong to a different category and show their unique
spectrogram, which discriminates them from one another in
terms of their pattern and behavior. For a basic understanding,
take a look at the following equations. Wave period (t), frequency
(f) as following;

Frequency(f ) = 1/timeperiodorf =
1

t
(1)

Timeperiod = 1/frequencyort =
1

f
(2)

Whereas, the velocity is defined as following;

Velocity = frequency ∗ wavelengthorv = f × λ (3)

Rearranging the equation (3);

Frequency(f ) = velocity/wavelengthorf =
v

λ
(4)

From equation (2) and (4), we’ll get the value of time period in
terms of velocity and wavelength;

Timeperiod = wavelength/velocityort =
λ

v
(5)

Relationship between the (t), (v), (λ) and (f ) defined as above.

3.3. Fourier Transform
Fourier transform (FT) is a mathematical transform that
decomposes a function (often a function of time, or a signal)
into its constituent frequencies, such as the expression of RS
represents in terms of the frequencies. Fourier transformation
was applied on data (Python 3.7 with scipy library) to generate
the spectrograms (sounds into its waveform representation) for
unhealthy sounds and visualize their behavior. The motivation
was to capture the discriminative frequency characteristics
of lung sounds for better representation of different classes.
Two approaches are applied, named “positive” and “complete”
Fourier transformations, which enabled us to get the information
about the respiratory sound frequency and its proportion in a
particular signal.

Complete Fast Fourier Transformation: Complete FFT
count the double side frequencies for positive and negative
values simultaneously.

Fft =
f (t)eos + S(f (t)eos)

∣

∣fone
∣

∣

(6)

Where S(f(t)eos) indicates the size of sound signal and
∣

∣fone
∣

∣

represents the both side frequencies in one transform.
Positive Fast Fourier Transformation: Positive FFT count one

side frequency of sound signal

Pft =
Fft + S(Fft)

|N/2|
(7)

Where S(Fft) indicates the size of Fast Fourier Transformation
and ||N/2|| represents the half frequency range for each input
bit. We get the spectrogram of respiratory sound with relevant
frequency (f ) according to the time (t) and amplitude (A)
of sound. FT is employed to increase the performance of
the proposed system. Another mathematical representation of
Fourier Transform in sine wave is described in Equation (8).

G (ω) =

∫ 8

−∞

(

f (t) eosf (t) eas
)−−jωt

dt (8)

In above equation f(t) represents the input sound signal of RS and
G(ω)/ F(ω) represent the fourier transform. Integral of Fourier
transform is over−∞< t<∞. It’s a time domain representation
of input sound signal. Here is the input signal f(t) is multiplied
with composite exponential function. The complex exponential
function broken into component according “Euler’s formula”:

e. −−jωt = cos (ωt) + jsin (ωt) (9)

FIGURE 1 | Reboot spectrogram of ARS.
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The similarity of input signal f(t) with complex exponential is
described by a set of coefficients obtained through this equation.
In other words, it tells how the input signal is similar to series
of frequencies.

3.4. Spectrogram Robustness
Contribution for further enhancement, the spectrogram of RS
with the gradual (minor) change, we added the artificial noise
of exact spectral nature to enhance the actual spectrogram of
faded sounds to make them more strengthen and enhance their
robustness. As we applied the “noise addition” on respiratory
sounds, neither the approach has changed the actual behavior
of the spectrum nor produced any abnormality in the sound
spectrogram. An “Artificial noise addition (ANA)” phenomenon
only helped prominent the pattern and made feature extraction
easy and fair. “ANA” does not mean that any traditional
background noise in RS. References to “ANA” are given in the
previous section of the literature review. The following equation
does artificial noise addition.

FNoiseft = Fft + Fft (10)

As Fft represented the actual signal of RS and added twice to
boost the potency/strength of a particular signal without shifting
its circumstances as we see that the y-axis of the signal graph
extended from 1e7 to 1e8 scale through the above equation.
The Figure 1 shows the graph of each class with more strength
without any alteration in genuine behavior.

3.5. Texture Analysis
An image texture is a set of metrics calculated in spectral
processing designed to quantify the perceived texture of the
spectrogram. The texture of any spectrum gives us information
about the spatial arrangement of color or intensities in an
image or selected spectrum region. We present a set of textural
measures derived from the texture spectrum. The proposed
features extract textural information of an RS spectrum with
complete respect to texture characteristics. Different classes of
adventitious respiratory sounds get through the textural analysis
and assigned different colors to enhance the performance of the
features extraction in the characterization and discrimination of
the texture aspects of spectrograms. Texture analysis of ARS for
each target class is visualized in Figure 2.

