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This paper explores the suitability of upcoming novel computing technologies, particularly
adiabatic annealing based quantum computers, to solve fluid dynamics problems that
form a critical component of several science and engineering applications. For our
experiments, we start with a well-studied one-dimensional simple flow problem, and
provide a framework to convert such problems in continuum to a form amenable for
deployment on such quantum annealers. Since the DWave annealer returns multiple states
sampling the energy landscape of the problem, we explore multiple solution selection
strategies to approximate the solution of the problem. We analyze the continuum solutions
obtained both qualitatively and quantitatively as well as their sensitivities to the particular
solution selection scheme.
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1 INTRODUCTION

Fluids are ubiquitous in nature and studying their dynamical properties form the core research focus
for many applications. In particular, turbulent transport in many fluid flow systems underlies
numerous applications such as atmospheric and climate dynamics, Inertial Confinement Fusion
(ICF), combustion hydrodynamics, etc., that are of interest to academia, industry and research
laboratories. Current methods for solving such systems involve numerically approximating the
governing equations of flows, i.e., the Navier-Stokes (NS) equation. For example, Direct Numerical
Simulations (DNS) resolve the large range of scales present in an application. Another approach
called the large eddy simulations (LES) parameterizes smaller scales in the application using sub-grid
scale models. The Reynolds-averaged Navier-Stokes equations (RANS) are used to describe turbulent
flows based on the knowledge of the properties of turbulent statistics to approximate time-averaged
solutions to the NS equations.

Solving such complex systems on large-scale distributed machines have been extensively studied
over the past decades. However, it is still a computationally challenging task to simulate such
problems to the real-time scales due to limitations on computational power. In addition, upcoming
processor architectures are gradually reaching the physical limits of Moore’s Law, constraining the
computational scaling limits of such methods on large-scale systems. Furthermore, due to the
heterogeneous nature of many of the current and upcoming architectures, such large-scale
applications are increasingly becoming latency bound (bounded memory access speed and inter-
process communication latency) in comparison to increasing computing power.

Novel computing technologies based on using physical systems such as quantum mechanical
systems are currently being explored as alternative approach for scientific computation. Such
quantum mechanical systems leverage the quantum mechanical phenomena of superposition
and entanglement to obtain states that scale exponentially with the number of quantum bits
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(qubits). As a result, quantum computing theoretically promises
exponential speed-up in terms of the number of states that can be
explored at a time with significantly less energy requirements.

In this paper, we explore the capability of a particular type of
quantum system based on quantum annealing to solve fluid
dynamics problems. The DWave (D-Wave Systems, 2018)
quantum-annealing based machines were the first
commercially available annealing-based quantum computers.
The Quantum Processing Unit (QPU) based on rf-SQUIDs
uses quantum mechanical phenomena of superposition,
entanglement and tunneling to explore a given problem
energy landscape, and return a distribution of possible energy
states with the global minimum ideally as the state with highest
probability.

Because of the annealing based nature of the QPU, it is suitable
for problems of the type that minimize an unconstrained binary
objective function, a.k.a., quadratic unconstrained binary
optimization (QUBO) problem. The very first quantum
algorithms for the DWave machines targeted optimization
problems that naturally fit into the QUBO formulation.
Examples include traffic route analysis (Neukart et al., 2017),
quantum chemistry (Wang et al., 2016), etc. NP-hard problems
such as finding maximum clique (Chapuis et al., 2019) in graphs
or graph-decomposition (Dahl, 2013; Ushijima-Mwesigwa et al.,
2017) for which no classical polynomial time algorithms are
known to exist were also studied.

Our focus is to study how a fluid dynamical system, such as a
simple transient channel flow, can be transformed to an
optimization problem i.e. a QUBO form whose states can be
sampled by DWave’s QPU, and analyse the solutions obtained in
comparison to classical solutions that were obtained using
standard numerical methods. Towards that goal, we use three
key steps. First, we obtain a linear system using a standard finite
difference based discretization based method and transform the
solution variables which are of real data types to one with binary
variables via a fixed point arithmetic (O’Malley and Vesselinov,
2016; Rogers and Singleton, 2019) transformation. Second, the
transformed problem is posed as a least squares minimization
problem to convert it to a QUBO form. In particular, we obtain a
series of such QUBO problems corresponding to each time step in
the time-variant flow. Finally, we devise three solution selection
strategies based on the sampled states returned by the annealer to
approximate the solution of the linear system. We analyze the
quantitative and qualitative properties of the solutions obtained
in comparision to solutions obtained using double precision
arithmetic.

