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Amidst uncertainty, decision-making in manufacturing becomes a central focus
due to its complexity. This study explores complex transportation constraints and
uses novel ways to guide manufacturers. The Multi-objective Stochastic Linear
Fractional Transportation Problem (MOSLFTP) is a crucial tool for managing
supply chains, manufacturing operations, energy distribution, emergency
routes, healthcare logistics, and other related areas. It adeptly addresses
uncertainty, transforming efficiency and effectiveness in several domains.
Stochastic programming is the process of converting theoretical probabilities
into concrete certainties. The artistic compromise programming technique acts
as a proficient mediator, reconciling opposing objectives and enabling equitable
decision-making. This novel approach also addresses the Multi-objective
Stochastic Linear plus Linear Fractional Transportation Problem (MOSLPLFTP),
which involves two interconnected issues. The effectiveness of these principles is
clearly shown with the help of the LINGO

®
18 optimization solver. This study uses

a ranking method to compare the similar methods to solve the current problems.
A meticulously designed example acts as a significant achievement, shedding
light on our method in a practical setting. It serves as a distinctive instrument,
leading manufacturers through the maze of uncertainty and assisting them in
determining themost advantageous course of action. This journey involves subtle
interactions between complexity and simplicity, uncertainty is overcome by
decisiveness, and invention is predominant.
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1 Introduction

The transportation problem, a fundamental aspect of operations research, seeks to achieve efficiency. The main objective is to find the
best cost-effective method for transporting items from several production units to many warehouses. This challenge requires lowering costs
while meeting supply and demand requirements. It will assist the business in making optimum decisions and developing effective advertising
strategies. Suppliers, customers, their capabilities, and transportation costs are often arranged in a matrix arrangement in a standard
representation. The goal is to distribute product quantities from suppliers to customers efficiently by meeting needs, adhering to supply
constraints, and reducing prices. Linear programming methods are often used to produce an optimum solution by determining how
resources should be distributed throughout the network for the greatest results. The transportation problem originated in the mid-20th
century when Koopmans (Koopmans, 1949) developed its formal formulation in 1947 to solve logistical problems, especially during World
War II. This mathematical problem requires the optimal distribution of commodities from different suppliers to various demand locations in
order to minimize transportation expenses. The development of the simplex approach (Dantzig, 1963) during the same era significantly
boosted the optimization field by enhancing the efficiency of solving linear programming problems, such as the transportation problem.With
the rise of computers in the 1960s and 1970s, the range of solutions to problems increased to handle intricate real-world situations. The
problem’s applications evolved further, leading to the emergence of current algorithms such interior point approaches in the 1990s for
improved efficiency in finding answers. Currently, in a time of complex supply chains, the transportation problem is still relevant, with
sophisticated optimization software consistently expanding its uses in many sectors. Picture a large industrial complex looking to enhance the
efficiency of its transportation network. Stochastic programming develops mathematical models to achieve stability, punctual delivery, and
cost savings while considering operational constraints. Stochastic modelling and flexible optimization are used to manage unexpected
elements like supply chain disruptions and demand variations, ensuring that the transportation plan can adapt to unanticipated events.
Implementing this strategy enhances a manufacturing facility’s sustainability and competitive edge within its sector by tackling
transportation problems and optimizing supply chain operations. This enhances resource distribution, environmental stewardship, and
cost efficiency.

The linear fractional transportation problem involves managing resource allocation to reduce costs or enhance producer profits. It
combines linear programming techniques, which optimize linear objective functions under linear constraints, with fractions.
Resources may be subdivided into fractional units, which is very useful in situations such as delivering components of a product.
The linear plus linear fractional transportation problem further complicates this complexity. This advanced version includes fractional
elements and adds another level of complexity. This layer establishes linear linkages in both the goal function and restrictions. Picture
it as a puzzle with two levels - optimizing fractions and managing linear connections—creating a more complex and engaging challenge
for those solving problems.

Stochastic programming (SP) is a powerful tool for decision-making in manufacturing, especially in dealing with uncertainty. It combines
mathematical optimization with probability theory to create solutions that navigate smoothly through the constantly changing and
mysterious circumstances of reality. Imagine it as a navigator on rough seas, plotting a path that not only endures the storm but flourishes in
it. SP’s canvas spans several fields, with transportation and industry being notable areas. In the transportation industry, it coordinates routes,
manages fleets, and responds to emergencies, all while navigating through unpredictability. SP excels in the industrial environment by
optimizing production processes, maintenance, energy distribution, and risk management. It guarantees consistent efficiency in directing
decision-makers with knowledge, even in an uncertain environment. Imagine a corporation that specialized in creating and transporting
perishable goods. Here, SP is the focal point, creating an exceptional plan for manufacturing and distribution tactics. It achieves this by
carefully considering unpredictable factors such as changing demand and irregular supply. Stochastic programming reveals the best
production levels and distribution routes by considering various situations such as increased demand during holidays or supply delays caused
by unexpected transportation problems. The firm reduces expenses, increases earnings, and remains robust and prepared for the uncertain
market. SP, the master of flexibility and anticipation orchestrates this symphony of achievement.

Utilizing aWeibull distribution optimization method in mathematical modelling helps producers achieve equilibrium among conflicting
goals, such as reducing costs, minimizing lead times, and enhancing service quality. Implementing supply chains, using stochastic modelling
to manage demand variations, and optimizing transportation routes are some of these strategies. Commence construction work.
Construction is under progress. This includes the design. Seek practical uses, particularly in multi-objective optimization. Excellence in
environmental sustainability and customer service. Manufacturers may address difficult supply chain and transportation difficulties
efficiently by using this advanced technology. This ultimately improves customer satisfaction and operational efficiency by enabling them to
be flexible and responsive in a constantly evolving production environment.

In this article, we explore uncertainty using probability theory, focusing on Stochastic Programming (SP). We are exploring stochastic
programming challenges, which include the integration of probability and mathematical programming to illuminate decision-making
processes influenced by random factors. We begin our voyage by investigating a Stochastic Transportation Problem, which is a complex maze
with many linear fractional objective functions. The MOSLFTP model is shaped by the limitations provided by normal random variables,
forming a complex mathematical structure. Our goal is to discover a collection of Pareto-optimal solutions by balancing opposing goals inside
MOSLFTP, rather than achieving an exact approximation of the true Pareto front. Researchers have explored many approaches (Table 1) to
solve complicated problems. Stochastic programming techniques are essential tools that provide assistance in dealing with optimization
difficulties that include random parameters. They explore a broad range of situations where model coefficients are influenced by uncertainty
and follow certain probability distributions. Stochastic Programming has a wide-reaching impact on several fields such as management
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science, engineering, and technology. In fields where input data is unpredictable and models are created from imperfect information, SP finds
its refuge. In recent years, its potential has greatly expanded due to advancements in computer science and optimization methods. It
establishes itself and thrives in the industrial sector, revolutionizing energy resource planning, finance, telecommunications, transportation,
production scheduling, and supply chain management into successful environments. SP showcases the limitless adaptability of probabilistic
exploration in decision-making.

