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The dominant phenomenon in laser welding processes is heat transfer by
conduction, making it crucial to gain insights into energy distribution within
the heat-affected region, including the melt pool. Thermal analysis enables the
description of thermo-mechanical, metallurgical aspects, and also addresses
studies related to fluid flow and energy transfer. As research in welding
processes has advanced, these models have evolved. This is why it is now
efficient to use computational modeling techniques as it allows us to analyze
the behavior of laser welding during the process. This underlines the importance
of this work which has carried out an exhaustive theoretical literature review with
the objective of classifying and describing the numerical simulations of laser
welding based on the physics involved. In that sense, the mathematical models
and strategies used in laser welding are explored in a general way. Therefore, two
types of laser welding by conduction and deep penetration are defined from this
point and they are categorized according to the phenomena involved in Model
Heat Conduction and Model Integral Multiphysics. This comprehensive review
article serves as a valuable resource for higher education students by providing a
structured and detailed exploration of laser welding and its mathematical
modeling. By classifying and describing numerical simulations based on the
physics involved, it offers a framework for students to understand the
complexities of this field. Additionally, this innovative approach to organizing
and presenting research contributes to educational innovation by facilitating a
more efficient and effective learning experience, helping students acquire the
knowledge and research skills necessary for advancements in the laser
welding domain.
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1 Introduction

Throughout history, humans have instinctively adapted and
shaped their surroundings. One crucial aspect of this evolution
has been the necessity to invent and create tools, weapons, and
implements for various tasks crucial to societal, economic, and
industrial progress. A notable example of this is the emergence of
metallurgy during the Bronze Age, particularly in Europe and the
East, where the demand to forge metals spurred innovation and the
development of metalworking techniques. Initially, forging fell
within this paradigm; in the present day, characterized by
industrial growth and productivity, the processes emphasizing
efficiency, safety, and cost-effectiveness in metal joining are
collectively referred to as welding (Josep and Wiliam, 1998). This
process is present in all the manufacturing operations of vehicles,
tools, instruments, etc. Based on scientific and technological
progress, the welding process is not exclusive to joining identical
materials or metals of similar composition and properties, however,
the welding process can be performed not only on metals but also on
different polymers and a wide range of dissimilar materials
(materials with divergent composition and properties). When
performing the process of joining metals, several processes
should be considered, which should ensure the optimal
conditions of the joint (resistance to mechanical wear, corrosion,
oxidation, resistance to high temperatures, etc.) so that as a result of
the welding process a joint with unique properties is obtained.

In 1856, James Joule laid the foundations for welding principles,
and the subsequent evolution of welding metallurgy has paved the
way for the emergence of innovative welding methods, contributing
significantly to industrial advancements today. The replication of
the welding process in a digital environment can exclusively be
achieved through the application of computational techniques.
However, the welding process is very complex as it includes heat
source motion, material deposition, thermal dependence, transient
heat transfer with complex boundary conditions, and phase change
phenomena. Of course, the thermal field can be considered as a field
that has a considerable impact on the mechanical and
metallographic fields. The heat transferred to the metals during
the welding process causes them to melt and blend with the filler
material. Upon solidification, this amalgamation results in a metal
possessing entirely distinct properties from its pre-welding state.
Hence, it becomes imperative to comprehend their characteristics,
encompassing both thermal and mechanical properties, to
effectively analyze their performance. Hence, in response to the
imperative to enhance welding techniques and facilitate the joining
of diverse materials, a range of methods have been developed for
welding processes. It would, therefore, be insightful to explore a
comprehensive classification of welding techniques, enabling a
thorough understanding of the unique attributes of each process
and aiding in the selection of the most suitable method for specific
industrial applications.

In the literature, some review studies are available that show the
versatility of laser welding because they describe the laser welding
process in different aspects, but emphasize the field of application
and use of laser technology. Mackwood and Crafer (2005) published
a review describing the thermal modeling and prediction of laser
welding of metals. The authors noted that similar techniques are
used for other types of welding such as arc, resistance, and friction

stir welding. Later, Rao et al. (2011) published a review paper based
on hybrid welding. The authors described the modeling works
employing hybrid welding formed by LBW and GMAW welding.
The authors also emphasized the importance of this type of hybrid
welding because, at the time of modeling, it is of great complexity
since the transport phenomena of each weld involved in the process
are immersed. Years later, Svenungsson J. et al. (2015) presented
modeling studies of keyhole welding, considering wavelength-
analysis modeling of the energy transfer of the laser to the
keyhole surface.

In that same period, Dal and Fabbro (2016) also performed a
state of the art of laser welding simulation. The authors focused on
the joining of dissimilar metals or materials under the laser welding
process. In this review, most of the equations and assumptions
needed to simulate laser welding are provided. Years later, Bappa
Acherjee (2018) presented a very extensive literature review. In the
first paper, the author presented the state of the art on hybrid
welding (Laser-Arc), where the focus remained on the convergence
of knowledge in the technical sense, research, and application of the
welding process through a general description of hybrid laser arc
welding, which includes the principle of operation. Consequently, a
review of the process LBW of polymers was carried out by Bappa
Acherjee (2020). This review was based on the following aspects: the
fundamentals of welding operation and aspects of polymer welding
strategies, and the application of process strategies, among others.
Later, Bappa Acherjee (2021a) and (2021b) complemented the
reviews outlined above with a review of LBW of polymers based
on welding parameters, quality attributes, process monitoring, and
laser irradiation strategies applied to laser transmission welding
of polymers.

Other review papers were published, including Dave et al. (2021)
in which the authors presented a critical review of laser transmission
welding in semicrystalline polymers. The authors considered items
such as interdiffusion and microstructural changes involved in the
laser-polymer interaction and described an overview of the
characterization process that determines weld quality. Among the
laser parameters, the authors described laser power and welding
speed. A comprehensive review was also performed by Bayat and
Dong, (2021) to classify numerical simulations of metal additive
manufacturing with the application of laser powder bed fusion
(L-PBF). The authors rated the simulations according to the
length scale and according to the physics involved in the process.
Therefore, they provide insight into modeling strategies for different
types of scales. In the same year, Riquelme and Rodrigo (2021)
presented an outlook on laser cladding on magnesium alloys. The
authors describe that magnesium-based alloys have poormechanical
properties. Therefore, this problem can be solved with coatings with
optimum properties. That is why laser cladding is an option in
coating manufacturing. Thus, the review was based on laser cladding
on magnesium and investigated the effect of manufacturing
parameters. In a later year, Jiang et al. (2022) described in their
research work the relationship in recent years between neural
networks and the development of fiber laser systems. The work
of the authors points out recent research on fiber lasers aside from
control of nonlinear effects and evaluation of laser properties.

A review article published by Nascimentos et al. (2023) gives a
comprehensive overview of thermal models of heat sources for
welding. However, the authors made an effort to organize a
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catalog and statistically describe the most important models in the
last 20 years. This review of Ernandes is exhaustive in nature, as it
encompasses a comprehensive exploration of the subject. Within
this work, the authors meticulously detail the geometry and
mathematical models pertaining to heat sources. They present
these models in a chronological sequence, offering a systematic
account of the various heat sources employed in modeling the
welding phenomenon. In this sense, the review papers show the
overview of the research on the welding process, covering aspects of
the type of application material, industrial process, comparisons
with other processes in the application, and all the source models
that exist for the modeling of welding. Also, for the analysis of the
phenomenon, experimental studies are essential to conceptualize the
phenomenon.

Presently, within the industrial landscape, laser welding stands
as an advanced and expanding technique. Its profound penetration
capabilities and the extensive array of laser types have prompted the
exploration of numerous phenomena and case studies enrich this
field. In this context, this work specifically delineates an objective,
focusing on the case study of penetration in laser welding.

Among the various phenomena associated with heat energy
transfer, encompassing its three mechanisms (conduction,
convection, and radiation), the predominant one in welding
modeling is heat transfer via conduction. Consequently, welding
processes, irrespective of their specific type, consistently involve the
flow of multiple forms of energy, including kinetic, electrical, and
thermal, all of which ultimately culminate in a heat flow affecting the
material. This underscores the paramount significance of delving
into this category of phenomena, with a particular emphasis on the
modeling of laser welding, as it yields essential insights crucial for
acquiring the requisite knowledge in this domain.

Hence, the primary objective of this work, which is the research
contribution, is to classify and describe numerical simulations of
laser welding based on the physics involved and the aspects of the

heat source model that have been employed. In a general way, it
explores the mathematical models employed in laser welding and
provides readers with a comprehensive introduction, especially
those keen on delving into laser welding modeling. It aims to
acquaint them with the mathematical models employed to
capture this phenomenon, along with the associated. The
structure of the article includes multiple sections. Section 2 is
dedicated to reviewing the current state-of-the-art in laser
welding modeling, Section 3 is dedicated to mathematical
modeling of laser modeling with a special focus on model heat
conduction and integral multiphysics, Section 4 deals with heat
source models that simulate laser welding, Section 5 is related to
CFD tools for this analysis, Section 6 discusses the findings and
Section 7 conclusions of the review art.

2 Current state of the art in laser
welding modeling

To comprehensively grasp the landscape and evolutionary
trajectory of welding in the domain of computational modeling
and simulation, an initial prerequisite is a foundational
understanding of the various welding methodologies and their
operational mechanics. Nevertheless, it must be acknowledged
that embarking upon a comprehensive exploration of the
encompassing spectrum of welding, which involves an intricate
web of concepts, laws, and principles, presents a formidable and
extensive undertaking.

