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The tumor stroma plays an important role in tumor progression and chemotherapeutic

resistance; however, its role in colon cancer (CC) survival prognosis remains to be

investigated. Here, we identified tumor stroma biomarkers and evaluated their role in CC

prognosis stratification. Four independent datasets containing a total of 1,313 patients

were included in this study and were divided into training and testing sets. Stromal

scores calculated using the estimation of stromal and immune cells in malignant tumors

using expression data (ESTIMATE) algorithm were used to assess the tumor stroma

level. Kaplan-Meier curves and the log-rank test were used to identify relationships

between stromal score and prognosis. Tumor stroma biomarkers were identified by

cross-validation of multiple datasets and bioinformatics methods. Cox proportional

hazards regression models were constructed using four prognosis factors (age, tumor

stage, the ESTIMATE stromal score, and the biomarker stromal score) in different

combinations for prognosis prediction and compared. Patients with high stromal scores

had a lower overall survival rate (p = 0.00016), higher risk of recurrence (p < 0.0001),

and higher probability of chemotherapeutic resistance (p < 0.0001) than those with

low scores. We identified 16 tumor stroma biomarkers and generated a new prognosis

indicator termed the biomarker stromal score (ranging from 0 to 16) based on their

expression levels. Its addition to an age/tumor stage-based model significantly improved

prognosis prediction accuracy. In conclusion, the tumor stromal score is significantly

negatively associated with CC survival prognosis, and the new tumor stroma indicator

can improve CC prognosis stratification.

Keywords: colon cancer, microenvironment, tumor stroma, immune cells, prognosis stratification

INTRODUCTION

Colorectal cancer is the world’s fourth most deadly cancer, accounting for ∼10% of global
cancer-related deaths each year (1, 2). Risk stratification and prognosis prediction of patients with
colorectal cancer mainly rely on the tumor, lymph node, metastasis (TNM) classification system of
the American Joint Committee on Cancer (3). However, this system provides useful but incomplete
prognostic information, and additional clinicopathological and molecular characteristics should be
considered to improve its prediction accuracy, such as mutation status, immune score, stromal
components, and the presence of microsatellite instability (4–8).

Malignant solid tumors like colon cancer (CC) consist of not only tumor cells but also the tumor
microenvironment (TME), which includes infiltrating immune cells, tumor stroma components,
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and other normal epithelial cells (9). The tumor stroma and
immune cells are increasingly thought to play important roles
in CC progression and drug resistance (10, 11); however,
the specific molecules involved and their mechanisms remain
unclear, particularly for the tumor stroma. Pagès et al. (12)
developed a new indicator, termed an “immunoscore,” which
could effectively predict CC prognosis. It measures the density
of CD3+ and CD8+ T-cell effectors within the tumor and its
invasive margins to assess the levels of infiltrating immune cells.
We hypothesized that adding an additional indicator based on
the tumor stroma into the current classification system would
further improve CC prognosis stratification.

Estimation of stromal and immune cells in malignant tumors
using expression data (ESTIMATE) is a newly developed
algorithm that assesses the levels of the tumor stroma and
infiltrating immune cells using the transcriptional profiles
of cancer tissues, by detecting the specific gene expression
signatures of stromal and immune cells (13). This method has
been applied to several cancers and has proved helpful for
prognosis stratification (14, 15); however, it has not been applied
to CC. Based on this method, the purpose of this study was to
develop a new specific tumor stroma indicator to improve the
risk stratification and prognosis prediction of patients with CC.

MATERIALS AND METHODS

Data Preparation
Normalized gene expression matrices and matched clinical
information for GSE39582 and GSE17538, which contain 556
and 232 patients with CC, respectively, were downloaded from
the Gene Expression Omnibus database. These microarray
datasets, both acquired on Affymetrix Human Genome
U133 Plus 2.0 Arrays, were combined for further analysis by
correcting batch effects using the ComBat method implemented
in the “SVA” package. Normalized mRNA expression and
protein/phosphorylation expression matrices and matched
clinical information from a dataset containing 106 patients
with CC were obtained from the cBioPortal database (http://
www.cbioportal.org/). TCGA project-COAD level 3 gene
expression and micro (mi)RNA expression matrices, normalized
by fragments per kilobase of exon per million reads mapped
fragments (FPKM) and reads per million mapped reads (RPM),
respectively, and a corresponding DNA methylation beta
matrix were downloaded using the R package “TCGAbiolinks.”
Inclusion criteria for patients were: (1) complete information
regarding survival status and time; and (2) a follow-up
time ≥1 month. Human reference genome annotation data
(version: GRCh38.p13) and human binding motif data (version:
GRCh38.p13) were downloaded from the Ensembl BioMart
database (https://useast.ensembl.org/index.html) to predict
transcription factors (TFs) regulating target genes.