The journey of the linear fractional transportation problem began with Swarup’s pioneering suggestion (Swarup, 1966), marking the
genesis of this mathematical challenge. Since then, the literature (Sadia et al., 2016; Safi and Seyyed, 2017) has meticulously chronicled its
systematic evolution, with scholars delving deeper into its intricacies. In the realm of solving transportation problems with fractional
objectives, valuable methods were laid out by (Pradhan and Biswal, 2015), offering practical solutions for real-world scenarios where
parameters may not always be precise, requiring a touch of educated guesswork. The murkiness of real-world problems, often obscured by a
lack of specific data, led Liu (Liu, 2007) to unearth the uncertainty theory, reshaping our approach to these enigmas. Within this ever-
expanding landscape, various scholars have turned to Stochastic Programming (SP) as a powerful tool for wrangling uncertainty. The SP
model itself had its origins in the visionary work of Dantzig (Dantzig, 2011), and over time, it has blossomed into various incarnations with
different scholars proposing their own SP models (Goicoechea and Duckstein, 1987). The intersection of stochasticity and fractional
objectives has been a rich field of exploration, as evidenced by numerous investigations into the Stochastic Fractional Transportation Problem
and its accompanying solution methodologies (Charles and Dutta, 2005; Jain and Arya, 2013; Jadhav and Doke, 2016). Javaid (Javaid et al.,
2017) introduced a Transportation Problem model adorned with multiple fractional objectives and unpredictable parameters, adding layers
of complexity to the puzzle. In the more recent annals of research, Saini’s work in 2022 (Saini et al., 2022) employed a fuzzy approach to
untangle the knots of an MFL (Multi-Fractional Linear) paradox within a multi-objective transportation problem. Meanwhile, Joshi (Joshi
et al., 2022a) embarked on an exploration of fractional transportation problems within the realm of neutrosophic situations in the same year,
where all the objective function coefficients, demands, and availabilities existed in the realm of speculation. These contemporary inquiries
highlight the ongoing pursuit of novel solutions to complex problems in the ever-evolving world of optimization and uncertainty
management.

A technique for resolving MOSSTP in the presence of uncertainty by recasting it as a chance-constrained programming problem and
employing fuzzy goal programming and the global criterion method to quickly find effective solutions (Das and Lee, 2021). A weighted goal
programming method that, using a numerical example, discovers compromise solutions for multi-objective transportation problems
following the decision-maker’s priorities (Joshi et al., 2022b). The Weibull distribution and multiple cost coefficients are used in a solution
methodology for the multi-choice stochastic transportation problem (Roy, 2014). Using a Weibull distribution to describe the uncertain
parameters, the research presents three models for dealing with stochastic fuzzy transportation problems (SFTPs) with mixed-type
constraints (Buvaneshwari and Anuradha, 2022). Using a fuzzy technique, multiple-choice parameters, and random variables, a
transportation problem with multiple objectives is solved (Nasseri and Bavandi, 2020).

TABLE 1 These research efforts have played a vital role in deepening our grasp of the Transportation Problem, particularly in situations where uncertainty
and complexity are at play.

References Problem type Stochastic
parameter

Multi-
objective

Distribution Methodology

Linear
fractional

Linear plus
linear

fractional

Supply Demand

Joshi et al. (2022b) No No No No Yes No Goal programming using a
weighted approach

Saini et al. (2022) No Yes No No Yes No Fuzzy approach

Das and Lee (2021) No No Yes Yes Yes Weibull
distribution

GCMa and FGPAb

Joshi et al. (2022a) Yes No No No Yes No The Neutrosophic theory

Buvaneshwari and
Anuradha (2022)

No No Yes Yes No Weibull
distribution

The cost function is represented
using an alpha cut and Constraints
using the Weibull distribution

Nasseri and Bavandi
(2020)

No No Yes Yes Yes Expectation value
model

Fuzzy programming approach

Proposed approach Yes Yes Yes Yes Yes Weibull
distribution

Goal programming using a
weighted approach

aGlobal criterion method.
bfuzzy goal programming approach (Das and Lee, 2021).
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The MOSLFTP is a complex mathematical conundrum that goes beyond the limits of a basic enigma. It explores the complex process of
maximizing resource allocation from suppliers to consumers while managing several competing goals, similar to meeting various preferences
at the same time. A mist of uncertainty overlays this intricacy, with specific numbers adhering to the elusive Weibull distribution pattern.
Picture a complex labyrinth with several destinations, each with fluctuating circumstances. Your objective is to map out the most optimal
route while managing competing objectives and moving through the haze of uncertainty. The MOSLFTP and MOSLPLFTP are intricately
connected via the LINGO® 18.0 Software, which acts as a set of tools that work together to optimize processes. An example will demonstrate
the effectiveness of this technique by leading us through ambiguity and helping us make well-informed judgments. This research serves as a
crucial tool for companies seeking guidance in navigating complicated issues and uncovering the keys to success. Recent research has shed
light on creative paths in manufacturing, urban transportation, and multi-objective optimization, paving the way for a more enlightened
future (Kumar et al., 2020; Kumar and Gulati, 2021; Boadh et al., 2022; Kumar et al., 2022; Kumar et al., 2023a; Kumar et al., 2023b; Yadav
et al., 2023).

This study is an innovative investigation into stochastic programming, focusing on a complex problem involving multiple linear
and linear fractional objective functions. The problem incorporates supply and demand parameters that adhere to the Weibull
distribution. The complex mathematical task is named MOSLPLFTP, representing a significant advancement in the subject. An
extensive examination of current literature has shown a notable finding—there is a lack of study on these particular topics. This work is
unique and innovative, exploring uncharted territory in research. This research also includes supply and demand variables that follow
the Weibull distribution (Krishnamoorthy, 2006). By doing this, it creates a more complex and captivating specialization within the
field of stochastic programming. This study is pioneering an examination of uncharted mathematical area, expanding the limits of
knowledge, and creating opportunities for future investigations in optimization and uncertainty management.

A continuous probability distribution called the Weibull distribution can be used to model a variety of variables, such as the time to
failure, the interval between events, and extreme values. It was first thoroughly described in 1939 by Swedish mathematician Waloddi
Weibull, after whom it is called. The Weibull distribution has a wide range of applications, including Reliability engineering, Life data
analysis, Engineering, Biology, Economics etc. The Weibull distribution’s probability density function with the known parameters η, β and χ
are given by

f s, η, β, χ( ) � η

β

s − χ

β
( )η−1

. e−
s−χ
β( )η[ ]

and

F s( ) � 1 − e−
s−χ
β( )η[ ]

where (s)≥ 0, s≥ 0 or χ, η> 0, β> 0,−∞< χ <∞. The Weibull distribution has three parameters:

➢ Shape parameter (η): This parameter regulates how the distribution looks. An exponential distribution is produced by a shape
parameter of 1, while a shape parameter higher than 1 result in a distribution with a longer tail.

➢ Scale parameter (β): The distribution’s scale is controlled by this parameter. It represents the point where the probability density
function is at its maximum.

➢ Location parameter (χ): The distribution’s position is controlled by this parameter. When the cumulative distribution function reaches
this value, it equals 0.5.

The remainder of this paper is thoughtfully organized into several sections, each playing a crucial role in advancing the understanding
and exploration of the research topic. Basic definitions, notation andWeibull distribution-based mathematical models defined for MOSLFTP
and MOSLPLFTP are discussed in Section 2. Then, the solution methodology is presented in Section 3. While Section 4 offers additional
approaches. Numerical examples are discussed in the Section 5. The presentation of results and insightful discussions take center stage in
Sections 6, with the ultimate conclusions elegantly summarized in Section 7. This organized structure guides readers through a
comprehensive journey of discovery and insight in the realm of optimization and uncertainty management.

2 Methodology

2.1 Basic definitions

• Feasible solution: A feasible solution embodies the essence of a valid and practical resolution to a problem, one that harmoniously aligns
with the stipulated conditions and constraints.

• Ideal solution: An ideal solution stands as the pinnacle of desirability, representing the most favourable and sought-after outcome
among all feasible solutions. In the realm of multi-objective optimization, where multiple conflicting objectives for attention, there may
exist multiple ideal solutions that collectively form a Pareto front.
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• Anti-ideal solution: The anti-ideal solution, in stark contrast to the ideal solution, is distinguished by its unfavourable characteristics. It
represents the solution with the poorest values for the objectives or embodies the most extreme violations of constraints within the
problem space.