To establish an accurate classification of welding, it should be
defined based on the specific process, conditions, or characteristics
that each welding method employs. Some authors, such as De
Azevedo et al. (2022), provide different types of welding classified
based upon the type of process. Resistance welding, arc welding,
oxyfuel gas welding, and solid-state welding are included within

FIGURE 1
Schematic of the experimental setup of: (A) Electron BeamWelding (Feng et al., 2021) and (B) Laser BeamWelding (Tao et al., 2023). (The Figures are
Under a Creative Commons license, Open Access).
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energy welding as this process uses a laser to generate the energy
required in the joining of materials. However, Kou (2002) describes
a classification by considering the type of energy and conceptualized
fusion welding, including gas Welding or oxyacetylene, arc, and
high-energy beam welding as subtypes of this procedure. High-
energy beam welding is better known as laser welding, or it is also
expressed as electron welding. As per this name, it uses a laser device
through which it produces an ordered beam of light and in which it
concentrates transitions to atomic dimensions (electrons) at higher
energy levels. There are two subtypes of this type of welding
classified according to the joining procedure (for experimental
setup schematics, see Figures 1A, B) which are: electron beam
welding (EBW) and laser beam welding (LBW), respectively. The
difference between these procedures is that EBW uses a void
environment with high energy, high welding speed, and a narrow
Heat Affected Zone (HAZ) ((Zhang et al., 2014; Yang et al., 2020)).

In a laser welding system, the laser presents a synergy with the
base material through the thermal energy since it must generate the
energy (heat flow) necessary to melt and penetrate the surface of the
base materials that interact in the welding process. In this process, a
sort of fluid pool is created. It is in these processes where multiple
phenomena occur and which require the knowledge of different
areas of physics to fully interpret the phenomenology (Lienert, 2011;
von Allmen, 1987). Such is the versatility of the laser welding process
that it can use a variety of techniques, including the utilization of
shielding gases, applied pressure, or a combination of both,
throughout the welding procedure. The most common joining
techniques such as arc and oxy-fuel welding have been replaced
by LBW joining technology for different applications. This is
because of the advantages of concentrating the energy, and ease
of operation because it can be automated, so it is considered one of
the modern techniques (Liu et al., 2018).

Among the diverse thermal-energy-utilizing welding
techniques, experimental observation of the procedure presents
complexity.

Thus, Ventrella, Berretta, and De Rossi (2010) developed an
experimental case study and analyzed the effects of the operating
parameters of the pulsed laser. In this way, they analyzed the
characteristics and behavior of the joined parts in order to
determine the mechanical properties. The authors concluded that
the shape and dimension of the weld bead depend on the dimension
of the separation of the spaces between the parts. In this sense, the
width of the connection and the depth increase proportionally to the
pulse energy. Thus, the range of power density required for laser
welding is between 5×104 and 107 W/cm2. It may happen that the

value is less than 105 W/cm2 and that the laser beam will be reflected
by the medium. It is further possible that only 30% of the power will
be absorbed (Fresnel phenomenon) by the surface (Svenungsson,
Choquet, and Kaplan, 2015). This process is called conduction
welding (so defined because the penetration depth is one-tenth of
a millimeter). In the opposite case, where the power density operates
with values greater than 106 W/cm2, the laser beam is absorbed until
the base material starts to evaporate and a weld pool is formed which
expands to allow the laser to penetrate, this process is known as
keyhole welding (Ebrahimi and Hermans, 2023), Figures 2A, B
describes both categories with the characteristic aspects,
respectively.

Thus, the difficulties associated with acquiring equipment that
facilitates real-time observation and analysis of the heat source
impinging on the joint region. In essence, it remains an intricate
endeavor. Therefore, it is impossible to analyze the area affected by
the heat in the weld puddle. Thus, observing the phenomenon
physically and avoiding the risk to the eyes of the observer, due
to the exposure to radiation during joining, is impossible so far.

For these reasons, modeling and computational simulation have
been the main tools of the scientific community to try to understand,
analyze, describe, and develop the laser welding phenomenon.
Furthermore, it is essential to note that the development of a
mathematical model that accurately represents the underlying
physics of welding hinges on the specific case study of interest.

In addition, numerical modeling is complemented by
experimental research to verify and understand the strengths or
weaknesses of the welding process. The interest in fully
understanding the physics involved in this process is driving the
field of numerical modeling to perform more precise investigations
of every aspect of laser welding under consideration. Miyamoto
(2010) developed technology for fusion by using laser pulses with
less repetition so that the laser energy is absorbed at the interface. It
has been noted that modeling the phenomena that occur in welding
involves simplifying some of the physics involved. Among those that
occur, the pressure generated (recoil pressure) due to the
evaporation of the medium causes the vapor to drive the molten
metal and form a long, narrow cavity.

In this way, the laser will be able to penetrate through the vapor
until it refracts again at another point in the cavity. Therefore, the
changes caused in the morphological structure (Cunningham et al.,
2019) of the material due to the absorptivity have generated interest
when investigating the evolution of the weld pool (Wang et al., 2006;
Cho et al., 2009; Pang et al., 2016; Huang et al., 2017; Li et al., 2019).
Roy et al. (2006) developed a 3D thermal and hydrodynamic model

FIGURE 2
Categories of laser welding: (A) Conduction Welding and (B) Keyhole Welding, (Ebrahimi and Hermans, 2023). (The Figures are Under a Creative
Commons license, Open Access).
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for pulsed laser welding to numerically analyze the evolution of the
temperature and velocity fields during the process.

Thus, when generating the weld puddle, the geometrical aspects
as well as the behavior of the laser operating parameters are of great
interest and studies have been conducted to determine the
relationship between penetration and stability in the keyhole
(Bedenko et al., 2010; Gao et al., 2018). Analysis of the
dependence between stability and keyhole weld depth has been
raised. In this regard, Fabbro (2020) presented a thermal model for a
regime of the laser applied to macro welding considering the laser
absorptivity and Savin et al. (2018) performed a numerical study of
continuous laser welding and heat treatment, considering the modes
of deep penetration and surface melting. The results showed that the
maximum deformation and longitudinal strain due to tensile stress
is in the elastic region.

The importance of the geometrical aspects of the weld puddle
has been reported by Vaglio et al. (2023) who developed a thermo-
geometrical model and predicted keyhole porosity. The difference in
geometry and aspects in the evolution of the phenomenon can be
avoided with keyhole analysis. In this way, we find the work done by
Courtois et al. (2013) presents a new approach to calculating the
laser reflections, treating them as a wave from Maxwell’s equations.

The modeling of the laser welding phenomenon is an
emblematic topic because it requires considering a mathematical
model of the process welding phenomenon and a mathematical
model to determine the type of heat source, in order to determine the
heat flux acting on the weld pool and the heat affected zone (HAZ).
There exists a notable evolution in heat source models, which will be
elaborated upon in a subsequent section. Specifically, within the
context of laser welding, recent years have witnessed dedicated
research endeavors aimed at refining the methodology for
replicating the laser welding process.

As welding is a widely used process, a model that allows the
simulation of the heat flow necessary and physically adequate for its
study must be provided since the result of heat input is deformation
and residual stresses in the structure. In numerical simulation
studies, the contribution in the application of energy transport,
momentum transport and matter transport improve the
understanding of the laser welding process. However, the
literature is very wide and versatile due to the studies that exist.
Thus, not having a concise reference when approaching the
development of a model for the simulation of laser welding can
lead to errors of uncertainty in the calculations.

From the concepts and fundamentals of the laser welding
process, there is a growing importance in understanding that the
physical phenomena underlying these processes are remarkably
intricate and, more significantly, intricately interrelated. In this
sense, the most relevant phenomenon in the welding process is
the interaction of energy andmatter, in that the flow of energy passes
through or impinges on a solid medium. It then triggers a series of
transport phenomena, resulting in an increase of energy and as a
consequence a change in the solid medium’s state of segregation.
Therefore, in numerical modeling, the energy flow is represented as
a volumetric heat source, which must be considered as a mobile
aspect. Determining the transient thermal field in a solid medium is
important because the mechanical properties and metallographic
aspects depend only on the temperature. Among the subsequent
phenomena, a dynamic process in the weld puddle occurs, which

requires determining and analyzing the flow field in the weld as a
consequence of the coexistence of fluids in different phases, under
complex boundary conditions (evaporation and convective and
radiative losses to the surrounding environment). In this aspect,
the phenomena of keyhole dynamics, molten pool dynamics,
tracking interface, and the occurrence of weld defects contribute
to a comprehensive understanding of the subject (Yang et al., 2020).

Modeling and comprehensively addressing all facets of this
phenomenon entail a substantial computational expenditure in
terms of both time and effort. Additionally, grappling with the
intricacies of the mathematical model poses a formidable challenge.
The first category pertains to thermo-mechanical and metallurgical
simulations, which are geared towards scrutinizing outcomes related
to stress analysis, residual stresses, mechanical properties,
metallurgical phase transitions, and mechanical deformations
arising within the laser welding process. In this sense, Suárez
et al. (2011) developed a transient thermo-metallurgical model
through ANSYS software. The work was carried out considering
the laser cladding technique. Therefore, due to the temperature field,
the thermal and metallurgical effects, i.e., phase transformation,
were observed, and the results were verified with experimental data.
Furthermore, Vemanaboina et al. (2014) presented a study of a finite
element based transient thermal model to simulate the welding
process applied to stainless steel. The temperature in the heat-
affected zone, which determines the deformations and stresses,
was analyzed.

Later, Azizpour et al. (2015) developed a 3D numerical study of
the finite element methodology (FEM) technique of laser beam
welding of a Ti6Al4V sheet, to determine the temperature zone and
subsequently to predict the mechanical property of hardness and
weld geometry. By using SYSWELD software, the effect of focal
position on the weld bead geometry was investigated and the results
were compared with experimental results.

Sahoo and Chou (2016) studied the microstructure evolution
in an electron beam additive manufacturing process. The authors
developed a three-dimensional thermal model with ABAQUS
software and analyzed the thermal behavior in the electron beam
additive manufacturing process. Furthermore, they used a
moving conical volumetric heat source combined with a
horizontal Gaussian distribution source. In obtaining the
thermal field, the phase-field method was employed to
incorporate the temperature gradient and solidification rate as
simulation parameters in a Fortran code.