There have been recent works addressing the problem of
solving fluid flow equations on upcoming quantum devices.
For example, in (Gaitan, 2020) a hybrid quantum algorithm is
proposed for compressible Navier-Stokes equation. The PDE is
converted to a set of ODE’s, by using finite difference
approximations for spatial components and using a time-
forwarding for incrementing time. As part of this formulation,
a quantum algorithm is used to find approximation of averaged
function values within a particular sub-subinterval. The core
quantum algorithm used is the Quantum Amplitude
Estimation Algorithm (QAEA) which is based on Grover’s

search. The results were computed using quantum simulators.
In (Steijl and Barakos, 2018) and (Steijl, 2019), the authors
describe a hybrid method using approximate quantum Fourier
transform (AQFT) to solve incompressible Navier-Stokes on a
gate-based architecture. The flow flow is converted to a vortex
form by using the vortex-in-cell method where the variable for
solution are the flow vorticity instead the primary velocity
variables. This leads to a series of Poisson problems, which are
solved using the AQFT algorithm where the updates between the
variables is managed using the classical approach. To our
understanding, the solutions are obtained using quantum
simulators instead of actual hardware. One key distinction
between the quantum algorithm in these references with our
work is the fundamental computation principle of the devices
used. In gate-based system, a more general computational
framework is being designed to follow similar concepts in the
classical system where all computations are eventually converted
to a logic gate/circuit based on logic gates. In contrast, we are
focusing on the quantum annealing approach which is a
specialized hardware based on the concept of annealing, and is
less generic that the gate-base design. Also, our algorithm is run
on the actual hardware, and not on quantum simulators on
classical devices. In (Srivastava and Sundararaghavan, 2019), a
finite-element based approximation to self-adjoint second-order
differential equation is reformulated as a graph coloring problem
suitable for conversion to an Ising Hamiltonian that is deployed
on the DWave 2000Qmachine. In contrast to our problem where
we aim to obtain an approximate solution for the underlying
system of linear equations, this work targets sampling the
solution space instead.

In Section 3, we begin with a brief background of governing
equations of one-dimensional channel flow problem and its
finite-difference based numerical discretization. In Section 4,
we describe the two key steps involved in transforming the
problem with floating-point/real data types to a QUBO form
along with the DWave specific pre- and post processing steps.
In Section 5, we finally discuss the numerical solutions
obtained from the annealer, and provide their quantitative
and qualitative analysis. Finally, we conclude with key
observations in Section 6.

2 BACKGROUND

We start with a brief overview of the discretization methodology
used for numerical solution of one-dimensional time-dependent
channel flow. The channel flow is a standard flow problem that is
frequently encountered in fluid mechanics. We have chosen this
particular flow as our test problem as it has been an extensively
studied problem, and provides an excellent control for the
quantum solutions.

For one-dimensional channel flow along x-direction, as shown
in Figure 1, the balance of momentum or the Navier-Stokes
equation reduces to

zux

zt
� −1

ρ

zp

zx
+ ]

z2ux

zy2 , (2.1)
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where ρ is the fluid density, ] is the kinematic viscosity and zp/zx is
the horizontal pressure gradient. Here, we assume that the x-
direction velocity ux is only a function of the y-direction and that
the velocity in the y-direction is zero. This automatically satisfies the
balance of mass for incompressible flow. We are also assuming that
there are no body forces in the x-direction. The pressure gradient in
the x-direction is assumed to be constant and is prescribed. In such a
case, two boundary conditions (one at each channel boundary) and
an initial condition for ux are needed. We set ux to be zero at these
two boundaries i.e.,

ux(y � 0) � ux(u � h) � 0. (2.2)
Finite difference methods are one of the standard numerical

methods for solving PDEs. In this work, we use the second-order
central difference scheme for space variables to discretize the PDE
(2.1) over the channel width. Backward/Implicit Euler scheme is
used for the time evolution of the channel flow.