Anti − ideal Solution≤ZMax /Min ≤ Ideal Solution

• Optimal solution: An optimal solution stands as the epitome of achievement, representing the result that attains the best conceivable
outcome in alignment with the defined criteria or objectives. It is akin to discovering the single most favourable answer amidst a
plethora of available choices, embodying the essence of excellence and efficiency in problem-solving and decision-making processes.

• Compromise solution: A compromise solution (Figure 1) is akin to the art of negotiation in decision-making, representing a harmonious
outcome that adeptly balances the scales of multiple conflicting factors or objectives. It involves skilfully finding the middle ground, where
different goals are satisfied without any one being unduly favoured over the others. Much like reaching a fair and equitable agreement that
respects everyone’s preferences, the compromise solution is the choice that decision-makers prioritize above all others, taking into account the
full spectrum of criteria in a multi-objective context.

2.2 Notations

➢ m: number of supply sources.
➢ n: number of demand destinations.
➢ R: number of objective functions.
➢ Zr(x): rth objective function.
➢ fr

ij: the time of transportation from source ith to destination jth in the rth objective function.
➢ crij: the cost of transportation from source ith to destination jth in the rth objective function.
➢ drij: the profit of transportation from source ith to destination jth in the rth objective function.
➢ ai: Amount of supply at the ith supply source.
➢ bj: Amount of demand at the jth demand destination.
➢ θai: Probability for ai.
➢ δbj: Probability for bj.
➢ βai: This is scale limit use for ai, which follows the Weibull distribution.
➢ βbj: This is scale limit use for bj, which follows the Weibull distribution.
➢ ηai: This is shape limit use for ai, which follows the Weibull distribution.
➢ ηbj: This is shape limit use for bj, which follows the Weibull distribution.
➢ χai: This is location limit use for ai, which follows the Weibull distribution.

FIGURE 1
Visually represents a compromise solution in a multi-objective context, showcasing a balanced outcome that harmonizes conflicting criteria or
goals without undue favouritism.
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➢ χbj: This is location limit use for bj, which follows the Weibull distribution.
➢ xij: the amount shipped from source ith to destination jth.
➢ Z0

r : ideal objective function vector.
➢ Z*

r: anti-ideal objective function vector.
➢ ɸ: the feasible set of solution.

2.3 Mathematical model

A Multi-Objective Transportation Problem (MOTP) mathematical model entails utilizing math to build a structured representation of
the problem’s complexity. Imagine this model as a blueprint that guides us through decision-making.

• Decision variables: Think of these as the key pieces we need to decide on. They tell us how much stuff goes from different places m
(sources) to other places n (destinations). These sources could be factories, warehouses, or nodes in the supply chain, while destinations
might be sales points or distribution centers.

• Objective functions: Imagine these as our goals. We might want to spend less money on transportation, keep our customers super
happy, or make sure things are delivered quickly. We create equations to measure how well we’re achieving these goals.

• Constraints: These are rules we need to follow. We make sure that the total stuff leaving a source does not exceed what it has a1, a2,, . . . , am
(supply constraints), and that the total stuff reaching a destinationmeets its demand b1, b2,, . . . , bn (demand constraints).We also ensure that
we’re not moving negative amounts of stuff (non-negativity constraints).

• Transportation costs: These are the costs linked to moving things from one place to another. We use unknown variables (xij) to
represent how much stuff moves between specific sources and destinations.

This model helps us see the big picture, make smart decisions, and balance different objectives in a complex transportation problem.
Model 1

MinZr xij( ) � ∑m
i�1∑n

j�1c
r
ijxij∑m

i�1∑n
j�1d

r
ijxij

, r � 1, 2, . . . , R

Subject to

∑n

j�1xij ≤ ai,

∑m

i�1xij ≥ bj,

xij ≥ 0

We assume that ai ≥ 0, bj ≥ 0 and crij, d
r
ij ≥ 0 and ∑m

i�1ai � ∑n
j�1bj. Where ai, i � 1, 2, . . . , m and bj, j � 1, 2, . . . , n are corresponding

supply and demand points. Our objective function is the ratio of the cost and profit functions, which are given by the symbols crij and drij,
respectively. The number of units to be carried from the ith origin to the jth destination is indicated by the variable xij. MOSLFTP is a
sophisticatedmathematical challenge that revolves around optimizing themovement of resources from suppliers to consumers while juggling
multiple conflicting goals, such as minimizing costs, maximizing satisfaction, or reducing delivery time. It introduces an additional layer of
intricacy by allowing quantities to be expressed in fractions, amplifying the complexity of finding a solution that balances these objectives
effectively. This problem finds practical applications in manufacturing process, supply chain management, transportation planning, resource
allocation, project scheduling, and healthcare logistics, providing decision-makers in various industries with a versatile tool to tackle
multifaceted optimization scenarios.

Model 2

MinZr xij( ) � ∑m
i�1∑n

j�1c
r
ijxij∑m

i�1∑n
j�1d

r
ijxij

, r � 1, 2, . . . , R

Subject to

P ∑n

j�1xij ≤ ai( )≥ 1 − θai, i � 1, 2, . . . , m,

P ∑m

i�1xij ≥ bj( )≥ 1 − δbj, j � 1, 2, . . . , n,

xij ≥ 0 i � 1, 2, . . . , m and j � 1, 2, . . . , n,

where 0 < θai < 1,∀ i and 0 < δbj < 1,∀ j.
Assume that ai and bj are Weibull random variables. The paper presents a model for tackling a MOSLFTP, incorporating the Weibull

distribution. This distribution is used to characterize uncertainty and reliability in the problem’s context. The MOSLFTP refers to a complex
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mathematical challenge where resources are optimized to move from suppliers to consumers while considering both multiple conflicting
objectives and uncertain variables. This problem tackles real-world scenarios where outcomes are uncertain, and different goals need to be
balanced. The MOSLFTP’s goal is to find solutions that make the best use of resources while considering various objectives and uncertainties,
enhancing decision-making in supply chain management, transportation planning, and other fields where efficient resource allocation is
vital. It is like a strategic tool that helps industries make well-informed choices while navigating the uncertainties of the real world.

Model 3

MinZr xij( ) � ∑m

i�1∑n

j�1f
r
ijxij +

∑m
i�1∑n

j�1c
r
ijxij∑m

i�1∑n
j�1d

r
ijxij

, r � 1, 2, . . . , R

Subject to ∑n
j�1xij ≤ ai, i � 1, 2, . . . , m,

∑m

i�1xij ≥ bj, j � 1, 2, . . . , n,

xij ≥ 0 i � 1, 2, . . . , m and j � 1, 2, . . . , n

We assume that ai ≥ 0 ∀ i, bj ≥ 0∀ j and crij , d
r
ij ≥ 0∀ i, j and ∑m

i�1ai � ∑n
j�1bj . Where ai and bj . A transportation problem involving

supply and demand points in this optimization problem, the objective function is defined as the ratio of cost crij and profit drij functions for
each supply-to-demand point pair, denoted by the variables xij. This formulation indicates that the goal is to optimize the allocation of units
from the ith origin to the jth destination while considering both cost and profit factors. This ratio-based objective function suggests a trade-off
between minimizing transportation costs and maximizing profits in the decision-making process.

The multi-objective linear plus linear fractional transportation problem (MOLPLFTP) is a complex optimization challenge that involves
optimizing the movement of resources from suppliers to consumers while considering both linear and linear fractional objectives. In this
problem, the goals include minimizing transportation costs, maximizing customer satisfaction, or minimizing delivery time, and these
objectives can have both linear and linear fractional components. The MOLPLFTP aims to find a solution that balances these conflicting
objectives while efficiently allocating resources. This problem finds practical applications in supply chain management, logistics, and resource
allocation, where multiple objectives need to be considered simultaneously. It is like solving a multi-layered puzzle that requires careful
consideration of different goals and resource constraints to find the best possible outcome.

The implications of this study for industrial applications are significant:

• Optimal Decision-Making: Industries often face intricate transportation decisions involving multiple objectives and uncertainties. The
study’s methodology can guide industries in making optimal decisions that consider various factors, leading to more efficient resource
allocation and cost-effective solutions.