Later, Su et al. (2017) performed a numerical simulation in 3D of
transient laser welding to analyze the temperature and residual stress
in aluminum parts. The model was considered plastic and thermo-
elastic. They also analyzed the laser welding power and speed.
Sebayang et al. (2018) evaluated the distortion and phase
transformation in the heat affected zone during the laser welding
process through finite element analysis with a thermos-structural
and metallurgical model using MSC Marc/Mentat software. The
authors used a conical Gaussian heat source distribution and the
Seyyfarth-Kassatkin model for the estimation of the transformation
phases. Years later, Zhang J. et al. (2018) conducted a two-
dimensional study of grain structure growth in laser welding. The
authors developed a model based on cell autonomy (CA) coupled
with the finite element technique to determine the temperature
distribution and evolution of the granular microstructure during
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metal solidification. Shapeev et al. (2019) conducted a study using
3D modeling of laser welding on dissimilar metals with the method
of collocations and least squares. The geometrical parameters of
laser welding were determined to avoid brittleness in the formation
of intermetallic phases.

Nandy et al. (2019) presented a molecular dynamics simulation
study to investigate the sintering mechanism of AlSi10Mg metal
powders of different sizes. The authors employed Sandia National
Laboratories’ MD LAMMPS (Large-scale Atomic/Molecular
Massive Simulator) software. It was observed that nano-sized
particles and interfacial atoms have higher mobility than surface
atoms, resulting in higher part densification. In the multicomponent
alloy case, the diffusion rate is higher than in pure metal.

Panda and Sahoo (2019) analyzed the effects of varying laser
density and welding speed. The authors presented a transient 3D
thermo-mechanical model and determined the stresses during
powder bed laser melting of an AlSi10Mg built-up part using
ANSYS software. In the model, the authors considered the effects
of heat transfer, a moving Gaussian distribution heat source, and the
process of direct laser sintering of metals.

Nazami and Sahoo (2020) analyzed the influence of hatch
spacing and laser spot overlap during melting in an aluminum
alloy under a 3D transient heat transfer model. The authors used
ANSYS software and considered the mechanisms of conduction,
convection, and radiation, as well as a Gaussian-distributed heat
source. It was concluded that the dimension of the molten pool
changes with varying hatch spacing and laser spot overlap.

Sahoo (2021a) performed a simulation of heat transfer and
temperature distribution for different parameters of laser energy
and welding speed using ANSYS software. A Gaussian heat source
distribution was used in the model. In the same year, Sahoo (2021b)
developed a thermo-mechanical model through finite element
analysis to determine the residual stress and strain of the part
built with AlSi10Mg. The author concluded that there is a
decrease in residual stress in the built part with an increase in
the gap between hatches.

Another study, by Giudice and Sili (2022), evaluated residual
stresses in laser welding. The authors determined the longitudinal
stress distribution through a multi-source model, which allowed for
determining the temperature field in full penetration welding. The
authors also concluded that the resolution of the thermal field helps
to analytically determine the residual stresses through a combined
process of the thermal profiles and the corresponding heating-
cooling cycles.

More recent studies have reported the development of laser
calibration, such that parametric studies contribute to optimizing
the welding process. An example is Nisar et al. (2023) who developed
a 3D transient thermal study using finite element in ABAQUS to
optimize the parameters of the laser welding process on an
aluminum alloy. In the study, they used a conical Gaussian heat
source and a regression model to determine the optimal parameters.
The results showed that the laser power has an influence on the weld
bead width, while the welding speed has an influence on the
temperatures. Also, (Liu et al., 2023), investigated the effect of
laser welding parameters on ceramics. They determined the
temperature field, speed and power of laser welding using
ABAQUS software by finite element analysis. Furthermore,
Chuang et al. (2023) proposed a study based on finite element-

COMSOL Multiphysics simulations, regression analysis, and neural
networks in order to obtain the power and speed parameters of laser
welding to decrease angular distortion and improve mechanical
properties. The authors successfully predicted the weld puddle
geometry, cooling rate, and heat-affected zone dimensions as a
function of laser power and welding speed.

The consequent effects on the parameters of the welding process
were reported in the work by Wang et al. (2023) who performed a
3D numerical study through ANSYS of laser conduction welding
between stainless steel and PET. The authors considered a surface
type heat source in their model. They analyzed the effect of laser
welding speed on the joint temperature field, weld morphology, pore
distribution, interfacial microstructure, strength, and dissimilar
joint fracture development. A study reported by Polonsky et al.
(2023) performed a 3D study for the characterization of partial
penetration laser welding of 304L stainless steel by finite element
simulation. They used the code developed by Sandia National
Laboratories called ESCULT and SCULPT. Another work was
reported by Karlson et al. (2023) to determine the geometric
characteristics of the weld on its strength and ductility under
quasi-static tensile loads through 3D finite element simulations.
The authors validated the model with experimental load-
displacement results. The simulation was performed using the
SIERRA/SolidMechanics (SIERRA/SM) code developed by the
authors and the Sculpt and Cubit codes were used to generate
the computational mesh. Another study was presented by Wu et al.
(2023) which presented the theoretical-experimental study of
damage in a titanium alloy joint during hot deformation in the
laser welding process. Numerical simulation of uniaxial tension was
performed by finite element with Abaqus software. The results
showed that the error between the fracture deformation in the
numerical study and the experimental one is less than 5%. In a
case study, Zuo et al. (2023) presented the experimental and
numerical study of laser welding of Al2O3 ceramic. In this
regard, they analyzed the effects of laser welding parameters on
crack morphology. During the experiment, it was observed that
when the defocus distance was greater than 17 mm, free cracks were
formed in the weld and in the base material. In the numerical study,
it was determined through a thermo-elastoplastic model that the
maximum stress is 1,576 MPa, so that the model developed with the
ABAQUS software did not present defects due to cracks. The
authors concluded that as long as the stress is less than
1,576 MPa, cracks do not occur.

In another theoretical-experimental analysis reported by
Wasilewski et al. (2023), they studied the thermal cycles in laser
welding processes at high speeds. In this sense, the authors analyzed
the fields and temperature gradients through thermo-metallurgical
numerical simulation using finite element and the results were
validated with experimental data. The temperature field was
obtained by means of a semi-analytical 3D transient model with
a Gaussian surface heat source combined with a conical heat source,
in a synchronous manner. The results showed that the heating rates
are in the range of 2 × 104 K s-1 and 4 × 105 Ks-1. Among the
thermo-mechanical studies, Zhang et al. (2023) determined the
temperature field of the weld puddle to analyze the residual
stress and strain. The authors performed a numerical simulation
through the finite element technique of the welding process for a
high-power laser. They employed a combined Gaussian and conical
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volumetric heat source model. The authors concluded that the Von
Mises stress was unevenly distributed with a maximum value of
220 MPa. Subsequently, Li et al. (2023) developed a 3D finite
element model of laser welding to determine the residual stress
and weld deformations in a stainless-steel wall. The authors
employed the thermal cycling curve method in conjunction with
a combined surface Gaussian type heat source and a cylindrical
volumetric heat source. The authors observed that the weld puddle
morphology matched the experimental results, so the heat source
model is accurate. On the other hand, Rehman et al. (2023) reported
the results of finite element analysis of laser butt joint welding using
SYSWELD software. A conical heat source and the double ellipsoidal
model were considered in the study. The numerical results of the
weld profile were validated with the experimental results and the
model that showed correct accuracy was the conical model.

Apart from considering the geometric defects and dimensional
accuracy, for the simulation of the keyhole and weld puddle, with the
increase of energy in the medium a phase change was generated,
therefore, three phases of the material coexist: a solid phase, liquid
metal, and the vapor of the material. Therefore, the second category
corresponds to the multi-physical simulations because they allow
the observation and analysis of the thermal fields caused by the
incidence of the energy beam on the weld bead, where the effects of
laser-material interaction, heat, fluid flow, and solid-liquid are taken
into account. Phase transformation by the incidence of the heat
source energy, allows one to analyze multiple phenomena in the
welding process, as well as the weld geometry, considering the
superficial stress, the Marangoni effect, and pressure recoil
during the process transition from superficial to keyhole welding
and the distribution of the heat source.

Based on this reason, Amara et al. (2003) considered the ray
tracing method and no multiple refraction in the numerical study of
the vapor produced during laser welding through the finite volume
method. The authors studied the effects of vapor pressure and
ambient pressure and they observed that ray tracing allows an
adequate absorbed intensity for the model, but it is important to
consider the multiple refraction. Thus, it is required to consider the
effects of surface tension, pressure recoil, and the effect of thermos-
capillarity between the vapor and the molten metal as these aspects
allow one to understand the dynamics of the weld puddle. Later,
Amara & Fabbro (2008) presented a study in which they analyzed
the effects of inert gas on liquid metal flow. The authors considered
the effects of surface tension, annealing pressure on the evolution
between the keyhole, weld pool, and surrounding air. They
employed the VOF method to determine the ratio at the fluid
interface using Fluent software. It was concluded that using gas
injection during the process improves the fluid flow and therefore
allows for better joints. Therefore, the interest in analyzing these
effects allowed Saadlaoui et al. (2018) to propose a newmethodology
using finite elements. In order to perform a three-dimensional
numerical study of the dynamics of the weld puddle and in the
model, he proposed the concepts of back pressure, surface tension,
and the thermo-capillary effect. The required energy source was
obtained by combining the double ellipsoidal source and a Gaussian
surface source for the modeling using the commercial
software SYSWELD.