Correlations Between the ESTIMATE
Stromal Score and Clinical Prognosis
The ESTIMATE algorithm was applied to calculate the stromal
score of each CC patient using gene expression profiles.
To identify the most significant stromal score threshold for

patient grouping, we used the method “maximally selected
rank statistics” in the R package “maxstat” (16). Patients were
divided into high and low stromal score groups according to
the threshold value. Then, Kaplan-Meier (KM) analysis and a
log-rank test were used to identify survival differences between
the high and low stromal score groups in the training set, and
validation was performed using the testing sets. Moreover, we
performed Wilcoxon rank-sum and/or Kruskal-Wallis tests to
identify relationships between the ESTIMATE stromal score and
clinical features, including T, N, and M pathological results and
the tumor stage.

Correlations Between the ESTIMATE
Stromal Score and Chemotherapy
Resistance
A subset of 540 patients from GSE39582 with information
regarding adjuvant chemotherapy was divided into three groups
based on their treatment regimens and stromal scores: patients
who were not treated with chemotherapy, patients with low
stromal scores who were treated with chemotherapy, and patients
with high stromal scores who were treated with chemotherapy.
Then, we performed Wilcoxon rank-sum and Kruskal-Wallis
tests to identify differences in the stromal score distribution
between the three groups. KM analyses and log-rank tests were
used to identify survival differences.

Identification of Specific Differentially
Expressed Genes (SDEGs)
To identify SDEGs in the high stromal score group vs. the low
stromal score group, we analyzed differences between the groups
in three independent datasets (the training set and the testing
sets). The R package “limma” was used to identify differentially
expressed genes (DEGs), based on thresholds of log fold change
>1 and adjusted p (adjP) < 0.05. Then, we performed overlap
analysis of the top 30 DEGs from each dataset to identify SDEGs
that were significantly increased in the high stromal score group
compared to the low stromal score group.

Identification of Clinically Significant
Modules
We conducted weighted co-expression network analysis
(WGCNA) to identify modules most relevant to the tumor
stroma and characterize the correlation patterns among module
genes using the R package “WGCNA.” The mRNA weighted co-
expression network was constructed using the mRNA expression
profile in the training set and the top 10,000 variable genes
measured by median absolute deviation. The “WGCNA” package
function pickSoftThreshold was used to select an appropriate
soft-thresholding power value, which was applied to construct
a scale-free topology matrix. Parameters used to construct the
co-expression gene modules were as follows: a deepSplit of 2, a
minModuleSize of 30, a maxBlockSize of 20,000, and merging of
highly similar modules when the module eigengene height in the
clustering was <0.25. Finally, we related the modules to clinical
features to identify the module whose genes were most relevant
to the stromal score.
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Module Preservation Analysis and
Functional Annotation
To examine the stability of the identified stroma-related module,
we performed module preservation analysis using the function
modulePreservation (17) in the “WGCNA” package and the
two mRNA expression profiles in the testing sets, with the
parameter nPermutation set to 200. The preservation Zsummary
(Z) was used to estimate module preservation between different
datasets, with Z > 10, 5 < Z ≤ 10, and Z ≤ 5 indicating high,
median, and low preservation, respectively. Then, to explore the
biological functions of the genes in the stroma-related module,
we performed gene ontology (GO) and Kyoto Encyclopedia of
Genes andGenomes (KEGG) pathway enrichment analyses using
the R package “clusterProfiler.” AdjP < 0.01 was considered
statistically significant.

Hub Gene Identification
Hub genes within modules are genes that have a high degree
of connectivity in the associated interaction network and play
important roles in related clinical features. To identify hub genes
in the stroma-related module, we first constructed a protein-
protein interaction (PPI) network containing all genes in the
module using the online database STRING (https://string-db.
org/). Then, we imported the PPI network into Cytoscape
(version 3.71) to calculate the degree of each node. Candidate
hub genes had degrees >90. We also performed overlap analysis
between candidate hub genes and the three DEG sets to further
filter the hub genes.

Biomarker Identification
In this study, tumor stroma biomarkers were defined as closely
related to the stromal score and significantly negatively correlated
with survival prognosis. All identified SDEGs and hub genes were
initially selected as candidate biomarkers. We first conducted
t-tests to further validate the expression differences of these
genes between the high and low stromal score groups at
the protein level using the protein/phosphorylation expression
matrix. Protein features containing >30% missing values were
excluded prior to the t-test. The criterion for filtering was p
< 0.05. Next, we conducted Pearson correlation analyses using
the mRNA expression profile from the training set to determine
the relationships between candidate biomarkers and the stromal
score. The criteria for screening were p < 0.01 and r > 0.5. The
results were verified by the same method using the testing sets.

Correlations Between Biomarkers and
Prognosis
We divided patients in the training set into high and low
expression groups according to the optimal cutoff of each
biomarker’s mRNA expression, as determined by the R package
“maxstat.” Then, we performed KM analysis and log-rank tests to
determine survival differences between the two groups based on
each biomarker. Statistical significance was defined as p < 0.05.
We validated the results in the same manner using the testing
sets. Biomarkers that produced statistically significant differences
in both the training set and the testing sets were retained for
further analysis.