• Risk Management: Given that the study deals with stochastic problems and uncertain variables, its techniques can aid in risk
management. Industries can use these methods to assess and mitigate the impact of uncertain events on transportation operations.

• Resource Utilization: The methodology assists industries in optimizing the allocation of resources such as raw materials, products, and
transportation routes. This can lead to improved overall efficiency and reduced waste.

• Supply Chain Management: Transportation is a critical aspect of supply chain management. By incorporating stochastic programming
and multi-objective optimization, industries can enhance the robustness and resilience of their supply chains.

• Adaptation to Changing Conditions: Industries often operate in dynamic environments where conditions change unpredictably. The
study’s techniques provide a framework for adapting transportation strategies to evolving circumstances.

• Competitive Edge: Implementing advanced mathematical strategies for transportation problem-solving can provide industries with a
competitive edge. More informed and optimized decisions can lead to increased customer satisfaction and cost savings.

• Decision Support System: The methodology described in the study can be integrated into decision support systems, aiding industries in
real-time decision-making by considering uncertainty and multiple objectives.

• Sustainability Considerations: Industries are increasingly focused on sustainability. The study’s techniques can help in designing
transportation strategies that minimize environmental impact and promote sustainable practices.

In essence, this study offers a roadmap for industries to navigate the complex and uncertain landscape of transportation challenges.
By combining innovative mathematical strategies with advanced tools, industries can make informed, efficient, and effective decisions,
even in the face of uncertainty. It is a valuable contribution that has the potential to transform the way industries approach
transportation management.

3 Solution methodology

The constraints within the presented mathematical model, as detailed in Section 2, incorporate random values due to the consideration of
the Weibull distribution. Consequently, direct solution using traditional mathematical techniques becomes infeasible. To address this
challenge, the random constraints are ingeniously transformed into deterministic constraints, a transformation method elaborated upon in
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the following three scenarios outlined in Section 3.1. This transformation ensures that the inherent unpredictability in the constraints,
attributed to the Weibull distribution, is effectively managed and incorporated into the optimization process.

3.1 Transformation techniques

The following scenarios need to be taken into account:
3.1.1. Only ai, (i � 1, 2, . . . , m) adhere to Weibull distribution.
3.1.2. Only bj, (j � 1, 2, . . . , n) adhere to Weibull distribution.
3.1.3. Both ai, (i � 1, 2, . . . , m) and bj, (j � 1, 2, . . . , n) adhere to Weibull distributions.

3.1.1 Only ai, (i � 1,2, . . . ,m) follows Weibull distribution
It is clarified that only the parameters ai adhere to the Weibull distribution, while other parameters follow a different distribution

or have deterministic values. This distinction highlights the specific stochastic nature of ai and underscores the need to address its
uncertainty within the optimization framework.

Certainly, the provided information clarifies the distribution and parameters associated with the independent random variables ai. These
variables are assumed to follow the Weibull distribution, with ηai representing the shape parameter, βai the scale parameter, and χai the
location parameter. The aspiration level for these variables is denoted as θai where 0 < θai < 1. We recall the first constraint from the Model 2
(Equation 2.1).

P ∑n

j�1xij ≤ ai( )≥ 1 − θai, i � 1, 2, . . . , m,

or

P ∑n

j�1xij ≤ ai( )≤ θai, i � 1, 2, . . . , m,

Given by the probability density function of ai, (i � 1, 2, . . . , m)

F ai( ) � ηai
βai

ai − χai
βai

( )ηai−1
. e

− ai−χai
βai

( )ηai[ ]
ai ≥ χai, aiϵR, and ηai > 0, βai > 0

Hence, the probabilistic constraint can be presented as:

∫∑n

j�1xij

χai

f ai( ) d ai( )≤ θai

The above integral can be expressed as:

∫∑n

j�1xij

χai

ηai
βai

ai − χai
βai

( )ηai−1
.e
− ai−χai

βai
( )ηai[ ]

.d ai( )≤ θai

Let,

ai − χai
βai

( )ηai � u

The above constraint can be expressed as:

∫
∑n

j�1xij−χai
βai

( )ηai

0
e−u.d u( )≤ θai

It can be integrated as:

− e−u[ ]
∑n

j�1xij−χai
βai

( )ηai

0 ≤ θai
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On rearranging, we obtain

e
− ∑n

j�1xij−χai
βai

( )ηai

≥ 1 − θai

We have the logarithm in both directions

− ∑n
j�1xij − χai

βai
( )ηai

≥ ln 1 − θai( )[ ]
We obtain after decluttering and rearrangement

∑n

j�1xij − χai ≤ βai − ln 1 − θai( )[ ]{ } 1
ηai

Then, as follows, the probabilistic constraints (2.1) can be changed into deterministic linear constraints:

∑n

j�1xij ≤ χai + βai − ln 1 − θai( )[ ]{ } 1
ηai

The result is a multi-objective deterministic model, which in Model 4 below.
Model 4

MinZr xij( ) � ∑m
i�1∑n

j�1c
r
ijxij∑m

i�1∑n
j�1d

r
ijxij

, r � 1, 2, . . . , R

Subject to

∑n

j�1xij ≤ χai + βai − ln 1 − θai( )[ ]{ } 1
ηai

∑m

i�1xij ≥ bj

xij ≥ 0 i � 1, 2, . . . , m and j � 1, 2, . . . , n.

Where
χai + βai − ln[(1 − θai)]{ } 1

ηai ≥∑n
j�1bj (Feasibility condition).

3.1.2 Only bj, (j � 1,2, . . . ,n) follows Weibull distribution
Only the parameters bj adhere to the Weibull distribution, while other parameters follow different distributions or have deterministic

values. This distinction highlights that the uncertainty associated with theWeibull distribution is specifically related to bj, and it allows you to
manage and incorporate this uncertainty into the constraints and objectives of the optimization problem, providing a more accurate
representation of the real-world scenario.

The independent random variables bj, (j � 1, 2, . . . , n) follow theWeibull distribution, with ηbj representing the shape parameter, βbj the
scale parameter, and χbj the location parameter. Furthermore, the aspiration level for these variables is denoted as δbj where 0 < δbj < 1 . This
comprehensive description provides a clear understanding of the stochastic characteristics of bj and reinforces the notion that their variability
is crucial to the optimization problem. Managing the uncertainty associated with the Weibull-distributed bj variables will be a key aspect of
the optimization process, and this information is vital for incorporating them effectively into the constraints and objectives of the problem.
We recall the second constraint from the Model 2 (Equation 2.2).

P ∑m

i�1xij ≥ bj( )≥ 1 − δbj, j � 1, 2, . . . , n,

Given by the probability density function of bj (j � 1, 2, . . . , n)

F bj( ) � ηbj
βbj

bj − χbj
βbj

⎛⎝ ⎞⎠ηbj−1

. e
−

bj−χbj
βbj

( )ηbj[ ]
bj ≥ χbj bjϵR, and ηbj > 0, βbj > 0.

Hence, the probabilistic constraint can be presented as:

∫∑m

i�1xij

γbj

f bj( ) d bj( )≥ 1 − δbj
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The above integral can be expressed as:

∫∑m

i�1xij

γbj

ηbj
βbj

bj − χbj
βbj

⎛⎝ ⎞⎠ηbj−1

. e
−

bj−χbj
βbj

( )ηbj[ ]
. d bj( )≥ 1 − δbj

Let,

bj − χbj
βbj

⎛⎝ ⎞⎠ηbj

� t

The above constraint can be expressed as:

∫
∑m

i�1xij−χbj
βbj

( )ηbj

0
e−t. d t( )≥ 1 − δbj

It can be integrated as:

− e−t[ ]
∑m

i�1xij−χbj
βbj

( )ηbj

0 ≥ 1 − δbj

On rearranging, we obtain

e
− ∑m

i�1xij−χbj
βbj

( )ηbj

≤ δbj

We have the logarithm in both directions

− ∑m
i�1xij − χbj

βbj
⎛⎝ ⎞⎠ηbj

≤ ln δbj( ){ }
We obtain after decluttering and rearrangement

∑m

i�1xij − χbj ≥ βbj − ln δbj( ){ } 1
ηbj

Then, as follows, the probabilistic constraints (4.2) can be changed into deterministic linear constraints:

∑m

i�1xij ≥ χbj + βbj − ln δbj( ){ } 1
ηbj

The result is a multi-objective deterministic model, which in Model 5 below.