The channel is divided into N intervals over 0 ≤ y ≤ h with N +
1 grid points. u(xi, t) represents the solution at the i the grid point
at time t and is shortened to ui(t). Substituting the approximated
operators in Eqs 2.1, 2.2 leads to:

ui(t + Δt) − ui(t)
Δt � −1

ρ

zp

zx
(t + Δt)

+ ]
ui+1(t + Δt) − 2ui(t + Δt) + ui−1(t + Δt)

(Δy)2 ,

(2.3a)
u1(t + Δt) � uN+1(t + Δt) � 0, (2.3b)

Combining the equations for all the grid points, we obtain a
system of linear equations:

Au � b (2.4)
where A and b have the following forms with α � ]Δt

(Δy)2
and β � −Δt

ρ
zp
zx (t).

A �
1 + α −α 0 / 0
−α 1 + α −α / 0
..
. ..

. ..
.

1 ..
.

0 0 0 / 1 + α

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, b �

β + u2(t)
β + u3(t)

..

.

β + uN(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2.5)

Solving 2.4 provides an approximate solution profile at time
t + Δt.

3 SOLVING CHANNEL FLOW ON DWAVE
QUANTUM ANNEALER

In this section we describe our methodology to convert a fluid
flow problem to a form amenable for the DWave machine. An
adiabatic quantum annealer can solve problems posed as
unconstrained binary optimization problem. This essentially
means converting the system of equations in real variables
into an optimization problem with binary variables.

Our approach uses two steps to convert the problem to QUBO.
We first convert real variables to binary variables by using a fixed-
point approximation. In the second step, we use a linear least-
squares formulation to transform the problem to an optimization
problem with binary variables. The following subsections discuss
these two steps along with pre- and post-processing steps
required by the annealer.

3.1 Quadratic Unconstrained Binary
Optimization Formulation
In computing, fixed-point representation is one of the discrete
representations for a real data type that has a fixed number of
digits after a radix/fixed point. Essentially, it represents a real value
by scaling an integer value with an implicit scaling factor which
remains fixed throughout the computation. In (O’Malley and
Vesselinov, 2016; Rogers and Singleton, 2019), this idea was used
to convert real variables to binary variables by using a scaling factor
of 2. Thus, the solution at the ith grid point, ui can be represented as

ui � ∑n
j�1

2j0−jqj (3.1)

Here n is the precision of the representation, j0 is the position
of the fixed point, and qj is the jth binary variable. Clearly, keeping
the precision fixed while varying j0 leads to representing different
ranges of the decimal values. Table 1 shows the range of real
values for various precisions with fixed point after position 1 (the
leftmost position is the starting bit). While increasing the
precision(n) by one increases the range by an amount 1/2n+1,
moving the fixed point position by one would lead to doubling the
maximum value. Using 3.1 to represent the solution at each grid
point by using n binary variables and substituting it in 2.4 leads to
an extended matrix Ad such that Au = Adq. Finally, the linear
system 2.4 becomes

Adq � b (3.2)
Note that the right hand side of the linear system is unaffected by
this transformation, and is a real data type.

Posing 3.2 in a least-squares form leads to the following
optimization problem:

~q � min
q

Adq − b
���� ����2 (3.3)

FIGURE 1 | 1D channel flow with N + 1 grid points.
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where Ad is a real-valued matrix, b is a real-valued vector and q is
a binary vector.

As mentioned before, the annealer takes the QUBO form as an
input:

f q( ) � ∑
i

viqi +∑
i<j

wijqiqj. (3.4)

Here vi and wij correspond to the weights associated with each
logical qubit and the coupling strengths between two logical
qubits of the problem that defines its energy landscape.

In order to convert 3.3 to the QUBO form, we expand the
square and use the idempotent property of binary variables to
obtain

vj � ∑
i

Ad
ij Ad

ij − 2bi( )
wjk � 2∑

i

Ad
ijA

d
ik

3.2 Pre- and Post Processing
By design, the DWave annealer is organized as a lattice of unit
blocks of qubits, where each block has eight qubits configured as a
four-node bipartite graph. This hardware configuration is called a
Chimera graph and is shown in Figure 2. As a result of this
design, no three qubits are mutually coupled. This restricts the
structure of the problem that the annealer can solve, and in
general the logical problem needs to mapped or embedded to the

hardware layout in a way that allows mutually coupled logical
qubits.