Construction of the Prognosis Model
In addition to the stromal score calculated by ESTIMATE, we
created another new indicator for risk stratification, termed the
biomarker stromal score, a cumulative measure of the number
of biomarkers that were significantly higher in each patient. We
divided the patients into low-, median-, and high-risk groups
based on their biomarker stromal scores using the R package
“maxstat,” then performed KM analysis and log-rank tests to
determine survival differences between the three groups using
survival information from all patients in the training set and the
testing sets. Moreover, to estimate and compare the stratification
ability of each prognosis feature, we performed time-dependent
receiver operating characteristic (ROC; 3-year and 5-year)
analysis with 1,000× bootstrap resampling for each feature (age,
pathology T, pathology N, pathologyM, tumor stage, ESTIMATE
stromal score, and biomarker stromal score) separately. Finally,
we performed multivariate regression analyses to construct
three multivariable Cox proportional hazards models using the
prognosis features age, tumor stage, ESTIMATE stromal score,
and biomarker stromal score in different combinations. Two
evaluation methods [time-dependent ROC curves (area under
the curve (AUC) and the concordance index (C-index)] were
used to measure the prediction accuracy of each prognosis model
with 1,000× bootstrap resampling, and their performance was
compared using the p-value of the likelihood ratio. In addition, to
use the prediction model clinically, a nomogram was developed
to predict the 1–5-year survival rates of patients with CC, and
calibration curves were used to test its performance.

Construction of the Direct Regulatory
Network
To explore potential regulatory mechanisms of the biomarkers,
we examined their methylation status, TFs, and competing
endogenous RNA (ceRNA) networks. We analyzed methylation
differences between the high and low stromal score groups
using the R packages “ChAMP” and a methylation beta matrix
containing 281 patients to detect CpG sites with significant
changes in methylation. The thresholds for statistical significance
were adjP < 0.05 and deltaBeta <-0.05.

We used the human reference genome annotation dataset and
human binding motif dataset, which uses the position weight
matrix method to predict potential TF binding sites, to predict
TFs that interact with target gene promoters. Binding sites with
scores <0 were filtered out of the binding motif dataset, and the
promoter region of a gene was defined as the region between
1,000 bp upstream and 200 bp downstream of the transcriptional
start site in the genome annotation dataset. We further filtered
the TFs according to their differential expression in the high
and low stromal score groups using the protein/phosphorylation
expression matrix. Moreover, to improve the confidence of the
TF assignments, we performed Pearson correlation analysis to
identify associations between TFs and target genes using a
subset from dataset100 containing 96 patients with both mRNA
expression and protein/phosphorylation expression profiles, with
thresholds of p < 0.05 and r > 0.3.
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Finally, given the positive regulatory associations between
long non-coding (lnc)RNAs and mRNAs in ceRNA networks,
we first performed Pearson correlation analysis to examine
associations between the expression of lncRNAs and the

biomarkers using a dataset containing 453 patients with
both lncRNA and mRNA expression profiles. The criteria
for filtering lncRNAs were r > 0.65 and p < 0.01. We
predicted direct miRNA-mRNA interactions using the online

FIGURE 1 | Flow chart of the study. DEG, differentially expressed gene; TF, transcription factor; ceRNA, competing endogenous RNA.
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database StarBase (http://starbase.sysu.edu.cn/). For inclusion,
interactions needed to be validated at least once by cross-
linking immunoprecipitation(CLIP), and predicted by at least
three of the PITA, RNA22, miRmap, miroT, miRanda, PicTar,
and TargetScan databases. Direct lncRNA-miRNA interactions
were predicted using the starBase miRanda tool. For inclusion,
interactions needed to be validated at least once by CLIP. Then,
we merged the lncRNA-miRNA and miRNA-mRNA networks to
generate the direct lncRNA-miRNA-mRNA regulatory network.
Finally, we performed KM analysis and log-rank tests to
identify survival differences based on the expression levels of
lncRNAs and miRNAs in the ceRNA network, using lncRNA
andmiRNA expressionmatrices containing 428 and 413 patients,
respectively. Statistically significant (p < 0.05) lncRNAs and
miRNAs were retained. The network was constructed and
visualized using Cytoscape.

Statistical Analyses
All statistical analyses in this study were completed in R version
3.6.3 (https://www.r-project.org/). Appropriate R packages were
used for different analyses. For these, specific parameters used

are listed in their respective sections, while default parameters are
not listed. The threshold of statistical significance varied among
different statistical analyses but was at least p < 0.05.

RESULTS

Data Collection
We included four datasets containing nine expression matrices
and a total of 1,313 patients with primary CC. Different
expression matrices in the same dataset shared the same patients;
however, the number of patients in the matrices were not
necessarily the same. The GSE39582 and GSE17538 datasets
were combined into a training set with an mRNA expression
matrix containing 785 patients, termed dataset785. This set was
mainly used to mine data in our study. A dataset containing 100
patients was obtained from the cBioPortal database was termed
dataset100. It consisted of mRNA and protein/phosphorylation
expression matrices. Another dataset, obtained from The Cancer
Genome Atlas (TCGA), containing 428 patients and mRNA,
lncRNA, miRNA, and methylation expression matrices, was
termed dataset428. Dataset100 and dataset428 were defined

FIGURE 2 | Association between the ESTIMATE stromal score and CC survival prognosis and clinical features. (A) Overall survival curves and (B) disease free survival

curves of the high and low stromal score groups. (C–F) Boxplots of the ESTIMATE stromal scores of different groups with regards to T, N, and M pathology results

and tumor stage.
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FIGURE 3 | Association between the ESTIMATE stromal score and chemotherapeutic resistance. (A) Boxplots of the stromal scores and (B) survival curves of

patients with high and low stromal scores who were treated with chemotherapy and patients who were not treated with chemotherapy.

as testing datasets mainly used for verification and molecular
mechanism analysis. Details regarding the datasets are provided
in Supplementary Table 1, and the complete workflow of the
study is displayed in Figure 1.