Model 5

MinZr xij( ) � ∑m
i�1∑n

j�1c
r
ijxij∑m

i�1∑n
j�1d

r
ijxij

, r � 1, 2, . . . , R

Subject to

∑n

j�1xij ≤ ai,

∑m

i�1xij ≥ χbj + βbj − ln δbj( ){ } 1
ηbj ,

xij ≥ 0 i � 1, 2, . . . , m and j � 1, 2, . . . , n.

Where
χbj + βbj − ln(δbj){ } 1

ηbj ≤∑m
i�1ai (feasibility condition).

Both the independent random variables ai and bj adhere to Weibull distributions. The shape, scale, location parameters, and aspiration
levels for these variables provide essential information for characterizing their probabilistic behaviour within the optimization problem.
Managing the uncertainties associated with both ai and bj variables will be a fundamental aspect of the optimization process, allowing you to
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make robust decisions under uncertainty while considering the Weibull distributions for these parameters. Then the Model 2 can be
transformed into model 6 as:

Model 6

MinZr xij( ) � ∑m
i�1∑n

j�1c
r
ijxij∑m

i�1∑n
j�1d

r
ijxij

, r � 1, 2, . . . , R

Subject to

∑n

j�1xij ≤ χai + βai − ln 1 − θai( )[ ]{ } 1
ηai

∑m

i�1xij ≥ χbj + βbj − ln δbj( ){ } 1
ηbj

xij ≥ 0 i � 1, 2, . . . , m and j � 1, 2, . . . , n.

Where

χai + βai − ln[(1 − θai)]{ } 1
ηai ≥ χbj + βbj − ln(δbj){ } 1

ηbj (feasibility condition).

Various industrial issues can be modelled and solved using linear fractional stochastic transportation problems (LFTPs), a form
of mathematical optimization problem. In an LFTP, where the cost of transportation is unpredictable, the objective is to minimize a
linear fraction of those costs. This unpredictability may be caused by variables like shifting demand, unstable suppliers, or erratic
production costs. A variety of industrial issues, such as production planning, inventory control, and supply chain management, can
be modelled using LFTPs.

If we extend the above methodology for MOSLPLFTP. Then the model 3 can be converted into model 7 as
Model 7

MinZr xij( ) � ∑m

i�1∑n

j�1f
r
ijxij +

∑m
i�1∑n

j�1c
r
ijxij∑m

i�1∑n
j�1d

r
ijxij

, r � 1, 2, . . . , R

Subject to ∑n
j�1xij ≤ χai + βai − ln[(1 − θai)]{ } 1

ηai

∑m

i�1xij ≥ χbj + βbj − ln δbj( ){ } 1
ηbj

xij ≥ 0 i � 1, 2, . . . , m and j � 1, 2, . . . , n.

χai + βai − ln[(1 − θai)]{ } 1
ηai ≥ χbj + βbj − ln(δbj){ } 1

ηbj (Feasibility condition).

The MOSLPLFTP is an intricate mathematical challenge that addresses the optimization of resource movement between suppliers and
consumers while considering multiple conflicting objectives, uncertainty, and a combination of linear and linear fractional goals. In this
problem, objectives like minimizing costs, maximizing satisfaction, or minimizing delivery time can be both linear and linear fractional.
Furthermore, uncertainties related to variables are taken into account. The MOSLPLFTP aims to find solutions that strike a balance between
these conflicting objectives while adapting to uncertain conditions. This complex problem has practical applications in various areas, such as
manufacturing process planning, supply chain management, transportation planning, and logistics, where efficient resource allocation while
accommodating uncertainties is crucial. It is like solving a multi-dimensional puzzle, accounting for different goals and unknowns, to achieve
optimal outcomes in complex scenarios.

A transportation problem known as a stochastic linear plus linear fractional transportation problem (SLPLFTP) contains stochastic parameters
and an objective function that is a linear combination of two linear functions and a linear fractional function. This kind of issue can be used to
address a number of manufacturing issues, including supply chain management, inventory management, and production process planning.

This study pioneer’s solutions for intricate transportation problems using advanced math and strategies. We introduce various
approaches for addressing uncertainty with Weibull distribution in MOSLFTP andMOSLPLFTP. Stochastic programming and compromise
techniques guide decision-making, while LINGO® 18.0 Software integrates methods. A practical example illustrates effectiveness, aiding
decision-makers in complex scenarios.

4 Approaches to solve the MOLFTP and MOLPLFTP

These encompass mathematical optimization, where intricate formulations are analysed to achieve optimal solutions that align with
multiple objectives while considering uncertainties. Complementing this, heuristic algorithms offer rapid approximate solutions by

Frontiers in Mechanical Engineering frontiersin.org11

Joshi et al. 10.3389/fmech.2024.1389791

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2024.1389791


intelligently exploring solution spaces, particularly suitable for larger instances. Metaheuristic methods take the helm by employing
sophisticated strategies like genetic algorithms and simulated annealing to navigate complex landscapes effectively. Simulation-based
approaches step in, simulating real-world scenarios to comprehend the effects of various decisions under uncertain conditions. Lastly,
interactive decision support systems offer an intuitive platform for decision-makers to visualize and assess different scenarios, thus
untangling the complexity of MOSLFTP and MOSLPLFTP and facilitating well-informed choices.

4.1 Weighted sum method

For solving a Multi-Objective Linear Transportation Problem (MOLTP) the method of the weighted sum is highly used to obtain varying
results for different weights. We use the extension of this method for our complex problems. The basic idea of this method is to assign weight

dr ≥ 0 to each objective function ZR and minimize the new objective function ∑R
r�1drZr with respect to problem constraints. Although this

approach is easy to use, it is important to decide on the weights that the DM (Decision maker) will assign in advance because they have an
important effect on the result. Using the weighted sum method, a normalized single-objective optimization problem has been constructed to
consolidate multiple objectives into a single objective function through appropriate weighting.

Minimize Z � d1Z1 + d2Z2 + . . . + dRZR

Subject to ∑n
j�1xij ≤ χai + βai − ln[(1 − θai)]{ } 1

ηai

∑m

i�1xij ≥ χbj + βbj − ln δbj( ){ } 1
ηbj

xij ≥ 0 i � 1, 2, . . . , m and j � 1, 2, . . . , n.

χai + βai − ln[(1 − θai)]{ } 1
ηai ≥ χbj + βbj − ln(δbj){ } 1

ηbj (Feasibility condition).

The weights assigned to the objective function, denoted as dr for each of the objectives (with r ranging from 1 to R), must satisfy
specific criteria, including ∑R

r�1dr � 1, dr ≥ 0 for each r from 1 to. This technique allows for the discovery of single solution points for
different weight configurations, reflecting the decision-maker’s preferences; however, it may not be effective when decision-makers lack
a clear preference or guidance in setting these weights.

Peter C. Fishburn first put out the weighted sum approach in 1967 in his paper “Additive Utilities with Incomplete Product Set:
Applications to Priorities and Assignments” (Fishburn, 1967). The weighted sum approach was found to be a quick and efficient way by
Fishburn to create a mechanism for making decisions based on several factors.

