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Diabetic nephropathy (DN) is the main cause of end stage renal disease (ESRD).

Glomerulus damage is one of the primary pathological changes in DN. To reveal the

gene expression alteration in the glomerulus involved in DN development, we screened

the Gene Expression Omnibus (GEO) database up to December 2020. Eleven gene

expression datasets about gene expression of the human DN glomerulus and its

control were downloaded for further bioinformatics analysis. By using R language,

all expression data were extracted and were further cross-platform normalized by

Shambhala. Differentially expressed genes (DEGs) were identified by Student’s t-test

coupled with false discovery rate (FDR) (P< 0.05) and fold change (FC)≥1.5. DEGs were

further analyzed by the Database for Annotation, Visualization, and Integrated Discovery

(DAVID) to enrich the Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway. We further constructed a protein-protein interaction

(PPI) network of DEGs to identify the core genes. We used digital cytometry software

CIBERSORTx to analyze the infiltration of immune cells in DN. A total of 578 genes

were identified as DEGs in this study. Thirteen were identified as core genes, in which

LYZ, LUM, and THBS2 were seldom linked with DN. Based on the result of GO, KEGG

enrichment, and CIBERSORTx immune cells infiltration analysis, we hypothesize that

positive feedback may form among the glomerulus, platelets, and immune cells. This

vicious cycle may damage the glomerulus persistently even after the initial high glucose

damage was removed. Studying the genes and pathway reported in this study may shed

light on new knowledge of DN pathogenesis.
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INTRODUCTION

Diabetic nephropathy (DN) is one of the most serious diabetic
chronic microvascular complications and the major cause of
end stage renal disease (ESRD) (1, 2). Glomerulus damage
is one of the primary pathological changes in DN (3). The
progression of DN is known to occur in a series of pathological
changes in the glomerulus, such as expansion of glomerular
mesangium, glomerular basement membrane (GBM) thickness,
and podocytes loss. These changes damage glomerular filtration,
causing proteinuria and glomerulosclerosis. Eventually, this may
cause a decrease in the glomerular filtration rate (GFR) and the
development of end stage renal disease (4). Now, DN is the
main reason for dialysis or a kidney transplant and is a great
global public health burden (5). Currently, drugs only target
the renin-angiotensin-aldosterone system (RAAS) and sodium-
glucose cotransporter 2 (SGLT2) inhibitors to treat DN (5–7).
Therefore, it is urgent to explore the newly found molecular
mechanism of DN and provide a new target for the diagnosis and
treatment of DN.

Transcriptomic analysis is a powerful tool used to discover
new targets and explore many diseases including DN (8). A
lot of work has been done using the transcriptomic method,
which has provided some novel targets and mechanisms for
DN (9–17). However, as is known, the transcriptomic method
has some limitations. This method can only use a single race
sample and a small sample number, which is disproportionate
to their high costs. And most transcriptomic methods have
poor instability for their great measurement error (9). So, gene
screening by different transcriptomic research methods vary
and even conflict sometimes. Bioinformatics tools can integrate
multiple transcriptomicmethods to increase the statistical power.
So, reduced population samples and many stable differentially
expressed genes can be obtained (17). Bioinformatic tools were
used in a lot of studies to analyze existing transcriptomics data
and some important discoveries were found. Tang et al. analyzed
glomerulus and renal tubule tissue transcription omics data, and
found that NTNG1 and HGF were potential DN biomarkers
of high specificity and sensitivity (18). Wang et al. found that
the glomerulus in DN kidney tissue mainly caused changes in

cell connectivity and tissue cell modification, while renal tubular
tissue mainly caused abnormalities in energy metabolism, and
changes in methylation status of core regulatory genes might be
a potential factor for the pathogenesis of DN (19). As far as we
know, research has seldom used bioinformatic tools to analyze all
human existing glomerulus transcriptomics datasets to discover
new potential biomarkers and the pathogenesis of DN. So it will
be very attractive to do it.