Mokrane et al. (2018) studied the selective laser sintering process
as an additive manufacturing technique for material processing. The

authors developed a computational tool to simulate the thermal
processes. The authors described the modeling, simulation, and
validation to optimize the laser sintering process, as well as a
parametric analysis to have the reliability of the model represent
the real physical phenomena. In the same year, Alter et al. (2018)
presented a study using a frequency-doubled disk laser for high
speeds. Through an analytical model, the authors determined the
laser power at the melting and deep penetration interface. The
authors observed that heat conduction welding for speeds >1 m/s
achieves quality welds without spatter formation. Later on, Meng
(2020) performed a numerical study of elements in laser beam
welding with deposition material. The authors developed a three-
dimensional fluid flow and transient heat transfer model, employed
a ray tracing method with a mesh refinement algorithm to calculate
the Fresnel absorption in the keyhole wall, and employed Ansys
Fluent software to obtain the temperature, velocity fields, and free
surface deformation. Also, Ghosh et al. (2021) presented a numerical
study to determine the transient regime temperature distribution
during the laser welding process. The model was resolved with
COMSOL Multiphysics software and the study used a Hermit-
Gaussian function as a continuous mode (CW) heat source of
300 W and a moving speed of 120 mm/min.

Guo et al. (2021) presented a theoretical analysis of keyhole
welding, in which the authors considered the geometrical
relationship that can be obtained with the ratio of the radius of
curvature at the gas-liquid interface and the radius of the laser beam.
Furthermore, Giudice et al. (2021) developed an analytical model of
a parameterized moving linear heat source to determine the
temperature field during the laser welding process. This
developed model allows the expression of the thermal field as a
function of the reference system of the heat source. The authors were
able to analyze the temperature profiles during the welding process.
Years later, Kang et al. (2022) developed a three-dimensional fluid
flow coupled energy transfer model for the simulation of the weld
pool dynamics. The authors considered the study in a laminar
regime with the VOF method to calculate to tracking interface.
In the model, they considered recoil pressure, surface tension as the
moving forces, and a combined Gaussian distribution heat source. In
this way, it was possible to establish a relationship between the
stability of the keyhole and the stability of the weld pool, in order to
avoid porosity defects. In this sense, analyses have also been carried
out when considering the free surface of the fluid.

Chianese et al. (2022) presented a 3D numerical study with Flow
3D software. In this way, they analyzed the effect of inter-piece
separation on the temperature field and on metal mixing. The
multiphysics model considered beam oscillation with a Gaussian
type profile, multiple reflection, evaporation, keyhole formation,
solidification, diffusion, species conservation, and laser absorption
as a function of temperature and VOF technique tracking at the
liquid-vapor interface. The authors concluded that the separation
between parts causes uncontrolled mixing of the metal. A year later,
Chianese et al. (2023) reported the effect of laser beam shaping on
metal mixing and molten bath dynamics. The study was performed
using Flow 3D software and the multiphysics model considered
convection and conduction heat transfer, as well as fluid flow
dynamics, and the effect of the square column. The multiple
reflection method was also implemented through ray tracing, the
VOF method, and phase change. In their case, Tsai et al. (2023)
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analyzed the behavior of the keyhole and weld puddle with an
artificial neural network (ANN) to predict the melt pool depth, melt
pool width, and cooling rate for any combination of the parameters
of laser power and welding speed. In a three-dimensional study,
Fresnel absorption effect, back pressure, Marangoni force, buoyancy
force, VOF method, surface tension, vapor column heat transfer
induced by vapor, and laser beam energy density in Gaussian
distribution results were obtained by Flow 3D software. A
theoretical-experimental study presented by Ai et al. (2023)
analyzed the influence of keyhole behavior on the asymmetry
characteristics of laser welding in dissimilar materials. The
authors presented a multiphase 3D model. In this sense, Unni
and Vasudevan (2023) performed a three-dimensional numerical
simulation in the transient of the hybrid laser-MIG welding
(HLMW) for a 316 LN stainless steel plate of 0.01 m thickness. It
was observed that the authors employed three volumetric heat
sources (arc and laser heat source), double conical ellipsoid,
double conical-cylindrical ellipsoid, and double rotating Gaussian
ellipsoid. The authors analyzed the weld pool development and
temperature distribution with ANSYS Fluent software and validated
them with experimental results. The study by Fan et al. (2023)
permits a comparison of laser welding and GMA-assisted high-
power laser welding. In the 3D transient model, a hybrid heat source,
i.e., a planar elliptical double heat source and a Gaussian conical heat
source, was considered for arc and laser heat distribution respectively,
Fresnel absorption. Furthermore, the effects of electromagnetic force,
evaporation, recoil pressure, surface tension, Boussinesq
approximation, and free surface tracking were examined using the
VOF method. The results were obtained using Ansys Fluent software
and showed that low current pulsed GMA increases the high-
temperature region of the weld pool. On the other hand, a
multiphase model was presented by Zhou et al. (2023) and they
described the dynamics of the synergy of the keyhole and vertical
laser mirror weld puddle with the upward direction of an aluminum
alloy.Mass transfer, fluid flow, VOFmethod, and the effect of heat by a
hybrid heat source, i.e., a Gaussian distribution heat source and a
volumetric taper source, were considered in the model. Also, Jabeen
et al. (2023) presented the development of a 3D numerical model to
determine the welding efficiency of a fiber-reinforced thermoplastic
composite. In the model, ray tracing was considered to quantify the
effect of light scattering patterns. The COMSOLMultiphysics software
was used to perform the analysis and the effect of fiber orientation on
the reflection and refraction of light transmission during the laser
welding process was observed. They also performed the validation of
the welding geometry with experimental results.

Studies with higher complexity involve multiphysical,
multiphase, and thermo-mechanical or metallurgical models, to
study or prevent the formation of porosity, grains, or subsequent
defects during the laser welding process. Thus, the research
conducted by Xia and Wang, (2023) studied the formation of
porosity induced by a keyhole in oscillating laser T-joint welding.
They also considered observing the influence of laser oscillation and
angle of incidence. They presented a 3D numerical model through
Flow 3D software. In that sense, Yin et al. (2023) established a
transient 3D model for the weld puddle and keyhole. In this way,
they investigated the morphology and distribution of porosities by
employing laser mirror welding on an aluminum alloy. Laser heat
input, metal surface vaporization, and conjugate heat transfer were

considered. The results were validated with experimental data. The
melt flow behavior permits the analysis of the porosity evolution in
different regions of the medium-thickness plate. Also, Xia and
Xiong. (2023) performed a numerical simulation of molten pool
flow behavior and keyhole evolution. In the study, the authors
proposed bilateral synchronous oscillating double laser beam
welding and synchronous double laser beam welding, with the
aim of avoiding porosity in T-joint welding. The results were
validated with experimental data, demonstrating that porosity is
reduced with bilateral synchronous oscillating dual-beam
synchronous welding. Li et al. (2023) investigated the keyhole
dynamics and pore formation mechanisms in the annular laser
welding process for a thickened aluminum alloy. The authors
performed a numerical experimental study. The numerical model
was 3D, transient, and considered heat transfer, fluid flow,
Marangoni effect, back pressure, and laser beam tracing. In the
experimental results, they found that the porosity can be reduced by
combining a heat source with an annular laser beam and a source
with a Gaussian beam. The case study presented by Kamat et al.
(2023) developed a multiphysics model integrated into the process
of laser welding of thin films. The model considered evaporation, the
VOF method, weld puddle dynamics, in-pool absorption, and
multiple reflection. The authors considered the analysis of the
welding process by means of CFD through Flow 3D software and
obtained the weld dimensions that were compared with the
experimental data. They then employed a finite element analysis
model with MSC-Simufact software to evaluate the structural
performance of the CFD-simulated weld. The study reported by
Huang et al. (2023) describes a numerical and experimental
methodology. In this regard, it studies the effect of laser
oscillation on metal mixing and weld puddle microstructure
during the welding process of aluminum and copper. The
numerical study was developed through CFD with Flow 3D
software and they implemented Scheil’s model to predict the
phase distribution in the weld. An alternative for the
phenomenon of grain growth was reported by Lu et al. (2023)
who performed a transient numerical simulation of the thermal flow
dynamics in the oscillating laser welding process, so when the
oscillation frequency (f) increased from 20 to 200 Hz, the
temperature gradient decreased from 1,518 to 1067 K/mm. In
their case, Han et al. (2024a) presented a theoretical - numerical
macro-scale study with Flow 3D Software. The multiphysical study
considered heat and mass transfer as well as laser beam oscillation to
analyze the evolution of equiaxial grains in a medium-thickness Al-
Li alloy. They employed Gaussian-type axisymmetric distribution to
simulate the heat source of the laser beam. Another study by Han
et al. (2024b) developed a study based on a 3D multiscale model to
determine the microstructure change in the molten pool during the
solidification process of laser welding. Through the Flow 3D
software, they incorporated a multiphase model (phase change),
using the VOF technique to track the free surface. The simulation
result permitted them to observe the distance of the columnar grain
growth. The authors provided the information to avoid
microstructure defects and grain region reduction. Also, Ai et al.
(2024a) developed a model with solidification conditions in
transient state considering the shape of the molten bath, to
determine the microstructure and evolution of the grain to
improve the quality of laser welding. In the study, they used a
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phase field model to calculate grain growth during laser welding of
an aluminum alloy. Another work by Ai et al. (2024b) presented a
multiphase numerical model to analyze the process of forming the

coating layer during additive laser manufacturing. In this way, the
dynamic behavior of the molten metal and the evolution of the free
surface of the coating layer were discussed.

TABLE 1 Characteristics of the numerical simulations of thermo-mechanical and multi-physical studies.