Since then, one of the most popular techniques for multi-criteria decision-making (MCDM) is the weighted sum method. It is employed
in many various industries, including business, engineering, and government. The weighted sum method can be applied to a variety of
MCDM problems and is reasonably simple to apply. It is crucial to remember that the weighted summethod is only as effective as the weights
chosen. The proportional importance of each criterion to the decision-maker should be carefully reflected in the weights.

4.2 Proposed method

Joshi (Joshi et al., 2022b) introduced a model aimed at deriving a compromise solution for a Multi-Objective Linear Transportation
Problem (MOLTP). This approach centres on the transformation of the multi-objective optimization problem into a new single-objective
optimization, emphasizing the attainment of a balanced outcome.

MinQ′ � ∑Q 1 − dr( ),

Where dk represents the weight assigned to the rth objective, and Q serves as the general deviation variable for all objectives. This setup
implies that the problem aims to simultaneously optimize multiple objectives, each with its associated weight, while considering a general
deviation variable to capture variations across these objectives.

MinZr � Z1 x( ), Z2 x( ), . . . , ZR x( ){ }
Subject to

x ∈ X

The collection of workable options is called X, and x is an n-dimensional decision-maker variable. Each objective is transformed into
constraints with an upper bound of Z*

r +
Q(1−dr)
(Zr

u−Zr
l
), where Z

*
r is an ideal solution obtained when each objective Zr, r � 1, 2, . . . , R, is solved

independently of other objectives.
The problem reduces as:
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MinQ′ � ∑Q 1 − dr( )

Subject to

∑m

i�1∑n

j�1f
r
ijxij +

∑m
i�1∑n

j�1c
r
ijxij∑m

i�1∑n
j�1d

r
ijxij

≤Z*
r +

Q 1 − dr( )
Zr

u − Zr
l( ), r � 1, 2, . . . , R

∑n

j�1xij ≤ χai + βai − ln 1 − θai( )[ ]{ } 1
ηai

∑m

i�1xij ≥ χbj + βbj − ln δbj( ){ } 1
ηbj

χai + βai − ln[(1 − θai)]{ } 1
ηai ≥ χbj + βbj − ln(δbj){ } 1

ηbj (Feasibility condition)

0≤ dr ≤ 1,∑R

r�1dr � 1, r � 1, 2, . . . , R,

xij ≥ 0, i � 1, 2, . . . , m and j � 1, 2, . . . , n.

Here in this model a factor 1
(Zr

u−Zr
l
) is introduced alongside with existingQ(1 − dr).Zr

u andZ
r
l represent upper and lower bounds in which

the compromised solution will lie. The solution cannot exceed this range. For a rth objective, this range can be obtained by using the ideal
allocation. For upper bound max (Solution obtained by substituting others allocation in rth objective) and for lower bound the optimal
solution of rth objective is it is lower bound and this lower bound is the ideal solution Z*

r.
In a situation where there are multiple criteria to consider, solutions are evaluated using a method based on ratios. This method compares

each solution to an ideal one and an anti-ideal one. The ratio helps measure how close a solution is to the ideal and how far it is from the anti-
ideal. The compromise solution with the highest ratio effectively balances these factors, taking into account conflicting criteria when
making decisions.

The diversity of approaches for tackling multi-objective transportation problems necessitates a means of ranking these methods
to aid in their selection. To address this challenge, a tool is required to assist in the ranking and identification of the most suitable
method. At this juncture, the Technique for Order of Preference by Similarity to the Ideal Solution (TOPSIS) (Rizk-Allah et al., 2018)
emerges as a valuable asset. TOPSIS serves the purpose of ranking different methods based on the performance of their optimal
solutions. In this context, the alternatives refer to the optimal solutions, while the criteria pertain to the objective functions.
Essentially, TOPSIS enables us to discern which method proves most effective in terms of achieving optimal solutions for the specific
problem under consideration.

4.3 Step by step implementation of proposed approach

1. Start: The beginning of the process.
2. Create required mathematical model as specified in Section 3. This involves formulating the problem mathematically, considering all

relevant constraints and objectives.
3. Solve each objective separately: To understand the performance of each objective independently, solve them one by one.
4. Check if the separately obtained solutions for each objective are the same: Verify whether the solutions obtained for individual

objectives align or differ. This step helps in assessing any conflicts or trade-offs between objectives.
5. Evaluate each objective function: Calculate the values of each objective function to determine their individual contributions to the

overall problem.
6. Establish the weights for the objectives: Assign weights to each objective to reflect their relative importance in the decision-making

process. This step involves considering the preferences and priorities of the decision-maker.
7. Construct the proposed model and solve it: Create a model that combines all objectives with their respective weights and solve it to find

a solution that balances these objectives.
8. Evaluate each objective function for the outcome of the model’s solution: Assess the performance of each objective based on the

solution obtained from the combined model.
9. The compromise solution has been attained: This indicates that a solution has been reached, which is a compromise between

conflicting objectives.
10. If the decision-maker (DM) is satisfied, move on to the next step; otherwise, return to step 7. If the DM is not satisfied with the

compromise solution, the process is iterated to find a more acceptable solution.
11. Rank and compile a list of the best solutions for different transportation problems using the TOPSIS approach. This step (Figure 2) involves

comparing various solutions based on their performance against the objectives and ranking them accordingly.
12. Stop: The conclusion of the process.

This structured approach ensures that multiple objectives are considered, a compromise solution is achieved, and a ranking of solutions is
provided when necessary, offering a comprehensive methodology for addressing complex transportation optimization problems.
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5 Numerical illustration

This section exemplifies the tangible impact of our MOSLFTP and MOSLPLFTP research, unveiling its practicality through numerical
demonstrations. In Section 3, we introduced MOSLFTP and MOSLPLFTP models and, employing our method alongside the weighted sum
approach, derived optimal compromise solutions. The deterministic equivalents of these mathematical models were implemented using the
Lingo 18.0 solver, grounding our research in real-world applicability.

In this illustrative section, we immerse ourselves in a practical scenario within the realm of Third-Party Logistics (TPL). Picture a
dynamic transportation network where a TPL company plays a pivotal role. This network features four suppliers, symbolized as source nodes:
a1 , a2, a3, and a4. Additionally, there are three wholesale market halls denoted as demand nodes: b1, b2 and b3. Each supplier provides a
specific type of produce: a1 offers pears, a2 supplies lemons, a3 offers peaches, and a4 provides kiwis. Notably, all the produce is perishable,
adding complexity to the scenario. Each supplier has varying quantities of their products destined for the wholesale market halls, with each

FIGURE 2
Flow chart for the proposed method.
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hall having its own unique demand for different items. The overarching objective of this transportation network is to achieve the optimal
balance between minimizing total transportation costs, maximizing profits, and ensuring efficient delivery times. This example showcases the
challenges and complexities faced in real-world logistics, where factors like product type, perish ability, varying quantities, and market
demand must be considered for effective decision-making.

In this dynamic environment, the supply of fresh goods experiences variability influenced by uncontrollable factors like weather
conditions and labour availability at the farms. This unpredictability transforms the availability of such produce into a probabilistic
phenomenon, particularly when supply stability is uncertain. Consequently, the likelihood of obtaining the desired quantity of produce from
provider a₁ is represented by θa1. Similar probability distributions are assigned to suppliers a2 , a3 and a4, denoted as θa2, θa3, and θa4,
respectively. These probabilities encapsulate the uncertainty surrounding the availability of fresh goods from each supplier in our scenario.

The demand for fresh fruit is naturally unpredictable. Inaccurate demand forecasts, demand volatility, or unanticipated delivery delays
are the main causes. Therefore, the chance that the anticipated demand is necessary for market hall b1 is δb1. The definitions of probability δb2
and δb3 for market halls b2 and b3.

