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Nanoscale Friction: Phonon
Contributions for Single and Multiple
Contacts
Jeffrey L. Streator*

G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States

A generic model has been developed to simulate the effect of phonon interactions during

nanoscale sliding with an incommensurate interface. A rigid slider or array of sliders is

translated across a 3D elastic slab whose mass elements are harmonically coupled,

either in a simple cubic structure (for vast majority of cases) or in a face-centered cubic

structure. Each slider interacts with the slab via the Lennard-Jones 6–12 intermolecular

potential. Elastic waves are allowed to propagate without any damping and no energy

is removed from the system. Boundary conditions are set sufficiently remotely that no

significant wave energy returns to the interface from boundary reflection. Simulation

results demonstrate that for such nanoscale contacts, (1) the presence of one slider

can affect the friction felt by another slider through phonon generation; (2) friction force

scales with contact width rather than with contact area; and (3) the friction force may be

sensitive to the number of contact regions that comprise a given total area.

Keywords: nanoscale friction, phonon, multiple contacts, sliding, contact area

INTRODUCTION

For two contacting bodies, the friction force may be defined as the force acting in the plane of the
interface that opposes the relative lateral displacement of one surface with respect to the other.
The static friction force is the force that prevents slip, whereas kinetic friction is the interfacial
force that opposes slip when two bodies are in relative tangential motion. One of the defining
characteristics of kinetic friction is that it is dissipative, in that it coverts mechanical energy to other
forms, eventually degrading to thermal energy. Identifying and understanding the mechanisms of
frictional dissipation has long been of scientific interest (Brillouin, 1899; Prandtl, 1928; Tomlinson,
1929; Bikerman and Rideal, 1939; Frenkel and Kontorova, 1939) and there has been renewed focus
on this topic, starting about 30 years ago (Sokoloff, 1993a,b, 1996; Brenner et al., 1994; Singer, 1994;
Streator, 1994; Harrison et al., 1995; Krim, 1996; Robbins and Krim, 1998) with the introduction
of the atomic force microscope (Binnig et al., 1986; Binnig, 1987; Mate et al., 1987, 1988; Kaneko,
1989), which enabled unprecedented spatial resolution in friction measurement. Interest in this
question persists, as witnessed by a number of publications within the last 10 years (Ding et al.,
2009; Hu, 2009; Benassi et al., 2012; Krim, 2012; Hu et al., 2013; Kajita et al., 2015; Wang et al.,
2015; Temizer, 2016; de Mello et al., 2017; Krylov and Frenken, 2017).

Generally speaking, the starting point for accounting for dissipative effects is the recognition
that each contacting body is composed of atomic and/or molecular particles that interact with
particles of their own body as well as those of the opposing body via electrostatic potentials. At any
given moment, the friction force is the result of an instantaneous summation of the particle forces
exerted on a particular body in the plane of the interface and in a direction opposite that of its
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motion relative to the other body. While, at a given instant, the
in-plane force experienced by a particular surface particle may
have a component in the direction of motion (thereby assisting
the motion), it is found that the net in-plane force experienced by
a sliding body always opposes the sliding process.

Many investigations have been undertaken to better
understand how the friction forces experienced by macroscopic
bodies arise from atomic-level interactions. This quest has been
a key area of focus for molecular dynamics (MD) simulations
in the past 25 plus years or so, resulting in many papers on the
subject. A somewhat recent review (Dong et al., 2013) provides
a summary of the research on the topic of atomic-scale friction
through early 2013. In the present work, we cite only those
papers most relevant to the focus of our investigation: phononic
contributions to friction, particularly in the case of elastic-only
deformation. One of the early investigations of atomic-scale
friction (Sorensen et al., 1996) used MD to study the contact
between opposing Cu(111) faces, the upper half of the interface
being the bottom surface of a tip, and the counter-face being the
surface of a multi-layer flat. The authors of that work considered
both “matching” cases, where the opposing surfaces had identical
orientation, as well as non-matching cases, where the tip was
rotated a specified angle about the vertical axis. The authors
found that the matching cases were associated with interface
stick-slip cycles, whereby the contacting tip surface would be
initially stuck to the lower surface while the top surface atoms of
the tip would continue with their prescribed lateral displacement.
Eventually, a point of instability would be reached, and the built-
up strain energy released, as the lower tip surface slipped in the
direction of the prescribed motion. It was also observed that,
owing to the hexagonal surface structure of the Cu(111) planes,
there was significant tip surface displacement transverse to the
direction of motion. In the case of non-matching surfaces, it
was observed that a non-zero time-averaged friction force was
evident for the smaller two contact regions (5 × 5 and 9 × 9
atoms), but essentially vanished for the largest tip surface (19 ×
19 atoms). Significantly, the authors attributed the zero-average
friction in this latter case to the vanishing of stick-slip motion,
which was present in the cases corresponding to the smaller
contact areas. It is noted that no wear was found in the simulation
of Cu(111) on Cu(111). The authors also performed a simulation
of sliding a Cu(100)-faced tip against a Cu(100) counter surface.
In this case, slip occurred within the tip, along (111) planes,
rather than at the interface between tip and flat, leading to an
adhesive wear process and a friction curve that did not reflect
periodicity with lateral displacement distance.