One way that DWave supports embedding generic layouts to
its Chimera layout is by using the concept of chaining. Chaining
allows linking or representing a single logical qubit with a chain of
hardware qubits. This involves finding sub-graphs in the Chimera
layout to embed the logical problem. Such a process increases the
number of qubits required for the logical problem, and as a result
restricts the size of the logical problem that can be solved as we
will see in the results section.

In this work, we do not focus on the problem of obtaining
optimal embeddings for our channel flow problem, and instead
use the utilities provided by the SAPI libraries from DWave. The
Solver API (SAPI) is an interface to the DWave QPUs along with
a variety of other advanced software solvers. The client
applications can use this API to develop their applications in
C, MATLAB, and Python. The native embedding utility provides
a mapping between the logical qubits to chained hardware qubits
where the algorithm tries to embed larger strongly connected
components first, then smaller components.

Algorithm (Figure 3) provides an overview of all the steps for
solving the one-dimensional channel flow on the DWave
annealer. For each time step, we use the QUBO solution
obtained from the previous step to construct the right-hand-
side input to the linear system. After each QUBO solve, all the
states returned by the annealer are collected along with the
number of occurrences of each state. Since, QUBO returns all

TABLE 1 | Maximum bound for reals for various precisions with fixed point after position 1.

Precision
n

1 2 3 4 5 6 7 8

Max Real Value 1 1.5 1.75 1.875 1.9375 1.96875 1.984375 1.9921875

FIGURE 2 | (A) DWave Hardware Chimera Graph, showing the layout of the physical qubits in DWave annealer. Each block in the Chimera graph is K4 graph. (B)
Schematic of a unit block showing a schematic of a four block configuration where the blue represents a qubit with the coupling between adjacent blocks shown in red.
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possible solution states achieved by the hardware, we employ
various strategies to compute possible solutions from the entire
spectrum of returned solutions. Once a particular strategy is
chosen, we transform the binary solution to a real type by using
the transformation 3.1.

In the next section, we report the results for the three key
solution strategies (lowest energy, mean and weighted mean) that
we use to study the effect of precision of the fixed-point
representation when compared to the standard double-
precision floating point arithmetic solutions for the channel flow.

4 NUMERICAL EXPERIMENTS

The flow parameters of the problem are shown in Table 2. We
have used the DWave DW2X_3 hardware solver for obtaining the
QUBO solutions for each time step of the flow. The number of
grid points in the mesh was varied from 5 to 10 points including
the boundary points, and the simulation was performed for
10 time steps. Specifically, the QUBO solution from the
previous time-step was used to form the right hand side (rhs)
of the new linear system. Table 3 shows the size of the logical

QUBO with respect to the highest precision within the range 1–8
for which atleast one embedding was found by the DWave SAPI
embedding utilities. For code development, a LANL Institutional
Computing testbed, Darwin was used along with DWave SAPI
utilities (sapi-c/3.0, sapi-python/3.0, sapi-matlab/3.0, qop/2.5.0.1,
etc.). In the subsequent sections, we provide both qualitative and
quantitative analysis of the solutions obtain from the hardware. In
particular, we explore the following three key solution selection
schemes:

• Lowest energy, i.e., the real-valued solution corresponding to
the lowest energy state returned by the hardware,

• Unweighted mean, the mean of all real-valued solutions of
all the states returned by the hardware, and

• Weighted mean, the mean of all real-valued solutions of all
the states returned by the hardware weighted by their
number of occurrences.