Correlations Between the ESTIMATE
Stromal Score and Clinical Prognosis
Patients in dataset785 were divided into high and low stromal
score groups based on the determined optimal cutoff. KM
analysis and a log-rank test revealed that patients with low
scores had significantly better overall survival (OS; p =

0.00016; Figure 2A) and disease-free survival (DFS; p <

0.0001; Figure 2B) than patients with high scores. These
results were validated using dataset100 and/or dataset428
(Supplementary Figures 1A–C). Wilcoxon rank-sum
and Kruskal-Wallis tests identified statistically significant
relationships between the stromal score and clinical features,
including the T, N, M pathology results and tumor stage
(Figures 2C–F). The results were verified using dataset100
(Supplementary Figures 2A–D). Therefore, these results
indicate that tumor stroma is closely associated with tumor
progression and survival prognosis.

Correlations Between the ESTIMATE
Stromal Score and Chemotherapy
Resistance
A total of 540 patients with information regarding adjuvant
chemotherapy were included and divided into four groups based
on the ESTIMATE stromal score and adjuvant chemotherapy
information. Wilcoxon rank-sum and Kruskal-Wallis tests

showed the distribution of the ESTIMATE stromal score between
groups were significantly different and the details were shown
in Figure 3A. Patients treated with chemotherapy who had high
stromal scores had a lower OS rate than those with low stromal
scores and patients who were not treated with chemotherapy (p
< 0.01); however, there was no significant difference in survival
between chemotherapy patients who had low stromal scores and
patients not treated with chemotherapy (Figure 3B). Therefore,
our findings indicate that patients treated with chemotherapy
who have high stromal scores are more vulnerable to the
development of chemotherapeutic tolerance and have a poor
survival prognosis.

SDEG Identification
We conducted differential analyses between the high and low
stromal score groups using the mRNA expression profiles in
dataset785, dataset100, and dataset428, and identified 246, 501,
and 2,313 DEGs, respectively (Supplementary Figures 3A–C).
Overlap analysis of the top 30 DEGs from each DEG set (based
on the log fold change) produced nine SDEGs (Figure 4 and
Table 1). Notably, among these nine SDEGs, gene SFRP2 had the
biggest logFC. These SDEGsmay play an important role in tumor
stroma-induced promotion of tumor progression.

Identification of Stroma-Related Modules
Through WGCNA
To construct the mRNA co-expression network, we selected 6 as
the appropriate sort-thresholding power value, which generated
21 mRNAmodules (Supplementary Figures 4A–C). Association
analysis between the modules and clinical features revealed that
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FIGURE 4 | Identification of SDEGs. The Venn diagram shows the overlap between the top 30 DEGs from the three datasets.

the yellow module (containing 1,173 genes) was most related to
the stromal score (r= 0.929; p= 0; Figures 5A,B). This indicates
that genes in the yellow module, particularly its hub genes, may
play important roles in the tumor stroma-induced promotion of
tumor progression and drug resistance.

Module Preservation Analysis and
Functional Annotation
To examine the stability of the stroma-related module (yellow)
in the training set identified above, we performed module
preservation analyses using the two testing sets (dataset428 and

dataset100). As shown in Figures 5C,D, the horizontal dashed
lines indicate the Zsummary (Z) thresholds for strong evidence
of conservation (>10) and for low to moderate evidence of
conservation (>2), so we can see the yellow module had good
performance with Z > 10 in both dataset428 and dataset100,
which means that genes in the yellow module have high
consistency in the training set and testing sets. Moreover, to
determine the functional involvement of the tumor stroma, the
1,173 genes in the yellow module were subjected to GO and
KEGG pathway enrichment analyses. As shown in Figures 6A,B,
enriched biological processes (BPs), molecular functions (MFs),
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TABLE 1 | Differential analysis statistics of the nine SDEGs.