Bioinformatic tools combining the information of multiple
independent transcriptomic studies fundamentally includemeta-
analysis and cross-platform normalization (20). In the meta-
analysis approach, each experiment is first analyzed separately
and then combined by one of three types of statistics:
p-value, effect size, and ranked gene lists. Cross-platform
normalization considers all platform transcriptomic data as a
single dataset. This approach normalizes transcriptomic data to
remove the artifactual differences between transcriptomic studies

and preserves biological differences between conditions. Cross-
platform normalization is thought to have better performance
thanmeta-analysis for “separate statistics” and “averaging is often
less powerful than directly computing statistics from aggregated
data” (20). We can always significantly find more differentially
expressed genes in this process than meta-analysis (20). There
is more than a dozen methods that can be used to undertake
cross-platform normalization. But most of these cross-platform
normalization methods can only process two different platforms,
and transcriptomic data have comparable sample sizes. Recently
a new method Shambhala (https://github.com/oncobox-admin/
harmony) was found to solve this problem and may be the
best choice to process gigantic transcriptomic datasets (21).
Shambhala performs cross-platform normalization by using an
auxiliary calibration dataset (P0) and a reference definitive
dataset (Q). The initial data can be output into a generic form
of a gene expression profile. This method can make experimental
data independent of the experimental platform and the number
of experiments (21). It can improve data comparability and
reduce batch effect greatly (21). Above all, it is currently
the only platform-independent data coordination technology
that supports the processing of data obtained from multiple
experimental platforms (21). Application of this technique may
be the best choice to analysis all human existing glomerulus
transcriptomics datasets.

Our objective is to comprehensively analyze transcriptomic
profiles of all existing DN patient glomerular datasets in
the GEO database for understanding of the pathogenesis of
DN. In this study, we firstly downloaded all DN patients
and their control glomerular original transcriptomic
data. Then we used Bioconductor packages to extract
the transcriptomic profiles and perform cross-platform
normalization (Shambhala method), a static tests screening,
and identification of differentially expressed genes (DEGs).
We used the Database for Annotation, Visualization, and
Integrated Discovery (DAVID) to enrich the Gene Ontology
(GO) DEGs and the Kyoto Encyclopedia of Genes Genomes
(KEGG) pathway. We constructed a protein-protein interaction
(PPI) network and modules to screen core genes. We further
used CIBERSORTx to explore the infiltration of immune cells in
the DN glomerulus.

MATERIALS AND METHODS

Dataset Selection
The Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.
gov/geo/) is an international public repository containing high-
throughput microarray and next-generation sequence functional
genomic datasets, which can provide researchers with a large
number of gene expression profile data (22, 23). At present,
a large number of microarray data of different diseases
have been collected in the National Center for Biotechnology
Information (NCBI, http://www.ncbi.nlm.nih.gov/) database for
sharing and learning by institutes around the world. In this
report, in order to obtain transcripts related to human DN, we
searched all GEO datasets in the NCBI database with details
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of “diabetic nephropathy [Mesh],” “glomerular [Mesh],” and
“Homo sapiens [porgn:__txid9606]” before December 2020. A
total of 21 datasets were retrieved. We defined the following
exclusion criteria: (i) cell line sample; (ii) a sample of biological
fluids, including blood, plasma, and urine; (iii) samples of
tissues that have undergone special interventions, such as drug
stimulation, hypoxia, and oxygen-enriched treatment, etc. After
having filtered other tissues or diseases out, GSE96804 (24),
GSE104948 (13), GSE99339 (25), GSE30528 (9), GSE21785
(26), and GSE47183 (15, 27) were selected for subsequent
analysis. As there are fewer control samples in these datasets,
we manually retrieved human glomerular datasets as control.
Datasets GSE20602 (28), GSE121233 (29), GSE108109 (13),
GSE104066 (30), and GSE32591 (31) were included. These
dataset have similar characteristics as the control in the DN
datasets, which were marked as “glomeruli from living human
donor kidney biopsy” and “glomeruli from the unaffected portion
of tumor nephrectomies.” Based on all the above datasets, a
total of 90 DN and 95 healthy control glomerular samples were
included in this study (see Table 1 for details). The samples
were collected from multiple platforms, including Affymetrix
GeneChip, Human Genome HG-U133A Custom CDF, and the
Affymetrix Human Gene 2.1 ST Array.