Studies thermo-mechanical

Author Case of study Main aspects Highlights

D St Ff Ht H

Rong et al. (2022) Thermal modeling on laser welding
microcrack formation

3 T - c Heat source hybrid Macro–micro coupling model for
fusion interface stress

Shen et al. (2020) Simulation thermal of electron beam
welding residual stress

2 - x c Gaussian ellipsoidal and G.
rotating body

Modeling and analysis welding
residual stress

Song et al. (2019) Study thermal on Laser welding in TWIP
steel

2 - - c Gaussian surface and conical
heat source

Thermal and stress Simulation
numeric

Liang et al. (2019) Study CFD-FEM coupled of Electron
Beam Welding

3 T x c Gauss body heat source models Accoupled heat transfer, fluid flow,
and mass transfer

Su et al. (2017) Thermal simulation Fiber Laser Welding
of AA6061-T6

3 T - c In surface is function
distribution Gaussian

Welding parameter in laser welding
and system Fatigue fracture

Le Guen et al. (2011) Simulation numerical of Hybrid laser-
MAG welding

3 QS - c Assumed to Gaussian
distribution

Thermal cycles in S355 steel Surface
deformation

Karlsson et al. (2010) Laser welded corner joints - - - - ------ Geometry and parameter knowledge
welding

Kwon et al. (2009) Study thermal of welding distortion on
Aluminum Alloy

3 - - c Goldak double ellipsoidal Welding distortion in Laser beam
welding Keyhole model

Studies multi-physical

Author Case of study Main aspects Highlights

D V T M B K H

Daligault et al. (2022) Simulation of interface tracking 2 p/h - x - - ---- Coupling Ray-tracking and Eulerian
model

Coviello et al. (2022) Study numeric in geometry Keyhole - - - - - - The laser source is
decomposed

Solution Semi-analytical

Aggarwal & Kumar,
(2019)

Study heat transfer and fluid flow of
formation porosity using coupled
DEM-CFD

3 p/h v x x - Distribution gaussian Courant– Friedrichs–Lewy (CFL)

Open-source DEM model

Kouraytem et al.
(2019)

Study Multiphysics numerical of laser
keyhole in welding process

3 p L x x Ray-tracing models Multi-driving forces

Laser-Matter Inter. Molten Pool Flow

Wu et al. (2018) Modelling Multiphysics welding of
dissimilar material

3 p/h v - x - Distribution gaussian Accoupled of heat transfer, fluid flow
and free surface

Courtois et al. (2016) Study of heat transfer conjugate of
keyhole laser welding

3 p/h L - x x Model Drude Validation experimental

Model integral on heat transfer,
fluid flow

Tan & Shin, (2014) Simulation Numerical multi-physics on
keyhole dynamics

3 p/h L x x x Ray-tracing models Laser welding interaction multi-phase
interaction

Courtois et al. (2013) Modelling laser welding for predict
interface in melt pool

2 - L - x - Distribution gaussian Tracking interface vapor-liquid whit
model level-set

Amara & Fabbro,
(2008)

Study of effects of gas inert during
penetration laser

3 p v x x - Distribution gaussian Modelling included phase change,
vapor flow

D, number dimension of model; St, evolution model; Transitory (T), State (SS), Quasi-state (QS), Ff -fluid of flow, Ht- Mode heat transfer; Conduction (c), Convection (a), Radiation (r), H–Heat

source.

D, number dimension of model; V, vaporization modeled whit recoil pressure (p), latent heat (h); T, tracking interface using method Level Set (L) or VOF (v), M–Marangoni Effect, B–Buoyancy

term, K–Knudsen layer, H–Heat source.
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To determine this aspect of the phenomenon, several studies have
reported the methods that have been used such as considering a porous
medium interface solid between liquid (Piekarska and Kubiak, 2011;
Piekarska and Kubiak, 2013), volume fractional (VOF), Level Step, and
Arbitrary Lagrangian-Eulerian (ALE), among others, to determine
tracking interface (Flint et al., 2022; Huang et al., 2023). Table 1 lists
in general terms the considerations that describe the characteristics of
the nature of the phenomenon, in order to obtain a particular
mathematical model and define a modeling strategy.

The study performed by FEM or CFD represents the selected
process considerations according to the laser welding application,
however, they must provide the data of their results and information
regarding the physics. In the welding process, the keyhole and the
molten puddle present variations because of the welding speed and
the cooling rate that does not permit the gas to escape completely by
evaporation from the molten metal puddle. The formation of
porosities in the weld are the defects that become cracks,
therefore, research based on simulations to predict the
deformations and residual stress, by means of process
parameters, also involves the analysis of the microstructure and
mechanical properties of the joint. If possible, some studies present
an approach to fully integrate the attributes of the thermal field by
coupling fluid dynamics with thermo-mechanical studies and
determine the structural performance of the welded joint. In this
way, they present data on residual stress and weld distortion by
including aspects of weld puddle dynamics and keyhole evolution.

According to the discussion, the simulation according to its
modeling strategy presents only conduction models and integral
multi-physics models as a consequence of the multi-physical study
through different CFDmodels. For both strategies, it is imperative to
analyze the different laws that constitute them to consider the
advantages or disadvantages of the model. Another aspect to
analyze of the categorization in the simulations is the heat source
models that have been used. In the literature, it is observed that
Gaussian and double ellipsoidal distribution have been used in
different simulations and even hybrid heat sources have been
realized by joining two sources. It is important to know the
details and justification for adopting this strategy.

This article lays the foundation for higher education students to
embark on a journey of enhanced research skills and educational
innovation in the realm of laser welding. By emphasizing the need
for a structured classification and description of numerical
simulations based on underlying physics, it provides a clear path
for students to navigate the intricate world of laser welding
modeling. The innovative approach of this review article not only
facilitates a deeper understanding of the subject matter but also

encourages students to embrace novel methodologies for
comprehending complex topics, ultimately fostering their growth
and proficiency in research skills within the field of laser welding.

3 Modeling of laser welding: Focus on
model heat conduction and model
integral multiphysics

There are two solution techniques for any type of phenomenon:
experimental and theoretical. The first technique tries to reproduce
the phenomenon of interest in its totality and looks for a way to do it
under the same conditions, which becomes very complex due to the
high cost of measurement equipment, problems of scale, and
difficulty in the measurements. The other technique requires a
mathematical interpretation of a physical system, which could be
represented in its entirety or under certain considerations. This
mathematical model is usually the solution of simple cases because it
has certain restrictions such as geometry or linear phenomena.
Within this technique, there are two categories, studies that are
solved under an analytical solution and studies using mathematical
modeling (numerical methods). This latter technique allows one to
study and solve complex phenomena and obtain results in a short
period of time, obtaining an approximate solution.

To develop the model of the laser welding phenomenon, it is
important to remember as mentioned in previous sections that it
depends entirely on the energy in which the process is performed and
therefore the distribution or knowing the amount of energy required. So,
it is only required to predict the temperature field in the medium during
the process, because of the effects it has on the materials being joined.
Then, to obtain this parameter, it is required to derive the heat diffusion
equation (Villacis Ramón Mayra Elizabeth, 2022).

Then, considering a differential element in rectangular
coordinates and in three dimensions, by means of the energy
balance in Table 2, the relationship of the heat fluxes with the
enthalpy change (E = TmCp) in the medium is expressed which is
quantified by the internal energy. q(x,y,z,t) is the volumetric heat
source and H(T) represents the change from solid to liquid or liquid
to solid state. Convective and radiative flow are also considered as
the heat lost by the medium. Finally, the expression of the
conductive model is the general heat diffusion equation, for other
authors the Fourier-Biot equation. This expression describes the
amount of heat energy in a medium in a given period of time, i.e., the
temperature of a medium as a function of time (transient).

The driving model was developed using a FEMwhere simulations
are presented for stress, fatigue, distortion, and residual stress analysis

TABLE 2 Model heat conduction equations.

Heat transfer ∂
∂x (λ(T) ∂T∂x) + ∂

∂y (λ(T) ∂T∂y) + ∂
∂z (λ(T) ∂T∂z) + q(x, y, z, t) +H(T) � ρCp(T) ∂T∂t

Change of phase

H T( ) � 0
Hm

| T<Tm

T>Tm
{ } o fl �

0
T − Ts

Tl − Ts

1

|
T<Ts

Tl >T>Ts

T>Tl

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Boundary Conditions qconv � h(T∞ − Ts)

qrad � σε(T4∞ − T4
s )
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induced by LBW and metallurgical phase transformations. Zhang X.
et al. (2019) employed a FEM for thermal simulation during double-
beam laser welding (transverse arrangement) to evaluate the effects of
arrangement mode and laser power ratio. Also, Zain-ul-abdein et al.
(2011) investigated the effect of residual stresses on metallurgical
transformations in T-type joints for aircraft applications. Perulli et al.
(2020) presented a FEM-based model for the thermo-mechanical
study of stainless steel and dissimilarly evaluated metallurgical
transformations for steel.

The advancement of computational modeling techniques allows
for studying the thermo-mechanical/thermo-metallurgical problems
of laser welding using the finite element technique (Deng et al., 2007;
Barsoum and Lundbäck, 2009; Maekawa et al., 2013; Daneshgar and
Daneshgar, 2016; Pu et al., 2017). The integral model is developed for
the study of the laser welding phenomenon that contemplates other
variables besides the temperature field.

Computational fluid dynamics allows the coupling of the
physical phenomenon from the phase change of the materials,
free surface, the effect of thermal capillarity, welding change by
keyhole conduction, vaporization, ejection of the material, and
chemical reactions. By means of the finite volume method
(FVM), the Navier-Stokes equations coupled to the energy
equation are solved. Table 3 expresses the governing equations
used for the modeling. Tan et al. (2013) presented a transient
and three-dimensional study to describe the dynamics in the
keyhole, weld puddle, and vapor plume. They employed a model
involving energy transport, hydrodynamics, and chemical species
transport to analyze the aspect of metal vapor in the gas phase. Pang
et al. (2011) investigated the keyhole and weld pool dynamics of laser
welding through an integral model, coupling heat transfer, fluid
flow, and keyhole-free surface. Of the works that can be considered
complete because of the type of phenomena they consider is the one
reported by Bayat et al. (2019), Bayat and Nadimpali, (2021)
presents studies where the multi-physics model is integrated to
conjugate heat transfer, multiphase flow, solidification/melting,

evaporation, back pressure, capillary forces, Marangoni effect,
buoyancy, and the effect of ray tracing. The versatility of the
model allows it to address issues and elucidate conjectures about
the phenomenon during the welding process. Zhou et al. (2023)
analyze the keyhole dynamics by means of a three-dimensional
multiphase model in a transient state that allowed them to accurately
observe the evolution of the keyhole.