5.1 Numerical example 1 (MOSLFTP)

Min Zr xij( ) � ∑m
i�1∑n

j�1c
r
ijxij∑m

i�1∑n
j�1d

r
ijxij

, r � 1, 2, . . . , R

Subject to

∑n

j�1xij ≤ χai + βai − ln 1 − θai( )[ ]{ } 1
ηai

∑m

i�1xij ≥ χbj + βbj − ln δbj( ){ } 1
ηbj

χai + βai − ln 1 − θai( )[ ]{ } 1
ηai ≥ χbj + βbj − ln δbj( ){ } 1

ηbj

(Feasibility condition)

Where xij ≥ 0 i � 1, 2, . . . , m and j � 1, 2, . . . , n.0 < θai < 1, ∀ i and 0 < δbj < 1,∀ j .
Tables 2, 3 shows the values of ai and bj for i � 1, 2, 3, 4 and j � 1, 2, 3 for three known Weibull distribution parameters with specified

probability level (SPL) for supply and demand.

TABLE 2 Specified probability level values for supplies ai (numerical example 1).

χai βai ηai θai

20 2 2 0.95

20 2 2 0.93

20 2 2 0.92

20 2 2 0.90

TABLE 3 Specified probability level values for supplies bj (numerical example 1).

χbj
βbj

ηbj
δbj

21 2 2 0.36

20 2 2 0.35

22 2 2 0.38
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Using the data table provided in Tables 2–5, the following two-objective deterministic TP is formulated as:

MinZr xij( ) � ∑m
i�1∑n

j�1c
r
ijxij∑m

i�1∑n
j�1d

r
ijxij

, r � 1, 2

Subject to

∑3

j�1x1j ≤ 23.4616

∑3

j�1x2j ≤ 23.2614

∑3

j�1x3j ≤ 23.1785

∑3

j�1x4j ≤ 23.0349

∑4

i�1xi1 ≥ 23.0215

∑4

i�1xi2 ≥ 22.0492

∑4

i�1xi3 ≥ 23.9673

xij ≥ 0 i � 1, 2, 3, 4, and j � 1, 2, 3

5.2 Numerical example 2 (MOSLPLFTP)

Using the data provided in Tables 4–8, the following two-objective deterministic TP is formulated as:

TABLE 4 Data of transportation cost.

cij b1 b2 b3

a1 12,14 23,3 20,23

a2 10,12 11,20 17,14

a3 20,12 22,23 13,12

a4 22,14 14,23 24,21

TABLE 5 Data of transportation profit.

dij b1 b2 b3

a1 2,5 4,3 5,3

a2 2,6 10,4 5,3

a3 5,2 8,3 9,2

a4 4,9 5,3 8,2

TABLE 6 Data of transportation time.

fij b1 b2 b3

a1 10,12 22,23 13,12

a2 9,20 11,15 13,12

a3 12,14 3,22 21,20

a4 22,16 14,20 17,19
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MinZr xij( ) � ∑m

i�1∑n

j�1f
r
ijxij +

∑m
i�1∑n

j�1c
r
ijxij∑m

i�1∑n
j�1d

r
ijxij

, r � 1, 2

Subject to

∑3

j�1x1j ≤ 17.0748,∑3

j�1x2j ≤ 18.5452

∑3

j�1x3j ≤ 20.1647,∑3

j�1x4j ≤ 21.7712

∑4

i�1xi1 ≥ 20.9743,∑4

i�1xi2 ≥ 20.1940

∑4

i�1xi3 ≥ 24.0194, xij ≥ 0 i � 1, 2, 3, 4, and j � 1, 2, 3

5.3 Numerical example 3 (MOSLPLFTP)

Using the data provided in Tables 9–13 the following three-objective deterministic TP is formulated as:

MinZr xij( ) � ∑m

i�1∑n

j�1f
r
ijxij +

∑m
i�1∑n

j�1c
r
ijxij∑m

i�1∑n
j�1d

r
ijxij

, r � 1, 2, 3

Subject to

∑3
j�1x1j ≤ 19.16314215,∑3

j�1x2j ≤ 21.95423463,

∑3
j�1xi3j24.91602879,∑3

i�1xi1 ≥ 17.44717878,

∑3
i�1xi2 ≥ 19.0061836,∑3

i�1xi3 ≥ 20.98620361,
xij ≥ 0 i � 1, 2, 3 and j � 1, 2, 3.

TABLE 7 Specified probability level values for supplies ai (numerical example 2).

χai βai ηai θai

12.5 5.8 10 0.089

13.5 6.4 10.5 0.079

14.5 7.2 11 0.069

15.5 8.0 11.5 0.059

TABLE 8 Specified probability level values for supplies bj (numerical example 2).

χbj
βbj

ηbj
δbj

14.25 6.2 12.25 0.067

15.25 6.9 13.25 0.098

16.25 7.3 14.25 0.088

TABLE 9 Data of transportation time.

fij b1 b2 b3

a1 5,12,3 7,16,3 10,19,5

a2 10,2,14 15,7,19 6,10,12

a3 12,11,9 8,11,6 10,4,14
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5.4 Multi-objective stochastic linear fractional transportation problem (numerical
example 1)

TABLE 10 Data of transportation cost.

cij b1 b2 b3

a1 14,16,25 25,13,22 21,11,26

a2 19,14,20 23,19,17 22,11,24

a3 21,12,17 18,14,16 22,18,19

TABLE 11 Data of transportation profit.

dij b1 b2 b3

a1 19,11,26 24,11,22 23,11,23

a2 25,12,16 21,13,27 18,11,25

a3 21,13,14 17,19,26 16,12,23

TABLE 12 Specified probability level values for supplies ai (numerical example 3).

χai βai ηai θai

17 2 16 0.97

18.75 3 17.75 0.96

20.5 4.2 19.5 0.93

TABLE 13 Specified probability level values for supplies bj (numerical example 3).

χbj
βbj

ηbj
δbj

16.25 1.2 14 0.38

17 2 15.75 0.35

17.75 3.2 16.5 0.30

TABLE 14 The solutions obtained for both the objectives separately, ignoring other objectives.

Decision variables (xij) Individual optimal
solution for Z1

Individual optimal
solution for Z2

Best value Worst z

Z1 Z2 Z1 Z2

x11 23.0215 0 1.726966 2.06336 3.575888 4.226036

x12 0 23.4616

x13 0 0

x21 0 22.4726

x22 23.2614 0

x23 0 0.7888

x31 0 0

x32 0 0

x33 23.1785 23.1785

x41 0 23.0349

x42 0 0

x43 0.7888 0
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5.5 Multi-objective stochastic linear plus linear fractional transportation problem (numerical
example 2)

5.6 Multi-objective stochastic linear plus linear fractional transportation problem (numerical
example 3)

6 Result and discussion

The LINGO® 18.0 Software is used to tackle numerical examples according to the proposed mathematical programming model in
previous section. Objectives have been solved separately in Tables 14–16. The objectives are listed separately in Tables 14–16.Where the ideal
values Z1 � 1.726966, Z2 � 2.06336 and anti-ideal values Z1 � 3.575888, Z2 � 4.226036 is shown in Table 14. Similarly, in Tables 15, 16,
ideal values Z1 � 605.195, Z2 � 935.4827 and Z1 � 364.5017, Z2 � 363.9918, Z3 � 401.1657 and anti-ideal values Z1 � 822.8997, Z2 �
1203.198 and Z1 � 558.401, Z2 � 691.9642, Z3 � 679.9074 were obtained respectively. We solved the numerical examples for different

TABLE 15 The solutions obtained for both objectives separately, ignoring other objectives.

Decision variables (xij) Individual optimal
solution for Z1

Individual optimal
solution for Z2

Best value Worst value

Z1 Z2 Z1 Z2

x11 2.4291 0 605.195 935.4827 822.8997 1203.198

x12 0 0

x13 14.6457 17.0748

x21 18.5452 0

x22 0 11.6006

x23 0 6.9446

x31 0 20.1647

x32 20.1647 0

x33 0 0

x41 0 0.8096

x42 0.0293 8.5934

x43 9.3737 0

TABLE 16 The solutions obtained for all three objectives separately, ignoring other objectives.