Data Preprocessing and Identification of
DEGs
For the preprocessing of a large number of multi-platform
microarray datasets, we first used Affy1.64.0 (http://
bioconductor.org/packages/release/bioc/html/affy.html) (32)
and Oligo 1.50.0 (http://bioconductor.org/packages/release/
bioc/html/oligo.html) (33) from Bioconductor in R (3.60) to
extract gene expression value. Briefly, after downloading all
raw data (Table 1) from the GEO repository, probe expression
values were extracted by Affy according to the user guide.
After reading the raw data, background correction (rma),
normalization (quantiles), probe specific background correction
(pmonly), and summary (liwong) were performed to obtain
the probe expression value. If the raw data could not be
extracted by Affy, the Oligo package was used following the
user guide. After reading the raw data, further background
subtraction, normalization, and summarization was performed
by using rma. All probes were further annotated to genes
by their own annotation data. The median of the probe
expressions was calculated as the gene expression value. After
merging all transcriptomics data into a large sample and
removing none of the express genes, Shambhala (https://
github.com/oncobox-admin/harmony) was used to perform
cross-platform normalization according to the guidance of
literature. In this research, a longer P0 was used in Shambhala
which was kindly provided by developers and can be found
in Supplementary Table 1. This auxiliary calibration dataset
contains 13,645 genes which is much longer than what is
provided on the website. The levels of each gene expression
difference between control and DN were compared by Student’s
t-test coupled with a false discovery rate (FDR) correction. In
this study, genes conforming to the fold change (FC) ≥1.5 and

P < 0.05 (Student’s t-test adjusted by FDR) were considered
as DEGs.

GO Terms and KEGG Pathway Enrichment
of DEGs
GO and KEGG enrichment of the candidate genes were
performed using the DAVID online tool (https://david.ncifcrf.
gov) (34). GO analysis is a bioinformatics tool that presents
information on the biological domain with respect to molecular
function (MF), cellular components (CC), and biological
processes (BP) (35). KEGG is a database that displays information
of system integration gene functions (36). The enrichment
significance threshold was set to P < 0.05. The visualization
of GO enrichment results was conducted by using the GO
plot package in the R software (37). To determine the changed
tendency of pathways in DN, the Z-score was calculated in each
term using the following formula:

z − score =
Nup − Ndown√

count

The Nup and Ndown separately represent the number of
upregulated and downregulated genes between DN and normal
controls, and the count is the number of DEGs belonging to this
term (37).

PPI Network Construction and Module
Analysis
Cytoscape 3.8.0 was used for visualization and analysis of the
complex network (38). In order to avoid the loss of the protein-
protein interaction in a single database, we integrated PPI
information collected from multiple databases. We imported
network of DEGs by querying the Proteomics Standard Initiative
Common QUery Interface (PSICQUIC) which is integrated in
Cytoscape (39, 40). Four protein interaction databases were
selected for analysis: (i) STRING (https://string-db.org/) (41)
which integrates data from high-throughput experiments, text
mining, bioinformatics prediction, and interaction databases,
(ii) MINT (https://mint.bio.uniroma2.it/) (42) in which PPIs
have been confirmed experimentally, (iii) IntAct (https://www.
ebi.ac.uk/intact/) (43) which is directly submitted by users,
and (iv) Reactome (http://www.reactome.org) (44) which is a
pathway database that provides intuitive bioinformatics tools
for the visualization, interpretation, and analysis of pathway
knowledge. The former three databases focus on exploring
the physical interactions between proteins and the last one
focuses on biological pathways. After excluding non-human gene
information, the analysis results were merged to obtain more
comprehensive protein-protein interaction information. In a PPI
network, degree and betweenness centrality (BC) are commonly
used to evaluate the critical degree of nodes. Degree is the basic
index of a node, which is used to indicate the number of links that
interact with the node and the network (45). BC measures the
importance of nodes based on the shortest paths, which represent
the shortest distance between two nodes. A node with a greater
BC value has a higher frequency of information exchange within
the node (46, 47). In this study, nodes with a high degree and
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TABLE 1 | The microarray datasets collected and used in this study.