3.6. Feature Extraction
Feature extraction is an attribute reduction process. Unlike
feature selection, which ranks the existing attributes according to
their predictive significance, feature extraction transforms them.
The feature is an individual measurable property or characteristic
of a phenomenon being observed. Feature extraction is an
attribute reduction process; unlike feature selection, which ranks
the existing attributes according to their predictive significance,
FE transforms them. Choosing informative and discriminating
is a crucial step for practical algorithms in pattern recognition
and classification. FE is done to enhance the effectiveness of
classification. In the case of respiratory sounds, feature extraction
is done through feature mapping. Feature mapping was applied
to extract the patterns or maps of RS features. We applied a filter
on the input spectrum and got themap of the spectrum as output.
The output of the feature map gave us a visual understanding of
the RS feature.

3.7. Data Augmentation
Data augmentation techniques are used to normalize the data
and increase the number of dataset elements into multiples,
e.g., padding, cropping, flipping, and removing all those factors
that may be considered errors. The augmentation techniques
have been tested to increase the cardinality of the training set
for all the classes and overcome the problem of over-fitting.
One augmentation technique applied to the spectrograms and is
horizontal flipping.

Horizontal Flip: A simple idea for data augmentation is
“horizontal flipping,” which was applied on spectrograms. Each
spectrogram was randomly flipped from left to right.

3.8. Classification
Finally, multiple classifiers were applied to check which of
them gave the best results in terms of accuracy, which was
considered a primary performance measure of research. Deep
learning algorithms implemented such as VGG (VGG-B1,
VGG-B3, VGG-V1, VGG-V2, and VGG-D1), AlexNet, ResNet,
InceptionNet, and LeNet, on the spectral data for classification
purposes and analyze the results and compare it with each other
for better classification of abnormal respiratory sounds.

• VGG: VGG stands for Visual Geometry Group. In
2014, Simonyan and Zisserman launched VGG network

FIGURE 2 | Texture analysis of ARS.
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FIGURE 3 | Architecture of proposed framework.

architecture. Now it has numerous variants like VGG-B1,
VGG-B3, VGG-V1, VGG-V2, and VGG-D1.

• AlexNet: Its convolutional neural network was developed by
Alex Krizhevsky, Geoffrey Hinton, and Ilya Sutskever in 2012.
Sixty million parameters are involved in its architecture.

• ResNet: often known as Residual Neural Networks
designed in 2015 by Kaiming He, having 3.6%
error rate.

• InceptionNet: Google designed the CNN known as GoogleNet
or InceptionNet in 2014. Four million parameters were
incorporated with a 6.67% error rate.

• LeNet: Develop by Yann LeCun et al. Number of parameters
are 60,000 involved in processing. Error rates were also not
defined because it was designed in 1998.

“AlexNet” is an effective model for attaining excessive accuracies
on complicated data units. It is a leading structural design
for any object recognition challenge. AlexNet consists of five
convolutional layers and three fully connected layers.

• First Convolutional Layer (CL1) has 96 filters with kernel size
(11x11) for extracting features for a particular spectrogram
of RS. The Stride for CL1 is four for compressing the
spectrogram, which moves the filter to four pixels at a time.
Max-Pooling (MP1) overlapped CL1 kept padding valid the
same as CL1. Filters are the same, but the kernel size is (2x2),
different from CL1. As we talk about Stride, it is two for
Max-pooling.

• The second Convolutional Layer (CL2) of the network has
256 filters with the same kernel size (CL1). Stride is two for
compressing the spectrogram, which moves the filter to two

pixels at a time. Max-Pooling (MP2) overlapped CL2 kept
padding valid the same as CL2. Filters of MP2 are equal to CL2
filters. Kernel size and strides are the same as the MP1 layer.

• The third and fourth convolutional layers (CL3 & CL4) have
384 filters with the same kernel size (3 × 3). Both of them
have one Stride for moving filter to 1 pixel with valid padding.
Any pooling layer does not follow CL3 & CL4. The fifth
Convolutional Layer (CL5) has 256 filters with the same kernel
size (3 × 3). Stride is (1) for compressing the spectrogram,
which moves the filter to 1 pixel at a time.

• Max-Pooling (MP3) overlapped to CL5 kept padding valid.
Filters of MP3 are equal to CL5 filters. Kernel size and Stride
are (2 × 2) and (2), respectively. Three fully connected layers
(FCL1, FCL2, & FCL3) are involved at the end of convolutional
layers, altering data in 1-dimension and finally classification
performed on that single long array of data.

The flow chart of proposed framework is given in Figure 3.

4. RESULTS AND DISCUSSION

4.1. Dataset Collection
Mainly researchers use datasets from multiple repositories for
research purposes, and all of them were primarily generated for
academic aspire. Every catalog contains a different amount of
mock-ups. Unluckily, most of these repositories have limited
classes of respiratory/ lung sounds. If someone wants to examine
all respiratory sounds (abnormal), he/ she will not discover
any solo platform from where they can get the desired/
preferred dataset.
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TABLE 2 | Comparative results obtained (Precision and Recall) for VGG-B1.