Gene Dataset785 Dataset428 Dataset100

logFC adj. P.Val logFC adj. P.Val logFC adj. P.Val

SFRP2 3.33 5.2E-114 4.14 7.2E-34 3.25 2.2E-06

COL10A1 2.50 2.3E-85 3.47 6.0E-28 2.40 4.6E-06

SFRP4 2.37 1.3E-93 3.32 1.2E-31 2.06 9.9E-05

THBS2 2.11 1.6E-82 2.88 4.0E-38 1.91 1.1E-06

SPOCK1 2.11 1.6E-104 2.98 2.3E-36 1.96 7.2E-07

MFAP5 1.98 5.4E-96 2.96 4.4E-37 1.89 5.5E-07

COMP 1.96 1.7E-79 3.66 1.4E-31 2.76 3.6E-05

EPYC 1.74 1.3E-49 3.65 5.0E-27 2.92 2.6E-05

GAS1 1.70 9.6E-115 3.13 7.1E-40 2.42 4.9E-07

SDEGs, specific differentially expressed genes; logFC, log fold change; adj.P.Val,

adjusted p-value.

and cellular components were all significantly focused on the
extracellular matrix (ECM). Most of genes in the six most
statistically significant signaling pathways were overexpressed in
the high stromal score group, and the three pathways “ECM-
receptor interactions,” “focal adhesions,” and “PI3K-Akt signaling
pathway” shared a significant number of genes (Figures 6C,D).
This indicates that these biological processes and signaling
pathways are closely related to tumor stroma function.

Identification of Hub Genes
Hub genes were defined as genes with high degrees of
connectivity in a PPI network of the yellow module. The
interaction network contained 1,105 nodes and 8,927 edges, and
node degrees ranged from 1 to 220 (Supplementary Figure 5).
We selected 20 candidate hub genes based on a degree threshold
of ≥90. Overlap analysis of candidate hub genes from the three
DEG sets identified 11 hub genes (Figure 7 and Table 2). This
means that these 11 hub genes may have important impacts on
the function of tumor stroma.

Identification of Tumor Stroma Biomarkers
The nine SDEGs and 11 hub genes were considered candidate
tumor stroma biomarkers and were all significantly related to
the stromal score based on thresholds of r > 0.5 and p <

0.01 (Figure 8). The results were verified using the two testing
sets (Supplementary Figures 6A,B). t-tests using the protein
expression matrix revealed that 16/20 genes were significantly
overexpressed in the high stromal score group compared
to the low stromal score group (Supplementary Table 2).
Four genes [epiphycan (EPYC), growth arrest specific 1
(GAS1), SPARC (osteonectin), cwcv- and kazal-like domains
proteoglycan 1 (SPOCK1), and secreted phosphoprotein 1
(SPP1)] were not included in the protein expression matrix;
therefore, we are unable to determine whether they display
differential protein expression. Given their significant differential
mRNA expression, these four genes were retained, resulting
in 20 candidate biomarkers for further analysis. Among
these candidate biomarkers, four collagen family members

(COL1A1, COL1A2, COL3A1, COL10A1) which are well-
known to be closely related to the function of the stroma
were contained, which also strongly supports the reliability of
our results. However, due to the heterogeneity of the tumor
microenvironment, even the same markers may play different
roles in different cancers. Therefore, although some markers
found in our study were closely related to the prognosis in CC,
they may play different roles in other cancers.

Correlations Between Tumor Stroma
Biomarkers and Survival Prognosis
Survival analyses using the training set showed that when applied
separately, each candidate biomarker generated a significant
survival difference between the high and low score groups
(Figure 9). However, only 14/20 were validated in the testing
set based on a threshold of p < 0.05 (Supplementary Figure 7).
Two more were marginally significant [microfibril associated
protein 5 (p = 0.056) and thrombospondin 2 (p = 0.051)]
were retained. Therefore, we finally identified 16 tumor stroma
biomarkers in this study, this suggests that these genes are closely
related to the tumor stromal function and survival prognosis of
CC patients.

Identification of a New Prognosis Indicator
for Risk Stratification
We next generated a new prognosis indicator based on the
16 tumor stroma biomarkers, termed the biomarker stromal
score, which ranged from 0 to 16. We divided 1,313 patients
(all with complete OS information; 787 also had complete
DFS information) into three risk groups based on thresholds
of 0, 1–9, and 10–16. OS and DFS analyses both revealed
significant survival differences between the three risk groups
(Figures 10A,B). Time-dependent ROC analyses showed that
the ability of the biomarker stromal score to predict 3- and
5-year OS was superior to the features of patient age and
ESTIMATE stromal score and had similar AUC values to the
T, N, and M pathology results. The tumor stage had the best
prediction accuracy (Figure 11A). Therefore, the biomarker
stromal score is a comparably effective prognosis indicator to
known clinical features.

Construction of the Prognosis Model
We used four prognosis factors (age, tumor stage, the ESTIMATE
stromal score, and the biomarker stromal score) in different
combinations to construct prognosis models, and data on
1,295 patients with complete age, tumor stage, ESTIMATE
stromal score, and biomarker stromal score information were
used in multivariable regression analyses. Three prognosis
models were constructed: model 1 included age and tumor
stage; model 2 included age, tumor stage, and the ESTIMATE
stromal score; and model 3 included age, tumor stage, and
the biomarker stromal score. Time-dependent ROC (3- and
5-year) and C-index results revealed that model 3 had the
best prediction accuracy (Figure 11B). The hazard ratios of
each feature in model 3 are shown in Figure 12A. Model 3
risk scores ranged from 0.104 to 12.539, and patients were
divided into five risk groups based on thresholds of ≤0.556,

Frontiers in Medicine | www.frontiersin.org 8 December 2020 | Volume 7 | Article 584747