Dataset ID Experiment

platform

Disease samples Control samples Package for

preprocessing

Type Number Type Number

GSE96804 (12) GPL17586 DN 41 Glomeruli from the unaffected portion of tumor nephrectomies 20 Oligo

GSE104948 (13) GPL22945 DN 7 Glomeruli from living human donor kidney biopsy 18 Affy

GPL24120 DN 5 Glomeruli from living human donor kidney biopsy 3 Affy

GSE30122 (9) GPL571 DN 9 Glomeruli from living human donor kidney biopsy 13 Affy

GSE99339 (25) GPL19109 DN 7 – – Affy

GPL19184 DN 7 – – Affy

GSE47183 (15) GPL11670 DN 7 – – Affy

GPL14663 DN 7 – – Affy

GSE21785 (26) GPL96 – – Glomeruli from living human donor kidney biopsy 6 Affy

GSE20602 (28) GPL96 – – Glomeruli from the unaffected portion of tumor nephrectomies 4 Affy

GSE121233 (29) GPL17586 – – Glomeruli from the unaffected portion of tumor nephrectomies 5 Oligo

GSE108109 (13) GPL19983 – – Glomeruli from living human donor kidney biopsy 6 Oligo

GSE104066 (30) GPL19983 – – Glomeruli from living human donor kidney biopsy 6 Oligo

GSE32591 (31) GPL14663 – – Glomeruli from living human donor kidney biopsy 14 Affy

– indicates there are no such data.

high BC were regarded as key nodes, and genes whose BC and
degree were both in the top 10% in the total nodes of the network
were regarded as important genes. In this study, we computed
the properties of nodes and measured the default parameters
with Cytoscape. Next, we used the Cytoscape plug-in Molecular
Complex Detection tool (MCODE; version 1.5.1) (48) to identify
the most important module in the network map. The criteria
for MCODE analysis were a degree of cut-off = 2, MCODE
scores >6, maximum depth= 100, node score cut-off= 0.2, and
k-score= 2(48).

Core Gene Identification
We selectedDEGs thatmet the following three constraints as core
genes: (i) DEGs that had a large fold change (top 100); (ii) the
gene was located in key module; and (iii) nodes with top 10% BC
values and degree determined by Cytoscape software.

Immune Cells Infiltration in DN Glomerular
Tissue
CIBERSORTx (https://cibersortx.stanford.edu) (49) is a digital
cytometry program that uses a machine learning method. It can
provide an estimation of the abundances of member cell types
in a mixed cell population by using gene expression data. We
used a validated leukocyte gene signature matrix that contained
547 genes to distinguish 22 human hematopoietic cell phenotypes
to identify glomerular immune cells infiltration. Seven T cell
types, naive and memory B cells, plasma cells, natural killer (NK)
cells, and myeloid subsets infiltration alteration were identified
(50). After uploading the cross-platform normalized data to
CIBERSORTx, permutations were set at 100 and absolute mode
was selected. Absolute mode scales relative cellular fractions into
a score that reflects the absolute proportion of each cell type in

a mixture. When the p < 0.05, it indicates that the infiltration
rate of the 22 immune cells types analyzed by CIBERSORTx is
accurate. The accurately identified immune cell infiltration was
further compared between normal control and DN by Wilcoxon
signed-rank test. The steps of the whole process are shown
in Figure 1.

RESULTS

Identification of DEGs
All microarray datasets were standardized, and the results
before and after standardization are shown in Figures 2A,B.
According to values of p < 0.05 and FC ≥ 1.5, a total of 578
genes were identified to be differentially expressed in the DN
group, including 334 upregulated and 244 downregulated genes
(Figure 2C and Supplementary Table 2). DEGs with the top
100-fold change are shown in the heatmap (Figure 2D).