Since such case studies consider the relationships coupled to first
equations, some authors include within their mathematical models
the type of heat source, the input heat, laser power density, laser
parameters, initial conditions, and boundary conditions, among
others, since they depend entirely on the temperature field.

Laser welding research determines the temperature profile
because temperature gradients and high cooling rates generate
residual stress, which results in weld distortion. In order to
determine an estimate of the weld joint stress, a thermo-elastic-
plastics model is required since these models permit one to quantify
the weld distortion caused by the energy caused by the fusion.

Therefore, it is important to perform research based on
simulations to predict the deformations and residual stress, by
means of process parameters, that also involves the analysis of
the microstructure and mechanical properties of the joint.

Specifically, the research should analyze the fundamental
physics driving fluid flow, heat transfer, metal mixing, and
microstructure evolution during molten pool solidification. In
laser welding, the keyhole and molten pool exhibit variations due
to back pressure which can cause solidification behavior and
microstructure evolution.

In this sense, the complexity of the model increases due to the
multiscale aspects and in addition to computational fluid dynamics
and thermo-mechanical analysis. Therefore, structural and
morphological studies of laser welding must consider aspects of
weld pool dynamics and keyhole evolution. In this way obtaining a
more accurate model is only possible by performing a CFD study and
including the volume of fluid (VOF) or next step (LS) model to

TABLE 3 Model integral multiphysics equations and conditions.

Continuity ∂ρ
∂t + ∂(ρu)

∂x + ∂(ρv)
∂y � 0

Momentum - x ∂(ρu)
∂t + ∂(ρu.u)

∂x + ∂(ρv.u)
∂y � ∂

∂x (μ ∂u
∂x) + ∂

∂y (μ ∂u
∂y) − ∂P

∂x

Momentum - y ∂(ρv)
∂t + ∂(ρu.v)

∂x + ∂(ρv.v)
∂y � ∂

∂x (μ ∂v
∂x) + ∂

∂y (μ ∂v
∂y) − ∂P

∂y + gρβ(T − Tbulk)

Energy ∂(ρT)
∂t + ∂(ρu.T)

∂x + ∂(ρv.T)
∂y � ∂

∂x (Γ ∂T
∂x) + ∂

∂y (Γ ∂T
∂y) + q(x, y, t)

Free surface keyhole dynamic

Volume Fraction (VOF) ∂F
∂t + ∂u.F

∂x + ∂u.F
∂y � 0

Level Step equation ∂φ
∂t + F ∂φ

∂x + F ∂φ
∂y � 0

Driving forces

Pressure recoil precoil � 0.54patm exp( ΔHlv
RTboil

(1−Tboil
T ))

Surface tension pst � [σ(T) · κ]n

Thermal-capillarity Fcap � γ|∇T − n(∇T · n)|

Boundary Condition

Evaporation Flow qevap � 0.001
2πRvT

√ [patm exp
( ΔHlv
RTboil

(1−Tboil
T ))]
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observe the free flow surface necessary for themultiphase field, surface
tension, evaporation, Marangoni force, and back pressure through
which the oscillations in the weld puddle are caused and the keyhole is
formed in addition to the laser-matter interaction, which in the case of
deep penetration laser welding is by means of Fresnel absorption and
multiple reflection.

4 Heat source model to simulate
laser welding

The mathematical model of heat conduction considers the
energy generation term, which represents the energy coming
from the volumetric heat source and physically is the laser light
beam on the material. The treatment and prediction of the heat
source, in the LBW modeling or simulation, is of total importance,
since knowing the temperature distribution is what will allow one to
perform the thermo-mechanical and metallurgical analysis. In a case
study, the material temperature allows one to determine the residual
stress and distortion calculations. Therefore, the heat source is
responsible for defining the temperature allocation in the melting
zone and in the heat affected zone. Research on the heat source
model dates back to the 1940s.

The particular interest in the treatment of the heat source in the
laser welding process implies that any value cannot be considered
randomly, but because the temperature field must be correctly
predicted with certainty it is definitive that it must be done
through a relationship or a value that allows the distribution of
the heat density. Thus, over the years, heat source models have been
developed initially as a heat source for the arc welding process, and
subsequently, each model was adapted in order to use them in other
welding processes, as in the case of laser welding. According to Kik
(2020), it is possible to consider more than one model to describe the
phenomenon of the heat source that gives rise to the weld pool. The

typical models for the analysis of thermal cycles in welding modeling
are the conical heat source model, Gaussian surface heat source
model, and double ellipsoid heat source model. Such models are
based on the general diffusion equation.

A pioneer in the field who developed a mathematical model was
Rosenthal in 1941 (Näsström and Karlberg, 2014). From those years
on, interest arose in modeling other welding processes, and the
equation provided by Rosenthal, (1946) was used, where he defined
the distribution of the welding power density. Initially, this
theoretical development was generated for the arc welding
process, however, in the research studies Rosenthal used a linear
and point-type heat source. Also, Rykalin (1957) presented a model
developed in an analytical way, where he made models for other
processes since he considered the influence of the cooling rate on the
mechanical properties of the welded parts. However, Pavelic et al.
(1969) Friedman, (1975) was the first to develop a model different
from the one presented by Rosenthal and Rykalin, since the author
defined the heat source under a Gaussian distribution. Subsequently,
a double ellipsoidal model for the heat source was developed and this
model fits the weld pool geometry. This model was developed by
Goldak et al. (1984), Goldak et al. (1986) and considered the
displacement of the heat source based on functions describing
the energy behavior during the process. In 1999, Jhon Dowden
built a mathematical model for laser-assisted plasma arc welding,
however, this model was limited in representing the evolution of the
phenomenon over time Dowden (2001). Also, models of interest are
those of Lukačević Z., (1998) and Samardžić I., (1996); the authors
presented a mathematical model of an impulse heat source and a
moving line heat source, respectively.

Stone et al. (2000) considered a heat source with a conical
distribution combined with a Gaussian distribution with radial
geometry. However, this has a uniform distribution and a double
ellipsoidal heat source with a conical ellipse. Later, Nguyen et al.
(2004) presented analytical transient state solutions for a semi-finite

FIGURE 3
Timeline of studies that have presented a heat source for modeling the welding process.
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body through a moving heat source of semi-ellipsoidal and double
ellipsoidal types. Some studies have considered modeling of the
welding process for deep penetration, as in the case of electron beam
welding and laser welding. Combining the double ellipsoidal with
the elliptical cone yields a heat source suitable for modeling deep
penetration processes such as electron beam welding. The model
presented by Lundbäck & Runnemalm, (2005), had the versatility of
combining the double ellipsoidal with the elliptical cone to obtain a
heat source suitable for modeling deep penetration processes such as
electron beam welding. This model estimates the fraction of heat (β)
applied by each of the sources. A double ellipsoidal distribution
model extended to a double elliptical conical heat distribution was
proposed by Flint et al. (2017). This model calculates the
temperature distribution in a transient regime and can be used
for any type of welding. Based on the different models that exist,
Figure 3 shows the timeline of the models that have been used for
laser welding (Mokrov et al., 2019; Das et al., 2022).

Thus, it is possible to observe that there is a post-Rosenthal stage,
where the model of the heat source has had a gradual change,
allowing us to consider the geometry, the evolution in time, and the
penetration of the power density, among other characteristics. This
has allowed us to have a more complete model, i.e., greater accuracy
in the calculations and an improvement in the development of the
simulation of the laser welding phenomenon. So, it is possible to
model from a point, linear, or flat heat source, for 1D, 2D, and 3D,
respectively, to a volumetric heat source. Since the current studies
use the volumetric heat source proposed by Goldak, it is due to the
characteristics that relate each term of the mathematical model to
the weld pool geometry and to the power density distribution shape.

The temperature field in a simulation for a given welding process
is in essence the change of thermal energy in mechanical analysis.
Put this way, the temperature field can be considered as a boundary
condition where it can be calculated in a prescribed way or by a
prescribed heat flux. If the prescribed temperature (Dirichlet
condition) is considered in a simulation, it must be performed
on the nodes and specific positions in the computational mesh

domain. This method is used in 2D simulation and is the most
common since the temperature increases linearly up to the
prescribed value and remains constant. On the other hand, if a
prescribed heat flow (Von Neumann condition) is considered, it is
the most employed method at present, i.e., the input of the heat
source in the simulation is performed in the same way on a specific
position in the computational mesh. Therefore, the most commonly
used heat source of this type has a Gaussian distribution and it must
be considered that the source allows a distribution of the heat
density. The double ellipsoidal model is considered a volumetric
heat source since this model has two elliptical regions. Figure 4
shows the schematic of the double ellipsoidal model. This schematic
shows the dimensions of the weld pool and the thermal gain and
conceptualizes the dimensional aspect in which the energy enters
through the arc or laser.