Precision Recall F1-score

Coarse crackle 1.00 1.00 1.00

Fine crackle 0.67 1.00 0.80

Pleural rub 1.00 0.50 0.67

Rhonchi 1.00 1.00 1.00

Squawk 1.00 1.00 1.00

Stridor 1.00 1.00 1.00

Wheeze 1.00 1.00 1.00

Accuracy 0.95

Macro avg 0.95 0.93 0.92

Weighted avg 0.96 0.95 0.94

In this research work, we assemble datasets from multiple
internet sources [e.g., “(R.A.L.E. Lung Sounds 3.2),” “Thinklabs
One (digital stethoscope),” and “Easy Auscultation”] used in
prior research work. Founded respiratory sounds were not in
symmetry, some of these sources contain hundreds of samples,
and some of them hardly have few entities for particular
classes. So we took a small number of entities from the above-
cited foundations for purposed research. The number of target
instances corresponds to each class are: Wheeze (12), Rhonchi
(9), Stridor (10), Squawk (8), Fine Crackle (11), Coarse Crackle
(11), and Pleural Rub (9).

4.2. Evaluation Metrics
We divided the dataset into two sets of classes. We train a
classifier on 70% data and test on 30% to apply different classifiers
to perform the analysis. The ratio of training and testing sets was
decided based on random selection.

The performance of the system evaluated using Percision,
Recall, F1-Score, and Accuracy.

4.3. Results
4.3.1. VGG-B1

Table 2 shows, “VGG-B1” has a precision of 0.67 for fine crackle
sounds, and recall for a plural rub is recorded as 0.50. F1-
score recorded as 0.80 and 0.67 for fine crackle and plural rub,
respectively. Other results of precision and recall reached a 1.00
score for all classes of ARS. As we talk about the accuracy results,
the overall accuracy of VGG-B1 for all abnormal RS classes is
traced as 0.95%.

4.3.2. VGG-B3

From the accuracy plot of VGG-B3 (referred to Figure 4), the
model was trained for 500 iterations (epoch). The training
curve remains stable during iterations because it learns speedily
as the training dataset given to it. On the other side, the
validation/accuracy curve in the accuracy model shows that in
the start, it underlines, but when the epoch is exceeded, the curve
rises slowly, and in the last few epochs, it shows consistency with
the training curve.

The model has the same iteration as the inaccuracy model
from the loss plot of VGG-B3 (referred to Figure 4). The loss
of the model is far above the ground at the starting stage of the

iterations invalidation process. However, when epochs increase,
a reduced amount of loss is observed compared to the earlier
testing stage.

4.3.3. VGG-V1

Table 3 shows that “VGG-V1” has unique and poor results
compared to other algorithms. “VGG-V1” has a precision of 0.67
for coarse and fine crackle and 0.00 for the pleural rub. On the
other side, the recall is recorded as 0.67, 0.00 for stridor and
pleural rub, respectively. F1-score was captured as 0.80 for CC,
FC, and stridor, whereas 0.00 is for the pleural rub. Other results
of precision and recall hit a 1.00 score for all ARS. In VGG-
V1, the overall accuracy for all abnormal RS classes is achieved
as 0.84%.

4.3.4. VGG-V2

Table 4 shows that “VGG-V2” has similar results with “VGG-
V1” in terms of accuracy. “VGG-V2” has a precision of 0.00 for
the pleural rub. 0.75, 0.67 precision is also recorded for stridor
and wheeze, respectively. The recall is recorded as 0.00 for a
pleural rub and 0.50 for rhonchi. F1-score captured as 0.00 for
pleural rub, 0.67 for rhonchi, 0.86 for stridor, and 0.80 for wheeze.
In VGG-V2, the concerning outcome of overall accuracy for all
classes is achieved as 0.84%.

4.3.5. VGG-D1

Table 5 shows that “VGG-D1” has similar results as “VGG-B1”
and “VGG-B3.” VGG-D1 has a precision of 0.67 for fine crackle
sounds, and recall for a pleural rub is recorded as 0.50. F1-
score captured as 0.80 and 0.67 for fine crackle and plural rub,
respectively. Other results of precision and recall reached a 1.00
score for all classes of ARS. While taking a look at the accuracy
results, the overall accuracy of VGG-D1 for all abnormal RS
classes is achieved as 0.95%.

4.3.6. AlexNet

From the accuracy plot of AlexNet (referred to Figure 5), the
model was trained for 500 iterations (epoch). At the start of the
training process model, it becomes skilled fast on the training
dataset, so it remains regular after further iterations. On the
other hand, the validation accuracy curve in the accuracy model
remains straight and contradicts the training curve to 150 epochs.
After 150–300 epochs, it gradually increases and meets the
training curve till the end of epochs.

From loss plot of AlexNet (referred to in Figure 5) has the
same iteration as did in the accuracy model. A significant loss
was observed in the model at the early stages of validation. Then
suddenly, the loss reduces after 100 iterations and meets with the
training curve after 300 epochs.