GO and KEGG Pathway Analysis
GO analysis was performed based on the 578 DEGs, and circle
graphs show the top 10 entries of each term. BP demonstrated
that the DEGs were enriched in lipopolysaccharide, extracellular
matrix organization, angiogenesis, inflammatory response,
leukocyte migration, and platelet degranulation, etc. (Figure 3A).
Variations in DEGs linked with CC were extracellular exosome,
extracellular matrix, focal adhesion, and platelet alpha granule
lumen, etc. (Figure 3B). Regarding MF, DEGs were significantly
enriched in heparin binding, integrin binding, collagen binding,
and extracellular matrix structural constituent, etc. (Figure 3C).
Analysis of KEGG pathways indicated that canonical pathways
associated with DEGs were complement and coagulation
cascades, staphylococcus aureus infection, and ECM-receptor
interaction, etc. The top 15 KEGG enrichment results are shown
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FIGURE 1 | The workflow of microarray data preprocessing and subsequent analysis in this study. We selected 11 datasets based on the constraints. Firstly, raw

expression data were extracted after background correction and quality control. Processing was carried out using the R package, and then the data were

cross-platform normalized by coordination and transformation using Shambhala. Then DEGs of DN glomerular tissue and healthy control tissue were identified by

static analysis. Enrichment results were obtained using DAVID, then PPI networks and modules were constructed, and core genes were identified. Finally, the dataset

was brought into the CIBERSORTx web portal to evaluate immune cell infiltration.

in Figure 3D. The complete enrichment analysis results are in
Supplementary Table 3.

PPI Network Construction and Module
Screening
The DEG expression products in DN were constructed into PPI
networks by merging the STRING, MINT, IntAct, and Reactome
databases in Cytoscape software. By removing the separated
and separately connected nodes, a complex network of DEGs
was constructed and is presented in Figure 4A. Three modules
were identified by MCODE (Figures 4B–D). Module 1 (score
= 16.867) was composed of 31 nodes and 253 edges, module
2 (score = 10.051) was composed of 40 nodes and 196 edges,

and module 3 (score = 6.216) was composed of 38 nodes and
115 edges.

Core Gene Identification
In this study, C3, CCL21, SLC34A2, C7, ALB, ESM1, ATF3,
EGR1 etc. had large fold change, 109 genes (JUN, ALB, EGF,
VCAM1, ITGAM, etc.) were located in the three key modules,
70 genes (JUN, ALB, FN1, EGF, VCAM1, ITGAM, FOS, etc.)
were nodes in the PPI network with the top 10% of BC value
and degree. The Venn diagram presented illustrates the overlaps
between DEGs (Figure 5A). As shown in the Venn diagram, we
selected 13 eligible DEGs as core genes, including complement
C3 (C3), fibronectin 1 (FN1), collagen type I alpha 2 chain
(COL1A2), lumican (LUM), thrombospondin 2 (THBS2), CD44
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FIGURE 2 | Data preprocessing and identification of DEGs. (A,B) Gene expression data before and after normalization. The horizontal axis represents the sample

symbol and the vertical axis represents the gene expression values. The black line in the box plot represents the median value of gene expression. (C) Volcano plot

analysis of DEGs. Red represents high expression, green represents low expression, and gray represents no difference. (D) The heatmap of top 100-fold-change

DEGs. Red areas represent highly expressed genes and green areas represent lowly expressed genes in glomerular tissues from DN patients compared with normal

controls.

molecule (CD44), lysozyme (LYZ), Fos proto-oncogene (FOS),
early growth response 1 (EGR1), albumin (ALB), plasminogen
(PLG), epidermal growth factor (EGF), and dual-specificity
protein phosphatase-1 (DUSP1). The details of core genes are
shown in Figure 5B.