Each of the terms has a relationship in the welding process,
i.e., the term b represents half the width of the weld bead, c is the
height of the bead. With a positive sense and in the direction of the
z-axis should be expressed the welding speed, ws. af is the axis that
represents the forward length of the weld in the front zone and the
term ar represents the length in the rear zone of the weld bead while
maintaining its speed. Finally, the goal is to obtain the value at the
highest point of the ridge, since in that region is the energy flow
required by the material to make the joint. The Goldak equation
determines the energy flow with two calculations, one for the front
region and the other for the back region (Goldak and
Akhlaghi, 2005).

fr � 2cr
cr + cf

� 2 − ff (1)

ff � 2cf
cr + cf

� 2 − fr (2)

qf x, y, z( ) � 6

3

√
ffqi

cfabπ
3 /

2
exp −3x

2

a2
− 3y2

b2
− 3z2

cf2
( ) (3)

qr x, y, z( ) � 6

3

√
frqi

crabπ
3 /

2
exp −3x

2

a2
− 3y2

b2
− 3z2

cr2
( ) (4)

FIGURE 4
Geometric scheme of the Goldak model (Farahani et al., 2023) (The Figures are Under a Creative Commons license, Open Access).
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Therefore, the term qi in Eqs (1, (4 is the laser power intensity in
order to determine the temperature distribution in the material.
Goldak et al. describe that through computational mechanics of
welding it is possible to optimize welding processes, for the modeling
they used a moving double ellipsoid lateral heat source.
Furthermore, it is possible to obtain an accurate temperature
field by employing three heat sources for different aspects. On
the surface of the medium, they used a double elliptical disk. To
represent the incidence of the direct energy coming from the plasma
arc they used a double ellipsoidal source and for the stirring effects of
the liquid metal it was also possible to model by means of a double
ellipsoidal heat source (Jhon and Mahyar, 2011). Another aspect to
consider is that the geometric constants of the Goldak model
must be chosen in order to correctly describe the most important
zones, the melting zone and the heat affected zone. In the model,
the function of the ellipse is to cause heat input for any point on
the x, y, and z-axes, although it decreases in proportion as it
moves away from the origin. Therefore, the maximum value of
the input heat flux is reached when the position coordinates of
the heat source are equal to zero (0, 0, 0, 0) (Andreas, 2000;
Andreas, 2010). The Goldak model is a suitable model to
represent the geometry of the weld pool as it can be
considered as a moving heat source, which is why it involves
the front and back of the weld bead, as well as the lengths.

5 CFD tool for engineering analysis

One way to solve engineering application problems is through
numerical techniques, which, due to the great potential of
computation, is a basis for analysis in any engineering discipline.

Technological development has progressed in synergy with
numerical techniques due to the use of computational tools.
Fluid mechanics and energy transfer have been among the
disciplines where an evolution in the development of
computational tools has been observed since a branch known as
computational fluid dynamics (CFD) emerged. CFD has the great
advantage of being able to perform studies in a reliable way to
improve the design of a process, avoiding the high costs of
performing experiments. However, it requires experienced users
with specialized training. CFD involves fluid mechanics,
mathematics, and computational sciences since it numerically
solves the equations of fluid motion in order to apply them to
real problems.

There are three numerical techniques, finite difference, finite
volume, and finite element, each with an application in the
engineering field, although CFD is based on the finite volume
technique or method. The need for the development of
numerical codes that can be used in different applications or to
solve multiple problems allowed the creation of specialized software.
In 1981, PHOENICS software was released, and years later, in 1983,
FLUENT software was launched (Xamán and Gijón-Rivera, 2015).

In the beginning, both tools only performed modeling under a
structured computational domain. It was not until 1991 that
FLUENT, with its great versatility, allowed the use of
unstructured computational meshes. Thus, although applications
have been developed that facilitate the use of the software, running a
CFD project correctly requires experience. Figure 5 presents
chronologically the commercially available programs
developed for CFD.

Thus, with the development of CFD software and its incursion
into the market, it has not only been considered for use in universities

FIGURE 5
Timeline of CFD software.
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TABLE 4 Characteristics of the studies that consider the implementation of numerical methods in laser welding phenomenon. Note. The Table is authored by the main authors, but for the information it contains, all
figures are under a Creative Commons license.

Authors Physical model Mathematical model Descriptors Case studies Findings

Examilioti et al.
(2022)

Rp = − 218.49 + 4.45 HV -Thermal/mechanical 3D 1) Measurements of
hardness and tensile
mechanical properties

*The wire affects the
mechanical properties. *Elastic
limit decreases 26%-Elasto-plastic Analyses

σ � β0 + β1 HV -Vickers hardness model

-ANSYS

Jia et al.
(2022)

ρC ∂T
∂t � ∂

∂x (λxx∂T∂x) + ∂
∂y (λyy∂T∂y) + ∂

∂z (λzz∂T∂z) + qheat + qloss -Thermal/mechanical 1) Benchmark experiment
with different welding
condition

*Property-mechanics of
residual distortions and
stresses *Thermal and
mechanical consequences of
the LWB process

qheat � n* ∫Q0* exp(−X2

a2 − Y2

b2 ) - Experimental/FEM

b � Z−zi
ze−zi*(Re2 − Ri2) + Ri2 -Heat source/elliptical truncated

cone distribution

a � b
Ratio

-Software SYSWELD

Mohan et al.
(2022)

ρ ∂(u)
∂t � −ρ(u · ∇)u − ∇P + η(∇2u) + F -Multi-Physics/FEM 1) Process weld whit Heat

transfer and fluid flow and
moving heat source

*Marangoni flow effects.
*Radius and frequency
relationship

Qlaser(x, y, z, t) � α Pl
πr2de

(−3 (x−x(l) )2+(y−y(l) )2
r2

)e(−3
(z−z(l) )2

d2
) -Phase Change/Liquid Fraction

-Heat source/Gaussian
distribution

- Software/COMSOL

Zhang et al.
(2022)

∫
V
ρ ∂U

∂t δTdV + ∫
V
∂δT
∂xα · (λ ∂T

∂xα)dV � ∫
V
δTqVdV + ∫

V
δTqSdS -Thermal/mechanical 1) Influence of heat at entry

on properties and
microstructure of the joints

*Micro-hardness of the base
metal is higher in the melting
zone compared to the Heat
Affected Zone (HAZ)

qV(x, y,H) � aQV

πHr2V
· exp(−a((x−xo )2+(y−yo )2

r2V
)) -Hybrid-surface and volumetric

heat source

qS(x, y) � aQS

πHr2S
· exp(−a((x−xo )2+(y−yo )2

r2S
)) -Simulation of Top joint- FEM

Ebrahimi et al.
(2022)

ρ Dh
Dt � k

Cp
∇2h − ρ

D(ψLf )
Dt + Sq + Sl -Multi-Physics-3D 1) Study of the influence of

heat on melting during the
welding process

* Effect of the absorptivity
during process welding

Sq � F q[2aPπr2
b
exp(−2R2

r2
b
)‖∇ϕ‖ 2ρcp

(ρcp)m+(ρcp)g] -Tracking Interface - VOF

-Intensity Heat source Gaussian
distributions

-ANSYS Fluent

(Continued on following page)
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TABLE 4 (Continued) Characteristics of the studies that consider the implementation of numerical methods in laser welding phenomenon. Note. The Table is authored by the main authors, but for the information it
contains, all figures are under a Creative Commons license.

Authors Physical model Mathematical model Descriptors Case studies Findings

Xue et al.
(2022) ∂

∂t (ρH) + ∇ · ( �υρH) � ∇ · (k∇T) + Sh

-Multi-Physics study 1) Performed numerical
simulation of the laser
welding process at high
speeds

*Decreases humping with
increase of molten metal
viscosity-Tracking Interface - VOF

q(x, y, t) � 3Q
πr20

exp(−3 (x−xo−uwt)2+y2

r20
)

-Heat Source is Gaussian
distribution

-ANSYS Fluent

Ebrahimi et al.
(2021)

∂
∂t (ρh) + ∇ · (ρ �Vh) � ∇ · ( k

Cp
∇h) − ∂

∂t (ρΔH) − ∇ · (ρ �VΔH) + St -Multi-Physics - Solid/liquid-
metal phase change/Enthalpy
Model -Tracking Interface - VOF
-5 Types of heat source -ANSYS
Fluent

1) Numerical description of
the behavior of the molten
metal melt pool by laser
spots

*Change of thermos-physical
properties causes differences in
the in the molten pool

ST �
ηQ

πr2b
∇ϕ
���� ���� 2ρcp

ρcp( )
gas

+ ρcp( )
metal

0,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ; if r≤ rb

Halm et al.
(2021)

∂T
∂t + (V · ∇T) � κΔT Energy

-Multi-Physics - 3D 1) Study of the dynamics of
the molten film in laser
cutting

*The model allows to simulate
cutting lengths with a
resolution of 10 μm-Solid/liquid metal phase

-Heat source/Gaussian
distribution

f(x) �

4n

√
Γ(2+nn ) exp −2(


x2+y2

√
w(z) )2{ } - C++/Open MP

Ali et al.
(2021) ρc ∂T

∂t + ρc u · ∇T + ∇ · q � Q
-Multi-Physics-3D Transient 1) Investigated the effect of

carbon on high-speed laser
transmission welding

*Composites with a higher
proportion of carbon (>1% by
weight) had difficulties in the
welding process

-FEM method

Q(x, y, t) � P0(1−RC)AC

2π

(σ2x(Lz )+σ20)

√ 
(σ2y(Lz )+σ20 )

√ e
−( (x−x0 )2

2(σ2x (Lz )+σ20 )
+ (y−y0 )2
2(σ2y(Lz )+σ20 )

)
e−DzLze−Aez

-Heat source is Gaussian
distribution

-COMSOL

Cho et al.
(2018)

k ∂T
∂ �n � qL − qconv − qrad -Multi-physics Study 1) Numerical study of the

molten pool in keyhole
laser welding

*The rear part of the molten
pool area was reduced
compared to the front part- Tracking Interface -VOF

-Heat source is Gaussian
distribution

� qL − h(T − T0) − εrσ(T4 − T4
0) -FLOW3D CFD
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or research centers but it is already used in the industry. This same
demand has caused an increase in the costs of licenses and permits for
the use of the programs. So, one of the alternatives has been to follow
the trend of using freely distributed numerical codes, under a scheme
on the LINUX platform. One of the main precursors of this trend in
the creation of free CFD codes is OpenCFD, which for several years
has been operating under the C++ module scheme and under the
name of OpenFOAM (Open Field Operation and Manipulation)
(Fernández Oro, 2012; Stoevesandt et al., 2017).