4.3.7. InceptionNet

Table 6 shows that “InceptionNet” has a precision of 0.67 for
rhonchi sounds, and recall for stridor is recorded as 0.67. F1-
score was captured as 0.80 for both rhonchi and stridor. Other
results of precision and recall reached a 1.00 score for all classes of
ARS.While looking at the accuracy results, the overall accuracy of
“InceptionNet” for all abnormal RS classes is achieved as 0.95%.
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FIGURE 4 | Model accuracy and model loss for VGG-B3.

TABLE 3 | Comparative results obtained (Precision and Recall) for VGG-V1.

Precision Recall F1-score

Coarse crackle 0.67 1.00 0.80

Fine crackle 0.67 1.00 0.80

Pleural rub 0.00 0.00 0.00

Rhonchi 1.00 1.00 1.00

Squawk 1.00 1.00 1.00

Stridor 1.00 0.67 0.80

Wheeze 1.00 1.00 1.00

Accuracy 0.84

Macro avg 0.76 0.81 0.77

Weighted avg 0.79 0.84 0.80

TABLE 4 | Comparative results obtained (Precision and Recall) for VGG-V2.

Precision Recall F1-score

Coarse crackle 1.00 1.00 1.00

Fine crackle 1.00 1.00 1.00

Pleural rub 0.00 0.00 0.00

Rhonchi 1.00 0.50 0.67

Squawk 1.00 1.00 1.00

Stridor 0.75 1.00 0.86

Wheeze 0.67 1.00 0.80

Accuracy 0.84

Macro avg 0.77 0.79 0.76

Weighted avg 0.79 0.84 0.79

4.3.8. LeNet-5

From the accuracy plot of LeNet-5 (referred to Figure 6), the
model was trained for 500 iterations (epoch). At the early
stages of the process, the model shows high inflection in many
curve points and rises with unrepresentative manners. It shows

a steady curve after 350 iterations of training. On the other
side, the Val-acc curve shows a considerable divergence from
the start to the end of the model. Val-curve rising in random
manners from the start of the model and shows vulnerability
in behavior.

The loss plot of LeNet-5 (referred to Figure 6) has
the same iteration as did in the accuracy model. The
validation curve shows “unrepresentative” in the model. High
loss between training and validation curves at the starting
stage was observed. When iterations were performed in the
testing process, loss reduces in contrast with the earlier
validation stage.

4.3.9. ResNet

From the accuracy plot of ResNet (referred to Figure 7), the
model was trained for 500 iterations (epoch). At the start of the
training, the process model is trained swiftly, showing a steady
curve during further iterations for training. Before obtaining
steadiness, it shows the variation in multiple points. While
seeing at the Val-acc curve, the significant deviation was noticed,
but after few epochs, it suddenly arises to meet the training
curve. Then again Val-acc curve became steady from 200 epochs
and onward.

From the loss plot of ResNet (referred to Figure 7), the
model shows deviation and high loss between training and
validation curves at the early stage. However, after 100 epochs,
the reduced amount of loss was observed in contrast with
an earlier validation stage, and the Val curve meets with the
training curve.

4.4. Discussion
“VGG-B1,” “VGG-B3,” “VGG-D1,” and “ResNet” have similar
results in terms of accuracy which is recorded as 0.95%.
Figure 4 shows similar curves as the model accuracy curve
shows that model trained fits well. The validation curve is
a little dissatisfactory due to underfitting, which enhances
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FIGURE 5 | Model accuracy and model loss for AlexNet.

TABLE 5 | Comparative results obtained (Precision and Recall) for VGG-D1.

Precision Recall F1-score

Coarse crackle 1.00 1.00 1.00

Fine crackle 0.67 1.00 0.80

Pleural rub 1.00 0.50 0.67

Rhonchi 1.00 1.00 1.00

Squawk 1.00 1.00 1.00

Stridor 1.00 1.00 1.00

Wheeze 1.00 1.00 1.00

Accuracy 0.95

Macro avg 0.95 0.93 0.92

Weighted avg 0.96 0.95 0.94

the model’s training. In the model loss, the curve outcome
represents that training reduces the loss. In Figure 7, the
accuracy model curve indicates that the model could be trained
more to avoid the underfitting and inflection in some points
because the model has not been overlearned for the training
set. Model loss shows a divergence from the training curve
due to less training, which is why the loss is high from
starting epochs.

Accuracy is captured as 0.84% for VGG-V1 and VGG-V2
(Tables 3, 4), which is relatively low compared to other classifiers.
The reason is that both classifiers need more iteration or data
samples for training to enhance the accuracy.

Refer to Table 6, which represent that InceptionNet has
accuracy of 0.95%. Figure 6 point toward the accuracy
model curve indicates that the model can be trained
further to avoid the underfitting and dissimilarity between
training and validation because the model has not
learned enough for the validation set. Model loss shows
a divergence from the training curve due to less training,
which is why the loss is high from the start to the end
of epochs.