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Chen et al. Colon Cancer Tumor Stroma Biomarkers

FIGURE 5 | Identification of stroma-relevant mRNA modules and module preservation analysis. (A) Heatmap of module-trait relationships. (B) Scatter plot of

correlations between gene module membership and gene significance in the yellow module. (C,D) Preservation medianRank and Zsummary graphs of the testing sets

dataset100 and dataset428. Dashed blue and green lines show the thresholds Z = 2 and Z = 10, respectively.
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FIGURE 6 | GO and KEGG enrichment analysis of genes in the yellow module. (A) Barplot of the top three most statistically significant GO terms in the BP, CC, and

MF categories. (B) Circle diagram of the three most statistically significant BPs. (C,D) Circle diagram of the six most significant KEGG pathways.

0.557–0.896, 0.897–1.27, 1.28–3.99, and >3.99. Significant
survival differences were observed between the five groups
(Figure 12B). In the nomogram plot, weighted scores calculated
based on the age, tumor stage, and biomarker stromal score
were used to predict the 1–5-year OS rate of patients with
CC (Figure 12C). The calibration curve demonstrated good
performance for the nomogram plot compared to an ideal model
(Supplementary Figure 8). Therefore, our findings suggest that

the biomarker stromal score can improve CC survival prognosis
prediction accuracy.

Construction of Biomarker Regulatory
Networks
Differential analysis of the methylation beta matrix between the
high and low stromal score groups revealed that 9/16 biomarkers
contained at least one significantly demethylated CpG site (a total
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FIGURE 7 | Identification of hub genes. The Venn diagram shows the overlap between the 20 candidate hub genes with degrees of connectivity >90 and the three

DEG sets.

of 66 CpG probes based on thresholds of deltaBeta <-0.05 and
adjP < 0.05; Figure 13A and Supplementary Table 3). Among
them, secreted frizzled related protein 2 (SFRP2) had the most
demethylated sites (29; with a mean deltaBeta of −0.098). This
suggests that increased demethylation contributes to the high
expression of the biomarkers in the high stromal score group.
Besides, survival analyses showed that 15/66 probes could make
significant survival differences based on the optimal cutoff of each
probes (p < 0.05; Supplementary Table 3). We next constructed
a TF-mRNA regulatory network consisting of 4 TFs, 12 mRNAs,

and a total of 19 edges; the interaction details are shown in
Figure 13B and Supplementary Table 4. Interestingly, RUNX
family transcription factor 2 (RUNX2) could regulate 11/12
mRNAs in the network. We also constructed a ceRNA network
consisting of 7 lncRNAs, 26 miRNAs, and 10 mRNAs, with
a total of 53 edges (Figure 13B and Supplementary Table 5).
Survival analyses based on the lncRNAs and miRNAs included
in the networks are shown in Supplementary Figures 9A,B. In
summary, these regulatory networks provide new insights into
the mechanism of tumor stroma biomarkers of CC.
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TABLE 2 | Statistics of the 11 hub genes in the yellow module.

Genes Degrees of connectivity Dataset785 Dataset428 Dataset100

logFC adj. P.Val logFC adj. P.Val logFC adj. P.Val

FN1 220 1.24 4.1E-61 2.53 2.9E-31 1.74 1.2E-04

COL1A1 137 1.04 3.9E-64 2.29 1.2E-36 1.60 9.1E-04

COL3A1 119 1.29 2.4E-69 2.22 9.3E-41 1.33 1.6E-06

COL1A2 116 1.37 3.6E-62 2.19 1.4E-38 1.36 4.0E-05

DCN 105 1.07 2.1E-99 2.17 6.1E-36 1.22 5.8E-07

BGN 100 1.42 1.1E-87 2.16 2.5E-41 1.78 4.6E-06

FBN1 98 1.69 3.5E-113 2.21 1.4E-42 1.30 1.8E-07

POSTN 98 1.29 1.2E-76 2.56 1.2E-33 1.70 1.5E-07

SPP1 98 1.39 2.1E-42 3.03 2.8E-25 2.06 7.1E-05

SPARC 94 1.40 4.5E-91 1.83 2.2E-42 1.26 4.1E-08

CXCL12 91 1.43 2.7E-87 1.85 8.9E-40 1.54 4.7E-08

Degrees of connectivity, edge counts of genes in the PPI network calculated by Cytoscape; logFC, log fold change; adj.P.Val, adjusted p-value.

DISCUSSION

Presently, risk stratification and prognosis prediction for
patients with CC is mainly based on clinical and pathological
characteristics (3, 4). In a recent study, Pagès et al. (12)
demonstrated that a new indicator, the immunoscore, can
effectively improve the accuracy of prognosis prediction for
patients with CC. In this study, we have identified 16 tumor
stroma biomarkers for primary CC and created a new indicator
for risk stratification and prognosis prediction based on them.
Our findings indicate that the tumor stroma is significantly
negatively associated with survival prognosis, and that our new
tumor stroma indicator could significantly improve the OS
prediction accuracy of the currently used classification system.