Simulation of the weld pool through CFD is too complex to solve
and largely remains an open problem. Most of the studies that have
been reported where the laser welding process is modeled as a result
of the joining of materials use the interaction of matter and energy.
They use some software under a programming principle, but the
software was made for the structural analysis process. Among this
software are ABAQUS, CATIA, NX, SOLIDWORKS, and
SYSWELD, which is commercial software only for welding. This
commercial software has CFD integrated within their functions to
perform the simulations, however, they are not CFD specialist
software. A notable example is when the light beam is directed to
a specific zone or point of the base material, a HAZ is defined,
coming from the source, where the distortion due to the energy to
achieve a higher penetration could be considered.

For this reason, defining this consideration or other
characteristics to model the laser welding process, depending on
the case study, is a reason to obtain the qualities of a case study that
can complement the development of a more complete model that
represents the laser welding phenomenon. Table 4 presents the case
studies of laser welding modeling, in a systematic, synthesized, and
chronological summary. Likewise, the categories that were observed
in the studies were physical model, mathematical model, work
descriptors, and case study, as well as whether it is a thermo-
mechanical or multi-physical study and the type of software used
in the simulation (Cho et al., 2012; Beiranvand et al., 2018; Cho et al.,
2018; Ali et al., 2021; Ebrahimi et al., 2021; Halm et al., 2021;
Ebrahimi et al., 2022; Examilioti et al., 2022; Jia et al., 2022; Mohan
et al., 2022; Xue et al., 2022; Zhang et al., 2022).

6 Discussion

This section briefly presents a discussion of the topics of interest
on which the research work was based. Thermal analysis to know the
temperature distribution, the heat flow behavior profile, and each
thermal characteristic that allows one to perform an analysis of the
material during the welding process are essential since the
mechanical properties, distortion, and residual stresses are
affected by the temperature field.

Therefore, through the thermal history of the weld, it is possible
to maintain excellent quality. The most basic method for calculating
the thermal field of welds is the Rosenthal method. However, the
model is a point-type heat source, i.e., the energy in a geometric
point under the concept of an instantaneous heat source. One of the
problems with this type of model is that the properties have a
dependence on temperature, therefore, the thermal properties vary
with the temperature field of the infinite heat source and to avoid
this variation reasonable average values are taken for the properties
of materials and alloys.

The Rosenthal model assumes constant properties, which is why it
cannot correctly predict the temperature field and because it is a point
model, it only determines the temperature field in a geometric point,
while physically in the welding phenomenon, the heat source interacts
in the melting zone that makes up the weld pool. Therefore, being a
point-type model, it presents errors when determining the temperature
distributionfield in the fusion zones and in the zone affected by the heat.

To consider a point source as opposed to a volumetric heat source
is to consider the distribution of the heat source over an area or zone
that is affected by the heat source. Such a low heat source distribution
is defined by a double ellipsoidal model since this model allows the
heat during the welding process to be similar to the weld puddle.

However, the improvement and achievement of a model that
represents the distribution of temperature in the melting zone and in
the heat-affected zone has been sought. From these works, Mokrov
et al. (2019) present a heat source that shows a better agreement with
the heat affected zone compared to other models. They defined it as
Goldak-EHS. This model is a consideration of the metal flow within
the weld pool where the power enters inside both quarter ellipsoids,
from the front and the back of the bead, when the heat source
advances. Another is the study by Azar (2015) which considers
adding to Goldak’s model modular sinusoidal equations that
simulate the variation of the geometrical characteristics of the
weld pool as a function of time. Of the most recent, Trupiano
et al. (2022) performed a study through a semi-analytical method
and the authors determined the parameters of a double ellipsoidal
heat source using an NSGA-II genetic algorithm.

The models that have been developed considering the prescribed
temperature method and a prescribed heat flux may consider a
simple methodology, but will not always be adequate, since
temperature is the first property that must be obtained for any
laser welding process, either by conduction or high penetration
welding (Kou, 2022).

As long as the temperature field in themelt pool, melting zone, heat
affected zone, and weld pool is impossible to obtain in experiments, it
will be necessary to use the heat source models to determine the
temperature profile. Therefore, it does not matter that the Goldak
model has been used by many authors since 1984 (Xu et al., 2011; De
Freitas Teixeira et al., 2014; Nezamdost et al., 2016; Chen et al., 2018;
Nguyen and Chujutalli, 2021; Kiran et al., 2022; Villacís Ramón and
Yaulema Castaneda, 2022). This model, with a double Gaussian
ellipsoid distribution, is the one that best fits the weld pool.

7 Conclusion

The categorization of the simulation models for laser welding
allows us to understand the aspects of the welding process. The first
one is based on thermo-metallurgical and thermo-mechanical
studies, the second one describes the studies from integrating
energy transfer and fluid dynamics. Since this model does not
consider fluid dynamics, then the phenomenon of convective
heat transfer is not considered. The way to correct this
restriction is through the heat source and the conductivity of the
material. A volumetric heat source is the most commonly used,
because, at the time of joining the materials, it is in the keyhole
where the laser-material interaction occurs and the weld pool is
formed. Therefore, a double ellipsoidal heat source has larger
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dimensions in the rear area than in the front area so it allows one to
simulate the laser beam from the front to the back, thus representing
the geometry of the melt pool. The mechanical calculation considers
the estimation of elastic, thermal, and plastic deformation so that the
total deformation is the sum of the deformations during the process.
A finite element numerical approach allows the development of
research studies and the software used for simulations such as
ABAQUS (Cheon and Na, 2017; Beiranvand et al., 2018; Liang
et al., 2018; Han et al., 2021; Farahani et al., 2023), SYSWELD,
COMSOL Multiphysics (Bendaoud et al., 2014), Ansys (Xue
et al., 2022), and Simufact (Perulli et al., 2020; Raftar et al.,
2023). A bad development of this type of model would be not to
consider the proper heat source in the thermo-mechanical and
metallurgical simulation. While multi-physics integral models
are complex, they allow the solving of multiple variables
simultaneously during modeling and even allow one to
observe the changes in the melt pool dynamics and keyhole
geometry. Therefore, the authors considered the method of
ray tracing to express the laser energy absorption of a
material, the vaporization that creates the keyhole, and the
hydrodynamics of the liquid and vapor flows. However, it is
also possible to combine mechanics studies when using integral
multiphysics models. The heat source due to pressure by
considering the correct heat distribution by double ellipsoidal
power density. The software used for the simulations such as
SYSWELD (Saadlaoui et al., 2018), COMSOL-Multiphysics,
Flow3D (Huang et al., 2020; Liu et al., 2020; Raza et al., 2023),
Fluent (Zhang and Wu, 2015), Ansys (Acherjee, 2019; Acherjee,
2021c; Acherjee, 2022; Unni and Muthukumaran, 2022), CFDX,
and the use of open source OpenFoam (Tang et al., 2020; Flint
et al., 2022; Tang et al., 2022; Flint et al., 2023) through its
compiler, have solved the fluid dynamics, evolution, and behavior
of the keyhole geometry. Research is still lacking since the
thermo-physical properties of the liquid and metal vapor are
lacking. Also the considerations and mathematical manipulation
to consider the turbulent flow phenomenon during the welding
process involves a great challenge.

In the case of thermomechanical models based on FEM analysis,
a thermal analysis is used under a heat conduction model which
could be in a permanent or transient state, requiring predicting the
temperature field to enter the temperature values in the stiffness
matrix for mechanical or metallurgical study. In such a way, the
study is carried out knowing the properties of the base material. This
is unlike studies based on CFD methodology, which use the finite
volume method since they are generally multiphase studies and, in
some cases, involve mechanical or metallurgical studies. In these
cases, a difficulty arises because the properties of the materials or
alloys in the different phases are not available, that is, the properties
of the material in the heat affected zone (welding bath) and the vapor
expelled by the evaporation of the metal. Determining the properties
in the process is a great challenge since considerations would not
have to be made that limit the models and are considered accurate
(Amara and Fabbro, 2008; Svenungsson et al., 2015; Dal and Fabbro,
2016; Kang et al., 2022).

In the case of mechanical and metallurgical studies, since the
properties of the base material are not available, it is possible to carry
out a characterization study of mechanical and microstructural
properties, since thermal affectation is inevitable due to the

operating parameters. In this sense, microstructural characterization
is possible using optical microscopy, scanning electronmicroscopy, and
electron backscattering diffraction. In this way, to identify the phases
present in the welded joints and to carry out an evaluation of the
mechanical properties of the weld, it is necessary to perform tension and
microhardness type tests. Finally, an analysis of the thermal distribution
in the material must be carried out and the synergy between the heat
affected zones and the fusion zone under the FEM analysis must be
determined.

During the mathematical modeling of the multiphysics
phenomenon of laser welding, it is a challenge to know the
properties of the material in its phase changes (liquid and vapor),
so it is important to determine these properties using some calculation
method that allows obtaining the properties with precision. Thus, the
inverse heat transfer method is used. In general, the method consists of
determining the temperature field or heat flow to estimate unknown
quantities in the analysis of physical problems in engineering. The
inverse conduction problem requires the calculation of an unknown
heat flow in a medium, by estimating the temperature field close to the
boundary of the medium and thus obtaining the precise value of the
thermophysical properties. This condition of themethod allows a focus
on experiments close to real conditions, that is, the technical
applications of the inverse method can encompass an estimation of
the thermophysical properties of materials and control of the solid-
liquid interface during a phase change. If it is not possible to use these
alternatives, it is advisable to use a specific material and use the values
of the properties reported in the literature.

In conclusion, this review article stands as a pivotal resource
for higher education students seeking to elevate their research
skills and drive educational innovation in the domain of laser
welding. By offering a comprehensive overview of mathematical
models and numerical simulations grounded in physics, it equips
students with a solid understanding of this intricate subject. The
innovative structuring and presentation of research findings
within this article not only enhance the learning experience
but also inspire students to adopt inventive approaches in
their academic pursuits, empowering them to contribute to
advancements in the field of laser welding.
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