Another early MD study (Harrison et al., 1995) considered
sliding friction between (111) surfaces of diamond and observed
wear-less friction. Other investigators (Zhang and Tanaka, 1997)
performed a 2D MD simulation of a diamond tip sliding over
a copper flat. They observed fours regimes of interaction: a no-
wear regime, an adhesion regime, a plowing regime and a cutting
regime, with the occurrence of each determined primarily by the
degree of normal interference (indentation depth). It was found
that the no-wear regime persisted for a wide range of interference
values, suggesting that it is possible for macroscopic bodies to
slide without producing any wear.

When interfacial wear and/or significant plastic deformation
is present, there is clearly irreversible work associated with the
breaking of inter-atomic bonds, which would account for work
done by friction. On the other hand, in cases for which no wear
is present and for which any deformation is restricted to the
elastic regime, the work of friction is balanced by elastic energy
propagated into the bulk (Kajita et al., 2015). Ultimately, in a
real material, this elastic wave energy is degraded into thermal
energy, whereby the motions of atoms become uncorrelated and
their kinetic energies become distributed in such a way that
one can assign, at any particular time, a single temperature to
a small, but finite region. Investigation of the mechanisms of
such energy degradation, which, in the case of metals, would
require detailing how free electrons exchange energy, back and
forth, with the lattice, is beyond the scope of the current paper.
Rather, it is of interest here to investigate how friction forces
arise from elastic waves that propagate energy away from the
interface into the bulk. One early modeling effort to describe
the role of wave propagation in the development of friction
(Streator, 1994) was based upon essentially a combination of the
Tomlinsonmodel (Tomlinson, 1929) and the Frenkel-Kontorova
model (Frenkel andKontorova, 1939). It was shown that interface
instabilities excite particle vibrations whose energy propagates
from the interface, thereby causing irreversibility and a positive
average friction force. An important feature of that study was
that the boundaries were chosen sufficiently remotely that no
elastic waves would propagate back into the interface during
the simulation.

One of the key questions that motivates the current study
relates to the dependence of friction on contact area. As has
been discussed (Dong et al., 2013), the friction force experienced
with matching contacts (i.e., commensurate) tends to scale in
proportion to area, whereas, the friction force for non-matching
contacts appears to be independent of contact area. In the current
work, we consider an incommensurate interface and explore
whether the friction force for a given area of contact depends
upon (a) the number of separate contact regions that comprise
that area and (b) the overall shape of the contact region.

MODEL INTERFACE

The model formulated here is intentionally generic and is not
presumed to replicate any particular material interface. Rather
it has been developed to investigate general behaviors that are
expected to characterize qualitative trends with essentially any
nanoscale sliding contacts that operate within a predominantly
or purely elastic regime.

Interface Geometry
A profile of the typical interface in question is illustrated in
Figure 1A, and a top view of the same is shown in Figure 1B.
The upper body (slider) is a single-layer 2D rectangular array
of rigidly connected, non-deforming surface particles, which
model atoms. The nearest-neighbor distance within the slider is
a. The lower body (elastic slab) is comprised of a 3D lattice of
harmonically coupled particles, which are typically, and unless
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FIGURE 1 | Schematic of model system: (A) cross section of typical rigid

slider and elastic slab; (B) top view of system.

otherwise stated, in a simple cubic arrangement. The undeformed
nearest-neighbor distance in the slab is b.