TABLE 6 | Comparative results obtained (Precision and Recall) for InceptionNet.

Precision Recall F1-score

Coarse crackle 1.00 1.00 1.00

Fine crackle 1.00 1.00 1.00

Pleural rub 1.00 1.00 1.00

Rhonchi 0.67 1.00 0.80

Squawk 1.00 1.00 1.00

Stridor 1.00 0.67 0.80

Wheeze 1.00 1.00 1.00

Accuracy 0.95

Macro avg 0.95 0.95 0.94

Weighted avg 0.96 0.95 0.95

4.5. Comparative Analysis
For comparison, the analysis was performed based on mean
precision, recall, f1-score, and accuracy for all algorithms. Overall
results from the classifiers used for ARS classification are shown
in Table 7.

The above table shows that the “AlexNet” algorithm
has the highest accuracy rate than other classifiers. 1.00%
classification accuracy is captured for AlexNet, other algorithms
mostly have 0.95% accuracy, and some have below 0.95%.
Graphical representation of the above results is as following in
Figure 8.

5. CONCLUSION

The possible concern with the neural network approach is
that barely a few units can be employed for classification. If
further research is conducted on this domain, researchers can
consider more sounds or build their dataset for the classification
task, especially for COVID-19. Researchers may integrate more
features such as sound quality (timbre) for classification in
a new-fangled way, train the neural network for a healthier
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FIGURE 6 | Model accuracy and model loss for LeNet-5.

FIGURE 7 | Model accuracy and model loss for ResNet.

consequence, and upgrade the classification scheme. RS attributes
and their analysis gives symptomatic data about a patient’s lung.
A couple of decades back, doctors distinguish symptomatic signs
in lung sounds through a typical stethoscope, usually considered
as a cheap and secure method for examining. Lung diseases
are the third most common cause of death worldwide, so it
is essential to classify RS abnormality to overcome the death
rate accurately.

In this research, ANA methods are used in conjunction
with different deep convolutional networks to classify the
various abnormal respiratory sounds—both continuous and
discontinuous. Visual inspection of abnormal respiratory
sound was done by Fourier analysis. The presence of abnormal
sounds like a wheeze, stridor, fine crackle, and coarse crackle
was revealed when Fourier Transform was applied over a
short time duration and frequency. Texture analysis was
performed for better feature extraction through feature
maps and data augmentation executed for enlarging the

TABLE 7 | Comparative results obtained (Precision, Recall, F1-score, and

Accuracy) for all algorithms employed.

Precision Recall F1-score Accuracy (%)

VGG-B1 0.95 0.93 0.92 0.95

VGG-B3 0.95 0.93 0.92 0.95

VGG_Drop 0.95 0.93 0.92 0.95

VGG-V1 0.76 0.81 0.77 0.84

VGG-V2 0.77 0.79 0.76 0.84

AlexNet 1.00 1.00 1.00 1.00

InceptionNet 0.95 0.95 0.94 0.95

ResNet 0.95 0.93 0.92 0.95

LeNet5 0.95 0.90 0.90 0.89

number of entities. Numerous algorithms were applied on
a range of spectrograms, and results obtained from this
method were satisfactory as it considered the seven classes of
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FIGURE 8 | Comparative bar chart visualization obtained for all algorithms employed.

abnormal RS concurrently 1.00% accuracy gained through the
AlexNet algorithm.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNDING

This work was supported by the United Arab Emirates University
(UAEU Grant No. G00003270 31T130).

REFERENCES

1. Bardou D, Zhang K, Ahmad SM. Lung sounds classification using
convolutional neural networks. Artif Intell Med. (2018) 88:58–69.
doi: 10.1016/j.artmed.2018.04.008

2. Belkacem AN, Ouhbi S, Lakas A, Benkhelifa E, Chen C. End-to-end AI-based
point-of-care diagnosis system for classifying respiratory illnesses and early
detection of COVID-19: a theoretical framework. Front Med. (2021) 8:372.
doi: 10.3389/fmed.2021.585578

3. Iccer S, Genge S. Classification and analysis of non-stationary characteristics
of crackle and rhonchus lung adventitious sounds. Digital Signal Process.
(2014) 28:18–27. doi: 10.1016/j.dsp.2014.02.001

4. Gao J, Wang H, Shen H. Machine learning based workload prediction
in cloud computing. In: 2020 29th International Conference on

Computer Communications and Networks (ICCCN). (2020). p. 1–9.
doi: 10.1109/ICCCN49398.2020.9209730

5. Rauf HT, Gao J, Almadhor A, Arif M, Nafis MT. Enhanced bat algorithm
for COVID-19 short-term forecasting using optimized LSTM. Soft Comput.
(2021) 25:1–11. doi: 10.1007/s00500-021-06075-8