4.1 Effect of Precision
Figure 4 shows the profiles of the lowest energy solutions
obtained from DW2X_3 solver for precision 2, 4 and 8. The

FIGURE 3 | Pseudocode for solving channel flow on DWave.
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results are shown for each of these three precisions for
different grid resolutions - 5, 7 and 9 respectively. The last
row shows the solution obtained using double-precision
floating point arithmetic. For a mesh with nine grid points,
the logical problem solution size for precision 8 is 56 bits for
which no embedding was found by the SAPI embedding utility.
Figure 5 shows the results for the same combinations
(precisions 2, 4, 8 and number of grid points 5, 7 and 9 as
well as the classical solutions using double-precision floating
point arithmetic) but using an unweighted mean scheme,
which means that the solution distributions obtained by
SAPI are simply averaged, without any regard to their
distributions (the number of times each solution vector is
obtained and returned by SAPI). Figure 6 shows the results for
the same combination in Figures 4, 5, but now using a
weighted mean of the solution vectors, weighted by the
number of times they are returned by SAPI for each draw.
The purpose of showing all three schemes in Figures 4–6 is to

TABLE 2 | Flow parameters used for the channel flow.

Parameters

Channel Bounds [0, 1]
Density ρ 0.5
Viscosity μ 0.6
Body Force g 0.4
Pressure Gradient δp/δx −2.0
Alpha α = ]Δt/Δy2 0.4
Number of time steps 10

TABLE 3 | Size of the logical problemwith increasing number of grid pointsN (here
N includes the boundary points) and precision n.

N 5 6 7 8 9 10

nbit 8 8 8 7 6 5
Logical Problem Size 24 32 40 42 42 40

FIGURE 4 | Solution profiles corresponding to the state with the lowest energy returned by the hardware for precision’s 2, 4, 8 and double for mesh with sizes 5, 7
and 9.
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highlight the fact that no standardized techniques are available
in the literature which prescribes how to extract meaningful
solutions from the annealer for problems of this nature as well
as to study the sensitivity of the solutions to each of the three
schemes described. For this purpose, all results are compared
to the classical solution for the corresponding number of grid
points. Also note that only nine iterations of the solution
process are shown for each solution to maintain clarity in
presentation and also due to limitations of resources in terms
of allocation time on the machine and resources available for
data analysis and postprocessing. However, this exercise is still
useful to highlight the broad sensitivities of the solution space.
We highlight several observations from Figure 4 below.

• The lowest energy solution state returned by the solver for
lower precision’s are highly inaccurate. For precision 2, the
solution yields a straight line, which is unrealistic.

• Unlike the classical solutions, which shows a systematic
monotonic progression over each time step, the least

energy solutions show a much more chaotic oscillatory
behavior with no systematic progression over
iterations steps.

• Only the solution with precision 8 resembles the shape of
the classical profile qualitatively, although very crudely.

• Quantitatively, the peak values of the profile (expected to be
parabolic from the classical solution) are higher by an order
of magnitude. More details on the quantitative comparisons
are provided in section 5.3.

While the lowest energy solutions seem to be provide very
crude approximations, the schemes with weighted and
unweighted means perform better in comparison. We
summarize the key observations from Figure 5 next.

• Most of the solutions show a systematic progress of the
solution with the successive iterations.

• For all precision values, lower number of grid points (5 and
7) qualitatively capture the parabolic solution profile,

FIGURE 5 | Solution profiles corresponding to unweighted mean state for precision’s 2, 4, 8 and double for mesh with sizes 5, 7 and 9.
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although solution profiles start to degrade with the increase
of precision and number of grid points.

• With nine grid points, the shape of the profile appears
bimodal and is unrealistic.

• The peak value of the profile still deviates from the classical
solution, however, the overall solution quality is better than
the least energy formulation, in terms of error magnitude.

Hence it appears that using all the states than a single state
based on the least energy can improve the quality of solution, but
it is also dependent on the precision and grid size. To understand
the sensitivity of the solutions when all states are used and
weighted by their number of occurrences to obtain the mean
is studied next. The following key observations are derived from
Figure 6.

• Solutions do progress more systematically like the
unweighted scheme, at least for five and seven grid points.

• For five grid points, solutions are quite close to the classical
solutions across the iterations, and the solution quality
improves with precision.

• For higher number of grid points, the solutions seem to
improve with higher precision, which is an opposite
behavior compared to the unweighted cases.

• The errors appear to be reduced with increase in precision
and number of grid points.