It is well-known that interactions between cancer cells and the
TME play important roles in tumor progression and therapeutic
resistance (18, 19). While tumor cells have historically been
the main therapeutic target of cancer treatment, different
components of the TME, such as immune cells and angiogenic
factors, have been recently targeted as well (20–23). However,
these studies took limited notice of stromal components, and
acquiring further insight into the interactions between cancer
cells and the tumor stroma may provide novel biomarkers for
stroma-targeted therapies as well as an increased understanding
of drug resistance. Furthermore, there remains a lack of uniform
criteria to assess tumor stroma condition. In this study, we
assessed the CC tumor stroma by assigning scores based on
stromal signatures generated using the ESTIMATE algorithm
(13), and found that patients with high stromal scores had
worse survival prognosis than patients with low stromal scores.
Our findings in CC are consistent with results for several other
cancers, such as gastric cancer, prostate cancer, and early-stage
non-small cell lung cancer (14, 24–26). This indicates that the

scores generated by this method may be a good tool to assess the

CC tumor stroma condition and could be used as a prognosis
factor for CC. In addition, we also found that the stroma
score was significantly negatively correlated with the survival

prognosis of chemotherapy patients, which may be caused by the
resistance of tumor stroma to chemotherapy. Previous studies
(27, 28) showed tumor-stromal architecture has been associated
with modulation of the response to anti-angiogenic therapy, and
combined therapy of chemotherapy and anti-angiogenesis was
more effective than monotherapy. Therefore, the role of tumor
stroma on anti-angiogenic therapy deserves further study.

While the notion that therapies targeting cancer cells and
the TME are equally important is widely accepted (29), specific
biomarkers of the tumor stroma are still lacking, and the
molecular mechanisms by which the stroma affects the tumor
remain unclear, because of its heterogeneity and complexity
(30, 31). In this study, to clarify the biological processes
and signaling pathways affected by the tumor stroma in the
promotion of CC progression and chemotherapy resistance,
we conducted enrichment analysis on the tumor stroma-
related genes. Interestingly, in GO and KEGG analyses, the
most statistically significant terms and pathways were related
to the ECM: the BP “ECM organization” (adjP = 5.22E-
59) and the KEGG pathway “ECM-receptor interaction” (adjP
= 6.47E-11), respectively. Tumor progression results in ECM
component changes and remodeling. This makes the ECM more
conducive to promoting the growth, survival, and migration of
cancer cells (32), and can increase drug resistance in various
ways. For instance, the buildup of a rigid ECM surrounding
tumor cells creates a physical barrier that reduces the diffusion
of therapeutic agents (33, 34). Cancer cells can also evade
chemotherapy by strongly adhering to ECM proteins through a
process known as cell adhesion-mediated drug resistance (35–
37). Our findings suggest that the ECM plays an important
role in the progression and therapeutic resistance of CC. Two
proven key signaling pathways related to tumor progression
and chemotherapy resistance, the phosphatidylinositol 3-kinase
(PI3K)-AKT serine/threonine kinase 1 (AKT1) and transforming
growth factor β1 pathways (38–40), were also significantly
enriched in our study. Most of the genes enriched in these two
pathways were highly expressed in the high stromal score group.
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FIGURE 8 | Associations between biomarkers and the ESTIMATE stromal score. The correlation plot was generated by Pearson correlation analysis.

Our results therefore identify major biological processes and key
signaling pathways related to the effects of the tumor stroma on
CC, providing valuable clues for its treatment.

We identified 16 tumor stroma biomarkers that were
closely related to the survival prognosis of patients with
CC, and some have previously reported associations with CC
tumor progression. For instance, fibronectin 1 (FN1) had the
highest degree of connectivity in the PPI network. Xie et al.
(41) showed that inhibiting FN1-SRC proto-oncogene, non-
receptor tyrosine kinase/protein tyrosine kinase 2-guanosine
triphosphatase (GTPase) signaling could inhibit CC metastasis,
and Cai et al. (42) reported that FN1 depletion could inhibit
colorectal carcinogenesis by suppressing proliferation, migration,

and invasion. The significant DEGs SFRP2 and SFRP4, and
especially SFRP2, had the most demethylated sites and the
biggest logFC values in our study, and are involved in
the biological processes of “extracellular matrix organization”
and “extracellular structure organization.” Vincent et al. (43)
reported that SFRP2 and SFRP4 are typically associated with
poor prognosis concomitant with epithelial-to-mesenchymal
transition (EMT). Nfonsam et al. (44) found that patients
with CC that overexpress SFRP4 have poor OS. In these
patients, SFRP4 levels were negatively correlated with the
levels of the EMT suppressors claudin 4 (CLDN4), claudin 7
(CLDN7), tight junction protein 3 (TJP3), mucin 1, cell surface
associated (MUC1), and cadherin 1 (CDH1). Klement et al. (45)
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FIGURE 9 | Correlation between the 20 biomarkers and survival prognosis. Patient survival curves based on the levels of each biomarker are shown.
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FIGURE 10 | Correlation between the new prognosis indicator and survival prognosis. (A) Overall survival and (B) disease-free survival curves for three risk groups

based on biomarker stromal score.

demonstrated that high SPP1 expression was associated with
decreased OS by acting as an immune checkpoint to suppress
T cell activation. C-X-C motif chemokine ligand 12 (CXCL12),
secreted by fibroblasts, can promote the proliferation and
invasion of CC via the PTEN/PI3K/Akt and MAPK/PI3K/AP-1
signaling pathways (46–48). In addition, its receptor C-X-Cmotif
chemokine receptor 4 (CXCR4) has been used as an effective
therapeutic target in prostate cancer (49–51). Thus, the findings
of these studies further support our results.