Infiltration of Immune Cells in DN
Since inflammation is enriched in GO and KEGG, it will
be interesting to specify which immune cells infiltrated the
glomerular under DN. CIBERSORTx is a bioinformatics tool that
can specifically analyze the infiltration of immune cells in tissues.
The results of CIBERSORTx analysis showed that there were
172 samples of glomerulus transcriptomic data at p < 0.05 (86
control and 86 DN). Indicating that most of the infiltration rates
of the 22 immune cells types analyzed by CIBERSORTx were
accurate. Compared with normal control glomerular tissues,
the infiltration of plasma cells, follicular helper T cells, resting
NK cells, macrophages M0, activated dendritic cells (DCs), and
neutrophils were reduced in glomerular tissues affected by DN.
Infantile CD4+ T cells, regulatory T cells, γδT cells, activated NK
cells, macrophages M1, macrophages M2, resting DCs, and mast
cells were increased in DN glomerular tissues (Figure 6).

DISCUSSION

DN is a serious complication of long-term diabetesmellitus (DM)
and a growing global economic burden (51). The glomerulus
plays a key role in the development of DN. However, due to the
complexity of etiology and ethnic differences, our understanding
of the molecular mechanism in DN glomerular tissue is still
incomplete. Therefore, it is urgent to explore the new molecular
mechanism which may help DN treatment and diagnosis.

In this study, we used bioinformatics methods to analyze
GEO transcriptomics datasets before December 2020, and
attempted to explore the potential molecular mechanisms of the
DN glomerulus. A total of 578 DEGs were identified in the
glomerular samples between DN and normal samples, including
334 upregulated and 244 downregulated genes. Thirteen core
genes were finally identified, including C3, FN1, COL1A2, LUM,
THBS2, CD44, LYZ, FOS, EGR1, ALB, PLG, EGF, and DUSP1.

Among these core genes, some have been shown to play an
important role in the pathogenesis of DN, C3 (52, 53), ALB (54–
56), EGF (57), EGR1 (58–61), COL1A2 (62), FN1 (63, 64), CD44
(65, 66), FOS (67), PLG (68, 69), and DUSP1 (70). It is well-
known that inflammation and fibrosis play an important role in
the pathogenesis of the DN glomerulus (71).
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FIGURE 3 | GO and KEGG enrichment result of DEGs. The result of the top 10 enrichment genes is shown in the GOCircle plot: BP (A), CC (B), MF (C). The inner

ring is a bar plot where the bar height indicates the significance of the term (p-value) and the color indicates the z-score. The outer ring displays scatterplots of the

expression levels (logFC) for the genes in each term. The blue node is the downregulated gene, and the red node is the upregulated gene. (D) The top 15 KEGG

enrichment results. The x-axis represents gene number and the y-axis represents KEGG terms. The size of the circle represents gene count. Circles of different colors

represent different adjusted p-values.

Among these 13 core genes, there is little known about
what roles LYZ, LUM, and THBS2 play in the development
of DN. LYZ, which encodes lysozymes, is an antimicrobial
agent found in human milk. It is also found in the spleen,
lungs, kidneys, white blood cells, plasma, saliva, and tears.
Gallo et al. found that LYZ downregulated the production and
release of inflammatory mediators [such as interleukin (IL)-6]
induced by late glycosylation end products in in vitro models
of human proximal renal tubular epithelial cells, and prevented

the recruitment of some macrophages at the inflammatory site
(72). Indicating that locally expressed LYZ may take part in
the pathogenesis of DN. LUM encodes members of the leucine-
rich small proteoglycan (SLRP) family, which includes decorin,
biglycan, and fibromodulin, etc. (73). The protein expressed
by this gene partially binds collagen fibers, and highly charged
hydrophilic glycosaminoglycans regulate the spacing between
fibers (74). It has been reported that the LUM protein and its
family member decorin accumulate strongly in the advanced
glomerulosclerosis stage of DN (75). Decorin greatly affects the
progression of DN by forming the ternary complex of decorin-
type I collagen-transforming growth factor, beta (TGF-β) (75). It
is speculated that LUM may also promote the development of
DN by interacting with TGF-β. THBS2 proteins belong to the
thrombospondin family. As a relatively special member of this
family, it has an anti-angiogenic effect and interacts with various

cell receptors and growth factors to regulate cell proliferation,
apoptosis, and adhesion (76). It has been shown that THBS2 plays
an important role in acute kidney injury (AKI) (77). It also has
been found differently expressed in the plasma of type 2 diabetes
patients (78). This indicates that THBS2 plays an important role
in DN.