4.2 Solution Distribution at Domain Center
To explain the difference in behavior between the schemes using
unweighted and weighted means, the actual distributions of
solutions at the domain center are plotted in Figure 7. It
shows the aforementioned distributions (actual numbers of
occurrences) for precision values of 2, 4, 6 and 8, each for 5, 7
and 9 grid points. For clarity of presentation, only 4 different
iteration steps are plotted (1,4, 7 and 10). The key observations
from Figure 7 are:

FIGURE 6 | Solution profiles corresponding to weighted mean state for precision’s 2, 4, 8 and double for mesh with sizes 5, 7 and 9.
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• For lower precision values, the number of occurrences of the
state which corresponds to the real value zero occurs the
highest number of times. With increase in the number of
iterations and the number of grid points, non zero solutions
start to appear a finite number of times. Thus, taking a
simple unweighted mean will counter the effects of high
frequencies of zero solutions. However, taking a weighted
mean will push the final solution towards zero. This explains
why taking an unweighted mean yields a better solution at
lower precision values.

• At higher precision values, the non zero solutions start
having more frequencies as expected. As the precision is
increased further, the distributions also progressed finitely
in time. As noticed in the figure, the time iterations of the
distributions can be identified as separate clusters.

• At higher precision, taking a weighted mean seems to be a
better strategy as that approach will represent the finite
frequencies of non zero solutions across the solution space.

4.3 Error Analysis
Figures 8–10 summarizes the solutions by plotting the L2 and L∞
errors for 5, 7 and 9 grid points, respectively. Each of these figures

show both types of errors for the unweighted and weighted schemes.
The L2 error computes the Euclidean norm of the difference between
the quantum solution and that of the classical solution. The L∞ error
effectively computes the difference between the maximum value of
the solution vector for the classical and the quantum solutions.
Hence the L2 error represents the error for the entire solution space,
and the L∞ error represents the error for the solution maximum,
which represents the highest velocity within the domain, i.e., the
center point of the domain. The errors are shown for all precision
values (2–8) in Figures 8–10. We summarize the key observations
from these figures below:

• For five grid points, the difference among different precision
values are much lower for the unweighted scheme compared
to the weighted scheme for both L2 and L∞ errors.

• For five grid points, both the L2 and L∞ errors are lower for
higher precision values for unweighted solutions. Moreover,
the errors seem to decrease with iterations, indicating
potential convergence. The weighted mean solutions do
not exhibit any clear pattern like this.

• For seven and nine grid points, the divergence among the
weighted solutions seem to be larger compared to the

FIGURE 7 | Solution distribution at domain center.
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FIGURE 8 | L2 and L∞ errors of the unweighted and weighted mean solutions for a problem with five grid points. The precision varies from 2 to 8 and the error is
computed for each time step.

FIGURE 9 | L2 and L∞ errors of the unweighted and weighted mean solutions for a problem with seven grid points. The precision varies from 2 to 8 and the error is
computed for each time step.
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unweighted scheme. However, errors seem to increase with
higher precision and the lowest precision value seems to
show the lowest L2 and L∞ errors. No clear pattern of
convergence is found either.

5 CONCLUSION

In this work, we have demonstrated the potential, shortcomings
and sensitivities of solving linear systems obtained from a reduced
version of the Navier Stokes (NS) equation on the DWave
quantum computer. We have chosen a very simple
application, namely the one dimensional channel flow
problem, where the classical solution is a well established
parabolic flow. Using this reference solution we have explored
how the system of linear equations obtained from the discretized
form of the NS equations can be converted to a form amenable to
the DWave Quantum annealer. This conversion involves a fixed
point arithmetic based conversion of decimal to binary variables
and posing the system in a least square formulation. This allows
the construction of a quadratic unconstrained binary
optimization (QUBO) problem, that is solvable by the DWave
utilities. However, in this work, we have only used the default
embedding of the DWave annealer (called a Chimera graph)
which is organized as a lattice of unit blocks of qubits, where each
block has eight qubits configured as a four-node bipartite graph.
A technique called chaining allows one to use more optimized

embeddings specific to the problem, and this is beyond the scope
of the current work. In this work we have instead focused on the
following questions:

• How to get extract the “correct” solution from the
distribution of binary solution vectors?