6. Gao J, Wang H, Shen H. Smartly handling renewable energy instability
in supporting a cloud datacenter. In: 2020 IEEE International Parallel and

Distributed Processing Symposium (IPDPS). New Orleans, LA (2020). p.
769–78. doi: 10.1109/IPDPS47924.2020.00084

7. Gao J, Wang H, Shen H. Task failure prediction in cloud data
centers using deep learning. IEEE Trans Services Comput. (2020).
doi: 10.1109/TSC.2020.2993728

8. Gurung A, Scrafford CG, Tielsch JM, Levine OS, Checkley W. Computerized
lung sound analysis as diagnostic aid for the detection of abnormal
lung sounds: a systematic review and meta-analysis. Respir Med. (2011)
105:1396–403. doi: 10.1016/j.rmed.2011.05.007

9. Sarkar M, Madabhavi I, Niranjan N, Dogra M. Auscultation of the
respiratory system. Ann Thorac Med. (2015) 10:158. doi: 10.4103/1817-1737.
160831

10. Weisman I. Erratum: ATS/ACCP statement on cardiopulmonary
exercise testing. Am J Respir Crit Care Med. (2003) 167:1451–2.
doi: 10.1164/ajrccm.167.10.952

11. Dokur Z. Respiratory sound classification by using an incremental
supervised neural network. Pattern Anal Appl. (2009) 12:309–19.
doi: 10.1007/s10044-008-0125-y

12. Munakata M, Ukita H, Doi I, Ohtsuka Y, Masaki Y, Homma Y, et al. Spectral
and waveform characteristics of fine and coarse crackles. Thorax. (1991)
46:651–7. doi: 10.1136/thx.46.9.651

13. Baughman RP, Loudon RG. Stridor: Differentiation from asthma
or upper airway Noise1-3. Am Rev Respir Dis. (1989) 139:1407–9.
doi: 10.1164/ajrccm/139.6.1407

14. Rizal A, Hidayat R, Nugroho HA. Lung sounds classification using
spectrogram’s first order statistics features. In: 2016 6th International

Annual Engineering Seminar (InAES). Yogyakarta (2016). p. 96–100.
doi: 10.1109/INAES.2016.7821914

15. Aykanat M, Kılıç, Kurt B, Saryal S. Classification of lung sounds using
convolutional neural networks. EURASIP J Image Video Process. (2017)
2017:1–9. doi: 10.1186/s13640-017-0213-2

16. Ntalampiras S. Collaborative framework for automatic classification
of respiratory sounds. IET Signal Process. (2020) 14:223–8.
doi: 10.1049/iet-spr.2019.0487

17. Demir F, Sengur A, Bajaj V. Convolutional neural networks based efficient
approach for classification of lung diseases. Health Inform Sci Syst. (2020)
8:1–8. doi: 10.1007/s13755-019-0091-3

18. Haider NS, Singh BK, Periyasamy R, Behera AK. Respiratory sound based
classification of chronic obstructive pulmonary disease: a risk stratification

Frontiers in Medicine | www.frontiersin.org 15 November 2021 | Volume 8 | Article 714811

https://doi.org/10.1016/j.artmed.2018.04.008
https://doi.org/10.3389/fmed.2021.585578
https://doi.org/10.1016/j.dsp.2014.02.001
https://doi.org/10.1109/ICCCN49398.2020.9209730
https://doi.org/10.1007/s00500-021-06075-8
https://doi.org/10.1109/IPDPS47924.2020.00084
https://doi.org/10.1109/TSC.2020.2993728
https://doi.org/10.1016/j.rmed.2011.05.007
https://doi.org/10.4103/1817-1737.160831
https://doi.org/10.1164/ajrccm.167.10.952
https://doi.org/10.1007/s10044-008-0125-y
https://doi.org/10.1136/thx.46.9.651
https://doi.org/10.1164/ajrccm/139.6.1407
https://doi.org/10.1109/INAES.2016.7821914
https://doi.org/10.1186/s13640-017-0213-2
https://doi.org/10.1049/iet-spr.2019.0487
https://doi.org/10.1007/s13755-019-0091-3
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Zulfiqar et al. CNN Respiratory Sounds Classification

approach in machine learning paradigm. J Med Syst. (2019) 43:1–13.
doi: 10.1007/s10916-019-1388-0

19. Patil S, Saxena A, Talreja T, Bhatti V. Medical diagnosis of ailments through
supervised learning techniques on sounds of the heart and lungs. In: Wang
J, Ram Mohana Reddy G, Kamakshi Prasad V, Sivakumar Reddy V, editors.
Soft Computing and Signal Processing. New Delhi: Springer (2019). p. 253–62.
doi: 10.1007/978-981-13-3393-4_26

20. Lang R, Lu R, Zhao C, Qin H, Liu G. Graph-based semi-supervised
one class support vector machine for detecting abnormal lung sounds.
Appl Math Comput. (2020) 364:124487. doi: 10.1016/j.amc.2019.
06.001