We enriched the GO terms and KEGG pathway of
DEGs. Among the enriched pathways, inflammatory response,
leukocyte migration, platelet degranulation, and platelet alpha

particles attracted our attention. We further used CIBERSORTx
to identify immune cell infiltration in DN glomerular tissues.
Three types of T cells increased infiltration in the DN tissues,
including naive CD4+ T cells, regulatory T cells, and γδT cells.
The originally resting NK cells in the tissues were activated,
and the macrophages were also differentiated from resting M0
into the classically activated and pro-inflammatory M1 and the
alternatively activated M2. The active DCs were reduced to
resting. The infiltration of mast cells was increased and the
infiltration of plasma cells and neutrophils was decreased in DN
glomerular tissue. These results imply that humoral immunity
and cellular immunity is altered in DN patient glomerular tissue.
These results imply that there may be crosstalk among the
glomerulus, platelets, and immune cells.

Glomerular cells can recruit immune cells and activate
platelets in DN. Glomerular cells suffer from oxidative stress
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FIGURE 4 | PPI network and three significant modules of DEGs. (A) PPI network of DEGs created by merging the STRING, MINT, IntAct, and Reactome databases.

The orange purple nodes represent upregulated DEGs, and blue nodes represent downregulated DEGs. A total of 578 DEGs formed a PPI network consisting of 557

nodes and 3,882 edges. (B) The most significant module identified by MCODE (score = 16.867). (C) The second most significant module identified by MCODE (score

= 10.051). (D) The third most significant module identified by MCODE (score = 6.216). The size of the nodes corresponds to their degree.

(79), advanced glycation end products (AGEs) (80), abnormal
lipid metabolism (81), and other damages in DN. These will lead
the glomerular cells to lose their function and induce fibrosis
(68). Injured glomerular mesangial cells, glomerular endothelial
cells, and podocytes can produce inflammatory and adherence
factors to recruit and activate immune cells (79, 82). These
factors such as C-C motif chemokine ligand 2 (CCL2) (83–86),

C-X3-C motif chemokine receptor 1 (CX3CR1) (83), inter-
cellular adhesion molecule-1 (ICAM-1) (87, 88), vascular cell
adhesion molecule-1 (VCAM-1) (89), and tumor necrosis factor-
alpha (TNF-α) (90, 91) will recruit and activate lymphocytes,
monocytes, and other immune cells (83). Injured glomerular
mesangial cells, glomerular endothelial cells, and podocytes can
also activate platelets (92, 93). In the development of DN,
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FIGURE 5 | Venn diagram of core genes. (A) The blue circle represents DEGs that had a high large fold change (top 100). The red circle represents DEGs that were

located in the three key modules. The green circle represents DEGs that had the top 10% BC values and degree in the PPI network. (B) Details of core genes (FC,

FDR adjusted p-value, node degree, node BC value).

FIGURE 6 | Comparison of infiltrated immune cell subpopulations in glomerulus tissues with or without DN. Violin plot of immune-infiltrating lymphocytes between DN

glomerular tissues and healthy control glomerular samples, in which the red represents DN samples, and the blue represents control samples.

collagen is accumulated in the glomerulus (94, 95). Collagen
has long been considered as an important activator of platelet
activation. Collagen can directly bind to the glycoprotein VI
(GPVI) receptor or integrate the von Willebrand factor (vWF)
to activate the glycoprotein Ib-IX-V complex (GPIb-IX) receptor
to activate platelets (96, 97). In DN, the increase of AGEs (98),

chemokines (such as CCL2, C-X-C motif chemokine ligand 1
(CXCL1)) (99–101), very low density lipoprotein (VLDL) (102),
and abnormal metabolism of nitric oxide (NO) can also active
platelets (92, 103–105).