Regarding the regulatory mechanisms of the biomarkers,
we were surprised to find that RUNX2 could regulate 11/12
mRNAs in the TF-mRNA network. Increasing evidence has
highlighted the importance of RUNX2 in a variety of cancers.
For instance, it is highly expressed in metastatic prostate cancer
cells and may play an important role in prostate cancer-derived
metastatic bone disease (52, 53). RUNX2 plays an oncogenic
role in esophageal carcinoma by activating the PI3K/AKT1 and
extracellular-regulated kinase signaling pathways (54). Targeting
RUNX2 represses cell growth and metastasis in lung cancer
cells (55) and inhibits the progression of breast cancer to
metastatic bone disease (56). Besides, regarding the regulatory
function of RUNX2 in the network, Francisco et al. (57)
reported elevated RUNX2 may transcriptionally activate genes
mediating osteosarcoma progression and metastasis by targeting
SPP1. Toshihisa el al. (58) reported that Runx2 could induce
the expression of major bone matrix protein genes, including
COL1A1, SPP1, and FN1, in vitro. Besides, Toshihisa el al.
(59) also reported Runx2 plays an important role in the bone
metastasis of breast and prostate cancers by up-regulating SPP1.
Although some regulatory relationships in the network have been
verified by previous studies, there are still many waiting for
further verification. However, despite increasing evidence of the

importance of RUNX2 in various cancers, there are no reports
about its relevance in CC. Our results suggest that the role of
RUNX2 in CC is worthy of further study.

The current risk classification for cancers is mainly based
on the TNM staging system (3); however, for a deeper
understanding of tumor progression, more prognosis factors
should be considered. For instance, Weiser et al. showed that
an extended prognosis model including TNM staging, the tumor
grade, the number of collected metastatic lymph nodes, age, and
sex had higher sensitivity and specificity for CC (the C-index rose
from 0.60 to 0.68) than a model using the TNM system alone
(4). Pagès et al. (12) showed that adding an immunoscore to
a model combining clinical variables can significantly improve
OS prediction accuracy of AUC from 0.6 to 0.62. In this study,
we created a new prognosis indicator based on tumor stroma
biomarkers. Adding this indicator to a prognosis model based on
age and tumor stage also significantly improved the prediction
accuracy, with a similar degree of improvement to Pagès’s
immunoscore (3-year AUC raised from 0.75 to 0.773; 5-year AUC
raised from 0.732 to 0.758). In addition, as the new indicator is
based on only 16 biomarkers, testing will be easier, more effective,
and more economically feasible for patients with CC vs. the
ESTIMATE stromal score, which is based on 141 signatures.

Our study demonstrates the important role of the tumor
stroma in CC tumor progression and chemotherapy resistance
and provides novel candidates for targeted CC therapies.
However, the data available for this study is limited, and our
findings are mainly obtained through bioinformatics analysis of
high-throughput data which have inevitable batch differences
between different datasets due to sequencing technologies, so
these findings will require further validation with more clinical
data and molecular experiments. In our future work, we will
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FIGURE 11 | Performance of the biomarker stromal score in prognosis prediction compared with clinicopathological features. (A) Boxplots show the prediction

accuracy for 3- and 5-year overall survival, based on the AUC with 1,000× bootstrap resampling for each parameter. (B) The top and middle boxplots show the

prediction accuracy for 3- and 5- year overall survival based on the AUC with 1,000× bootstrap resampling, while the bottom boxplot shows the prediction accuracy

for overall survival based on the C-index with 1,000× bootstrap resampling for each prognosis model.
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FIGURE 12 | Clinical application of the best multivariable hazards model. (A) Forest plot of hazard ratios for the three prognosis features in model 3. (B) Survival

curves and scatter plots of patients in five different risk groups, based on the risk score. (C) A nomogram plot was constructed with the three prognosis features to

predict the 1–5-year overall survival rates of patients with CC.
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FIGURE 13 | Mechanistic insight into the tumor stroma biomarkers. (A) Heatmap of demethylation site distribution in nine biomarkers. The x-axis indicates the region

relative to the genome and CpG islands, and the numbers indicate the demethylation probe counts in the region. (B) A network of TF-mRNA and

lncRNA-miRNA-mRNA interactions. The node size indicates the node edge count, and arrows represent direct regulatory effects.
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test additional clinical datasets and perform additional molecular
experimental verification on the identified biomarkers. Notable,
this is the first study to consider the tumor stroma in CC risk
stratification, and the new prognosis indicator and prognosis
model created in this study will increase the accuracy of risk
stratification and survival prediction, improving the outcomes of
patients with CC.
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