Decision
variables (xij)

Individual optimal
solution for Z1

Individual optimal
solution for Z2

Individual optimal
solution for Z3

Best
value

Worst
value

Z1 Z2 Z3 Z1 Z2 Z3

x11 17.4471 0 11.5373 364.50 363.99 401.16 558.40 691.96 679.90

x12 1.7160 10.5693 0

x13 0 0 7.6258

x21 0 17.4471 0

x22 0 4.5070 0

x23 20.9862 0 13.3604

x31 0 0 5.9010

x32 17.2902 3.9298 19.0062

x33 0 20.9862 0

Frontiers in Mechanical Engineering frontiersin.org19

Joshi et al. 10.3389/fmech.2024.1389791

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2024.1389791


weights (Tables 17–19). Also, we showed the efficiency of the proposedmethod by choosing weight without preference over the weighted sum
method (Tables 17–19). Tables 17–19 show the improved ranking results of the proposed model compared to the weighted sum method.

Creating a graph to vividly illustrate the comparative performance of theWeighted SumMethod and our innovative ProposedMethod, akin to a
dynamic duel. Graph that compares the weighted sum method and our new proposed method. This graph shows how they rank, like who’s doing
better. We can see that our proposed method is closer to the best solution. It is like a race, and our method is winning by being closer to what we
want. The graph is like a storyteller that tells us our method is good at finding the right answers. Figures 3–5 represents the ranking comparison of
MOSLFTP/MOSLPLFTP between proposed approach with the weighted sum method.

TABLE 17 Comparison of solution of numerical example 1 by weighted sum and the proposed method.

S. No. Weights Weighted
sum

method

Proposed
method

Ranking (weighted sum method) Ranking (proposed method)

Z1 Z2 Z1 Z2

1 0.1, 0.9 3.5759 2.0633 3.2081 2.2041 0.5391 0.5801

2 0.2, 0.8 3.4153 2.0895 2.9931 2.3340 0.5593 0.6046

3 0.3, 0.7 3.8171 2.1038 2.7881 2.4521 0.5054 0.6320

4 0.4, 0.6 2.6466 2.5425 2.6104 2.5669 0.6497 0.6537

5 0.5, 0.5 2.0564 3.0244 2.4504 2.6818 0.6560 0.6675

6 0.6, 0.4 2.0183 3.0680 2.3015 2.8002 0.6498 0.6718

7 0.7, 0.3 2.0183 3.0680 2.1592 2.9255 0.6498 0.6660

8 0.8, 0.2 1.8555 3.6459 1.9672 3.1474 0.5335 0.6356

9 0.9, 0.1 1.7269 4.2260 1.9069 3.4480 0.4609 0.5687

10 Without preference 2.0564 3.0244 2.4504 2.6818 0.6560 0.6675

TABLE 18 Comparison of solution of numerical example 2 by weighted sum and proposed Method.

S. No. Weights Weighted
sum method

Proposed
method

Ranking (weighted sum
method)

Ranking (proposed
method)

Z1 Z2 Z1 Z2

1 0.1, 0.9 822.90 935.48 784.64 951.70 0.55 0.59

2 0.2, 0.8 815.64 936.40 755.58 966.06 0.56 0.62

3 0.3, 0.7 815.64 936.40 729.69 978.87 0.56 0.65

4 0.4, 0.6 708.22 989.51 706.83 990.58 0.68 0.68

5 0.5, 0.5 658.85 1027.56 689.43 1003.98 0.69 0.69

6 0.6, 0.4 619.80 1085.91 672.23 1017.25 0.61 0.69

7 0.7, 0.3 619.80 1085.91 655.98 1031.85 0.61 0.69

8 0.8, 0.2 619.80 1085.91 641.48 1053.51 0.61 0.66

9 0.9, 0.1 605.20 1203.20 689.25 1171.30 0.45 0.35

10 Without
preference

658.850 1027.558 689.4319 1003.984 0.69 0.69
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TABLE 19 Comparison of solution of numerical example 3 by weighted sum and proposed Method.

S. No. Weights Weighted sum
method

Proposed
method

Ranking (weighted sum
method)

Ranking (proposed
method)

Z1 Z2 Z3 Z1 Z2 Z3

1 0.1, 0.9, 0.0 558.40 363.99 679.91 540.10 384.57 643.32 0.49 0.51

2 0.2, 0.8, 0.0 558.40 363.99 679.91 526.04 400.38 615.22 0.49 0.53

3 0.3, 0.7, 0.0 558.40 363.99 679.91 517.60 414.02 597.39 0.49 0.54

4 0.4, 0.0, 0.6 373.07 644.73 407.05 436.88 534.71 481.51 0.54 0.58

5 0.5, 0.0, 0.5 364.50 663.88 413.92 446.64 521.31 493.72 0.52 0.58

6 0.6, 0.0, 0.4 364.50 663.88 413.92 454.97 509.86 504.15 0.52 0.58

7 0.0, 0.3, 0.7 396.72 609.32 418.86 439.83 530.65 485.21 0.56 0.58

8 0.0, 0.2, 0.8 373.07 644.73 407.05 418.67 559.71 458.74 0.54 0.58

9 0.0, 0.1, 0.9 438.07 691.96 401.17 396.27 590.36 430.70 0.47 0.58

10 0.3, 0.3, 0.4 366.22 629.29 419.06 471.72 486.87 525.09 0.55 0.57

11 0.3, 0.4, 0.3 389.87 593.87 430.86 485.99 467.28 542.95 0.58 0.56

12 0.4, 0.3, 0.3 366.22 629.29 419.06 478.93 476.98 534.11 0.55 0.57

13 Without
preference

366.22 629.29 419.06 478.93 476.98 534.11 0.55 0.57

FIGURE 3
Graphical representation of ranking comparison between the weighted sum method and the proposed method for numerical example 1.
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7 Conclusion

In conclusion, this paper ushers in a new era of innovation in transportation problem-solving for recent manufacturing process
scenarios. By introducing the concept of the MOSLFTP and harnessing the power of stochastic programming, the study offers
industries a transformative approach to navigating uncertainty and complexity. The utilization of compromise programming stands
as a testament to the paper’s practicality, addressing the challenges of conflicting objectives in transportation management. The
seamless integration of the MOSLPLFTP through LINGO® 18.0 Software demonstrates a tangible bridge between theory and
application. The paper’s highlighted example magnificently showcases the methodology’s efficacy in real-world scenarios, guiding
decision-makers through the intricate terrain of uncertainty. This study is an invaluable compass for industries, steering them toward
well-informed choices and setting a course for success amidst the tumultuous seas of contemporary challenges in transportation.
Within the pages of this paper, we employed a ranking approach to gauge our method’s effectiveness. It is like lining up solutions and
figuring out how close they are to the best one. Our approach stands out—it is like we found a sweet spot, a solution that’s close to
what we want. It is like finding the perfect compromise. This journey has shown that our method is not just good, it is the best way to

FIGURE 4
Graphical representation of ranking comparison between the weighted sum method and the proposed method for numerical example 2.

FIGURE 5
Graphical representation of ranking comparison between the weighted sum method and the proposed method for numerical example 3.
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find a solution that balances different goals. It is like hitting the bullseye, and we’ve uncovered a solution that’s as close to perfect as it
gets. Imagine this paper as a helpful tool, like a magical compass, showing manufacturing industries the way through the maze of
tricky transportation decisions. It is like having a secret weapon to tackle challenges and reach success in the ever-changing world of
transportation. In the future, we can extend this work for the multi-choice multi-objective interval stochastic transport problem with
mixed constraints, applying Lagrange’s or Newton’s divided difference approaches.
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