21. Rizal A, Hidayat R, Nugroho HA. Comparison of multilevel wavelet packet
entropy using various entropy measurement for lung sound classification.
Int J Adv Comput Sci Appl. (2019) 10:77–82. doi: 10.14569/IJACSA.2019.01
00211

22. Shakeel PM, Tolba A, Al-Makhadmeh Z, Jaber MM. Automatic detection
of lung cancer from biomedical data set using discrete AdaBoost optimized
ensemble learning generalized neural networks. Neural Comput Appl. (2020)
32:777–90. doi: 10.1007/s00521-018-03972-2

23. Weichenthal S, Hatzopoulou M, Brauer M. A picture tells a thousand-
exposures: opportunities and challenges of deep learning image analyses
in exposure science and environmental epidemiology. Environ Int. (2019)
122:3–10. doi: 10.1016/j.envint.2018.11.042

24. Dubey R, M Bodade R. A review of classification techniques based on
neural networks for pulmonary obstructive diseases. In: Proceedings of Recent
Advances in Interdisciplinary Trends in Engineering & Applications (RAITEA).
(2019). doi: 10.2139/ssrn.3363485
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33. Göǧüş F, Karlık B, Harman G. Identification of pulmonary disorders by using
different spectral analysis methods. Int J Comput Intell Syst. (2016) 9:595–611.
doi: 10.1080/18756891.2016.1204110

34. Rizal A, Hidayat R, Nugroho HA. Multiscale Hjorth descriptor for lung sound
classification. In: AIP Conference Proceedings. Vol. 1755. Yogyakarta: AIP
Publishing LLC (2016). p. 160008. doi: 10.1063/1.4958601

35. Rajkomar A, Lingam S, Taylor AG, Blum M, Mongan J. High-throughput
classification of radiographs using deep convolutional neural networks. J Digit
Imaging. (2017) 30:95–101. doi: 10.1007/s10278-016-9914-9

36. Sengupta N, Sahidullah M, Saha G. Lung sound classification using
cepstral-based statistical features. Comput Biol Med. (2016) 75:118–29.
doi: 10.1016/j.compbiomed.2016.05.013

37. Naves R, Barbosa BH, Ferreira DD. Classification of lung sounds using
higher-order statistics: a divide-and-conquer approach. ComputMethods Prog

Biomed. (2016) 129:12–20. doi: 10.1016/j.cmpb.2016.02.013
38. Rizal A, Hidayat R, Nugroho HA. Pulmonary crackle feature extraction

using tsallis entropy for automatic lung sound classification. In: 2016

1st International Conference on Biomedical Engineering (IBIOMED).
Yogyakarta (2016). p. 1–4. doi: 10.1109/IBIOMED.2016.7869823

39. Ulukaya S, Serbes G, Sen I, Kahya YP. A lung sound classification system based
on the rational dilation wavelet transform. In: 2016 38th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).
Orlando, FL (2016). p. 3745–8. doi: 10.1109/EMBC.2016.7591542

40. Oweis RJ, Abdulhay EW, Khayal A, Awad A, et al. An alternative respiratory
sounds classification system utilizing artificial neural networks. Biomed J.
(2015) 38:e61. doi: 10.4103/2319-4170.137773

41. Jin F, Sattar F, Goh DY. New approaches for spectro-temporal
feature extraction with applications to respiratory sound classification.
Neurocomputing. (2014) 123:362–71. doi: 10.1016/j.neucom.2013.07.033

42. Sánchez Morillo D, Leon Jimenez A, Moreno SA. Computer-aided diagnosis
of pneumonia in patients with chronic obstructive pulmonary disease. J Am
Med Inform Assoc. (2013) 20:e111–7. doi: 10.1136/amiajnl-2012-001171

43. Xie S, Jin F, Krishnan S, Sattar F. Signal feature extraction by multi-scale PCA
and its application to respiratory sound classification. Med Biol Eng Comput.
(2012) 50:759–68. doi: 10.1007/s11517-012-0903-y

44. Bahoura M. Pattern recognition methods applied to respiratory sounds
classification into normal and wheeze classes. Comput Biol Med. (2009)
39:824–43. doi: 10.1016/j.compbiomed.2009.06.011

45. Hadjileontiadis LJ. A texture-based classification of crackles and
squawks using lacunarity. IEEE Trans Biomed Eng. (2009) 56:718–32.
doi: 10.1109/TBME.2008.2011747

46. Reichert S, Gass R, Brandt C, Andrés E. Analysis of respiratory sounds:
state of the art. Clin Med Circul Respir Pulm Med. (2008) 2:CCRPM-S530.
doi: 10.4137/CCRPM.S530

47. Kandaswamy A, Kumar CS, Ramanathan RP, Jayaraman S, Malmurugan N.
Neural classification of lung sounds using wavelet coefficients. Comput Biol