Recruited immune cells can release a variety of chemokines,
these will damage glomerular cells, cause fibrosis in DN, and
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FIGURE 7 | Schematic diagram describing the crosstalk among platelets, immune cells, and the glomerulus. The purple hexagonal box lines represent cellular

mediators. The red box indicates the protein expressed by DEGs. The frameless protein was not expressed by DEGs. “→” cells that secrete; “ ” the activation

mechanism between cells (the red line is glomerular cells-immune cells-platelets, and the blue line is glomerular cells-platelets-immune cells). ① Injured glomerular

cells can recruit and activate immune cells. ② Injured glomerular cells can activate platelets. ③ Recruited immune cells can damage glomerular cells and cause

fibrosis. ④ The recruited and activated immune cells stimulate platelet activation. ⑤ Activated platelets may further activate other platelets. ⑥ Activated platelets can

recruit immune cells. ⑦ Activated platelets can damage glomerular cells and cause fibrosis in DN. The above is the hypothetical crosstalk among the glomerulus,

immune cells, and platelets.

activate platelets. Recruited macrophages can be induced by
locally secreted TNF-α, and differentiated from resting M0 to
activated pro-inflammatory M1 and M2 (90, 91). Once activated,
macrophages will release reactive oxygen species (ROS), IL-
1, TNF-α, complement factors, and metalloproteinases (106).
Recruited mast cells and macrophages can release CXCL1 (107–
109). Recruited CD4+ T cells (110), γδ T cells, and NK cells (111)
secrete inflammatory factors (interferon gamma (IFN-γ) and IL-
17A) (112, 113) and chemokines to promote the proliferation and
differentiation of B cells and the formation of immune complexes
(114). We all know those factors will damage the glomerulus,
cause fibrosis, and promote the progression of DN (82, 83).
Immune cells release chemokines (such as CCL2, CXCL1), and
ROS can also activate platelets (99–101, 115).

Activated platelets may further activate other platelets (94),
recruit immune cells, damage glomerular cell, and cause fibrosis
in DN. Once platelets are activated, platelets will express the
CD36 molecule (CD36), protein kinase C eta (PRKCH), and
coagulation factor II thrombin receptor like 2 (F2RL2) on
the surface of platelets, which will cause more platelets to be
activated (116–123). Platelet hyper function is observed in DM
(92, 93) and DN (93) patients, indicating that platelets may
play an important role in the development of DN. Activated
platelets release a variety of pro-inflammatory cytokines (TNF-α,
P-selectin, TGF-β, FN1, ILs, VCAM-1) and chemokines (CCL-2,

CXCL1, and CX3CR1) (96). As described before, some of those
factors can recruit and active immune cells (124), and those active
immune cells will damage glomerular cells. Some of these factors
even can damage glomerular cells directly, such as TGF-β (125),
TNF-α (126), ILs (127), and FN1 (63).

Therefore, there may be positive feedback among the
glomerulus, platelets, and immune cells. This vicious cycle may
damage the glomerulus for a long time even after the initial
high glucose damages have been removed. This may be a reason
why renal damage in DN patients still progresses even after
blood glucose was strictly controlled. The hypothesized crosstalk
among platelets, immune cells, and glomerular cells are shown in
the schema (Figure 7).

CONCLUSION

In summary, we found three core genes that may be associated

with the pathogenesis of DN (LYZ, LUM, and THBS2).
Furthermore, our further bioinformatics analysis suggested that

there might be positive feedback among platelets, immune

cells, and the glomerulus. And this feedback may damage the

glomerulus for a long time even after the initial high glucose

damages have been removed. These findings may provide new
ideas for the pathogenesis and treatment of DN. However, due to

Frontiers in Medicine | www.frontiersin.org 10 June 2021 | Volume 8 | Article 657918

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Yao et al. Bioinformatics Analysis Diabetic Nephropathy Glomerulus

the lack of experimental verification in this study, further studies
are needed.
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