• How do the different strategies for obtaining this solution
compare to each other?

• What are the sensitivities of the obtained solutions to the
grid resolution and precision value used in the fixed point
arithmetic?

To answer these question we have plotted solution
distributions at the domain center, compared three different
methods (least energy, simple unweighted means and weighed
means, where the weights are number of occurrences of each
solution) to extract the quantum solutions against the classical
solution, and performed error analysis to demonstrate the
sensitivities with precision values and grid resolutions. We can
answer the aforementioned questions as follows:

• There is no unique method to extract the correct solution.
• The least energy solution is the poorest. The weighted and
unweighted means that involve all obtained solutions in
each iterations provide better solutions consistently.

• At lower precision values, the unweighted means perform
better. At higher precision values weighting the solutions

FIGURE 10 | L2 and L∞ errors of the unweighted and weighted mean solutions for a problem with nine grid points. The precision varies from 2 to 8 and the error is
computed for each time step.
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with their numbers of occurrences is a better approach.
Interestingly, increase of grid resolution and higher
precision does not automatically allow more accurate
solutions because it increases the noise of the system
significantly. The unweighted mean solution doesn’t
prefer any particular solution, which is why for lower
precisions it has an effect of smoothing the solutions. On
the other hand, as the weighted means captures the average
of results weighted by their number of occurences, with
good solution states with high number of occurences it
would give a better approximation to the true solution. We
see some effect of this, say for grid 5, precision 4 and 8,
however, with increasing grid size we loose this behavior
due to noisy results. Statistically in the scenario where the
true solution states are returned by the QPU, we would
observe that average solution (weighted and unweighted)
converges with increasing sample space.

Overall, we observe that the solutions do not improve with
increase in precision or grid size. Our intuition is that there are
couple of limitations that affect solution accuracy. First, the values
of the coefficients in the QUBO form are not represented at the
same level of precision as described by the logical problem on the
actual hardware due to the limitations on the ranges of the values
for the physical parameters that the hardware can work with.
Second, how the logical problem is being mapped to the hardware
has an effect on the solution. In this work we have not focused on
finding the best/optimal mapping of our logical problem graph to
the hardware qubit graph. As we increase the precision, or grid
size, the logical problem size increases. As a result, the mappings,
which are obtained by using the utilities provided by the SAPI
libraries, can (and do) use longer-chains of hardware qubits to
represent a logical qubit, with more number of such longer chains
present in the problem. Such a mapping is only “a” solution of the
mapping problem, and may not be the best/optimal mapping
solution for the logical problem. This whole process increases the
total number of hardware qubits, which also contributes to noisy
results.

To the best of our knowledge of the literature, this work is one
of the first which demonstrates a simple workflow to reduce the
Navier Stokes equations in a form readily solvable by the DWave
machine (or quantum computers of the annealer type). This
workflow can be followed to solve several problems spanning
multiple disciplines ranging from solid to fluid mechanics and
engineering, essentially any problem that can be reduced to linear
systems of equations. The sensitivity of the workflow to the
multiple parameters of the QUBO type solution process is
perhaps of more interest than the accuracy of the solution
instead. In future works, we will further explore the effects of
more optimized embedding schemes. Moreover, the inherent
nature of the DWave machine, which provides a large number
of distributions at every step of the solution instead of one unique

solution might allow one to explore Monte Carlo type approaches
to solving linear systems of practical interest.

In this work, we have not addressed the problem of non-
linearity that is part of any realistic fluid flow problem.
Because, a fundamental limitation is imposed by the
current QPU, which requires the logical problem to be in a
QUBO form, including non-linear forms becomes non-
trivial. As in standard discretization methods, we would
have to approximate the non-linear forms to be a QUBO
amenable approximation, which would include higher-order
terms or non-linear forms. For high-order polynomial terms,
there are methods that reduce the high-order form to a QUBO
form via anciliary qubits (for example, (Perdomo-Ortiz et al.,
2012)) along with extra constraints into the logical problem,
which would significantly increase the logical problem size,
and result in more noisy results. Such explorations into
approximations of non-linear forms would be part of
future studies.
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