Med. (2004) 34:523–37. doi: 10.1016/S0010-4825(03)00092-1
48. Sankur B, Kahya YP, Güler E, Engin T. Comparison of AR-based algorithms

for respiratory sounds classification. Comput Biol Med. (1994) 24:67–76.
doi: 10.1016/0010-4825(94)90038-8

49. Zur RM, Jiang Y, Pesce LL, Drukker K. Noise injection for training artificial
neural networks: a comparison with weight decay and early stopping. Med

Phys. (2009) 36:4810–8. doi: 10.1118/1.3213517
50. Goldberger J, Ben-Reuven E. Training deep neural-networks using a noise

adaptation layer (2016). Available online at: https://openreview.net/forum?
id=H12GRgcxg

51. Isaev I, Dolenko S. Training with noise addition in neural network solution
of inverse problems: Procedures for selection of the optimal network. Proc
Comput Sci. (2018) 123:171–6. doi: 10.1016/j.procs.2018.01.028

52. Kim J, Picek S, Heuser A, Bhasin S, Hanjalic A. Make some noise. Unleashing
the power of convolutional neural networks for profiled side-channel analysis.
IACR Transactions on Cryptographic Hardware and Embedded Systems. (2019)
p. 148–79. doi: 10.46586/tches.v2019.i3.148-179

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Zulfiqar, Majeed, Irfan, Rauf, Benkhelifa and Belkacem. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Medicine | www.frontiersin.org 16 November 2021 | Volume 8 | Article 714811

https://doi.org/10.1007/s10916-019-1388-0
https://doi.org/10.1007/978-981-13-3393-4_26
https://doi.org/10.1016/j.amc.2019.06.001
https://doi.org/10.14569/IJACSA.2019.0100211
https://doi.org/10.1007/s00521-018-03972-2
https://doi.org/10.1016/j.envint.2018.11.042
https://doi.org/10.2139/ssrn.3363485
https://doi.org/10.1007/978-981-10-7419-6_7
https://doi.org/10.1109/ICSTC.2018.8528650
https://doi.org/10.1007/978-981-10-7419-6_8
https://doi.org/10.1016/j.compbiomed.2018.10.035
https://doi.org/10.1016/j.acra.2018.02.018
https://doi.org/10.1016/j.bspc.2018.05.014
https://doi.org/10.1016/j.ins.2017.06.027
https://doi.org/10.1007/978-3-319-65340-2_14
https://doi.org/10.1080/18756891.2016.1204110
https://doi.org/10.1063/1.4958601
https://doi.org/10.1007/s10278-016-9914-9
https://doi.org/10.1016/j.compbiomed.2016.05.013
https://doi.org/10.1016/j.cmpb.2016.02.013
https://doi.org/10.1109/IBIOMED.2016.7869823
https://doi.org/10.1109/EMBC.2016.7591542
https://doi.org/10.4103/2319-4170.137773
https://doi.org/10.1016/j.neucom.2013.07.033
https://doi.org/10.1136/amiajnl-2012-001171
https://doi.org/10.1007/s11517-012-0903-y
https://doi.org/10.1016/j.compbiomed.2009.06.011
https://doi.org/10.1109/TBME.2008.2011747
https://doi.org/10.4137/CCRPM.S530
https://doi.org/10.1016/S0010-4825(03)00092-1
https://doi.org/10.1016/0010-4825(94)90038-8
https://doi.org/10.1118/1.3213517
https://openreview.net/forum?id=H12GRgcxg
https://openreview.net/forum?id=H12GRgcxg
https://doi.org/10.1016/j.procs.2018.01.028
https://doi.org/10.46586/tches.v2019.i3.148-179
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles

	Abnormal Respiratory Sounds Classification Using Deep CNN Through Artificial Noise Addition
	1. Introduction
	1.1. Types of Respiratory Sounds
	1.2. Subclasses of Abnormal Respiratory Sounds
	1.2.1. Wheeze
	1.2.2. Rhonchi
	1.2.3. Stridor
	1.2.4. Squawk
	1.2.5. Coarse Crackle
	1.2.6. Pleural Rub


	2. Related Work
	3. Materials and Methods
	3.1. Preprocessing of Sounds
	3.2. Sound Signaling
	3.3. Fourier Transform
	3.4. Spectrogram Robustness
	3.5. Texture Analysis
	3.6. Feature Extraction
	3.7. Data Augmentation
	3.8. Classification

	4. Results and Discussion
	4.1. Dataset Collection
	4.2. Evaluation Metrics
	4.3. Results
	4.3.1. VGG-B1
	4.3.2. VGG-B3
	4.3.3. VGG-V1
	4.3.4. VGG-V2
	4.3.5. VGG-D1
	4.3.6. AlexNet
	4.3.7. InceptionNet
	4.3.8. LeNet-5
	4.3.9. ResNet

	4.4. Discussion
	4.5. Comparative Analysis

	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