Interfacial Forces
The slider and slab interact through the familiar Lennard-Jones
6-12 intermolecular potential (e.g., Atkins, 1994). While Figure 1
shows a single contact region, simulations are also performed for
multiple contact regions. Now consider the interaction between
an arbitrary particle I of the slider and a surface particle j of
the slab. Then the Lennard-Jones potential between them can be
written as

φIj = −0.3718fminreq

[

(

req

rIj

)12

− 2

(

req

rIj

)6
]

(1)

where fmin is the minimum possible (most attractive) force that
can exist between the two particles, req is the equilibrium spacing
and rIj is the distance between the two particles. (By convention,
a repulsive force is taken as positive, while an attractive force
is taken as negative, so that fmin < 0). By differentiating the
above expression, one can obtain the interaction force between
the particles, which is directed along the line connecting the
two particles. Performing this step and then accounting for the

direction cosines, one obtains the following force components
exerted on the slider particle I by the slab particle j:

fx = −4.4611fmin

[

(

req

rIj

)13

−
(

req

rIj

)7
]

(xI − xj)

rIj
(2)

fy = −4.4611fmin

[

(

req

rIj

)13

−
(

req

rIj

)7
]

(yI − yj)

rIj
(3)

fz = −4.4611fmin

[

(

req

rIj

)13

−
(

req

rIj

)7
]

(zI − zj)

rIj
(4)

In the foregoing, the coordinates of the slider and slab particles

are given by
(

xI , yI , zI
)

and
(

xj, yj, zj

)

, respectively.

Slab Properties
A given particle of the elastic slab interacts with each of its nearest
neighbors via linear springs. For normal deformation, the spring
constant is k, while for shear deformation, the spring constant is
ks. Each particle of the elastic slab has massm.

To achieve maximum generality, the formulation is placed in
dimensionless form by choosing b (the slab lattice parameter) as
the length scale, kb as the force scale, and b/co as the time scale,
where co is the speed of propagation of longitudinal plane waves
in the slab in the long wave-length limit (Ashcroft and Mermin,
1976). For the given simple cubic structure, it is easy to show that
this propagation speed is given by co = b

√

k/m.

Simulation Process
To initiate the simulation, the slider is placed at a chosen
vertical distance (h) from the undeformed slab surface and with
specified x and y coordinates. In almost all cases, the initial
slider position is chosen so that the slider (or array of sliders)
is centered with respect to the top surface of the slab. The
slab particles start out completely motionless and are placed in
the simple cubic configuration. The slab particles are allowed
to relax in accordance with Newtonian equations of motion,
where for the purposes of this step only, a damping coefficient is
introduced to facilitate the achievement of static equilibrium. For
the simulations involving the fcc slab, the relaxation process was
facilitated by incrementally moving the slider toward the target
vertical separation, with relaxation occurring for each step. After
a specified number of time steps, the sliding phase is commenced,
which proceeds in the x-direction. During the sliding process,
damping is completely absent. The sliding velocity starts at zero
and follows a sinusoidal quarter wave increase until reaching
the target speed (Uo). During this acceleration phase, the
displacement 1s of a chosen reference point of the slider is
given by:

1s = l1

[

1− cos

(

Uo

l1
t

)]

(5)

where t is the time elapsed from the initiation of sliding
and l1 is the sliding distance during the acceleration phase.
The acceleration phase ends when the argument to the cosine
function reaches the value of π/2. After the target speed is
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reached, the speed of the slider is maintained constant for a
specified sliding distance l2.

Simulation Parameters
Unless otherwise stated, calculations are performed for the
following parameter values:

a′ ≡
a

b
=

1
√
2
= 0.7071

h′ ≡
h

b
= 0.7

fmin

kb
= −

1

4.4611
= −0.22416

ks

k
= 0.77

l1

b
= 0.5

l2

b
= 2

U ′ ≡
U

co
= 0.02

The simulations are performed with the slider aligned with
the slab (see Figure 1B). Thus, with the chosen irrational
value of a′, the interface can be characterized as aligned,
but incommensurate. The Newtonian equations of motion,
which govern the various masses of the slab, are integrated
using a 4th order Runge-Kutta integration scheme (e.g.,
Chapra and Canale, 2006).

Boundary Conditions
Both the bottom and lateral boundaries of the elastic slab are
held fixed. However, since it is of interest to investigate how
friction arises from the transfer of phonon waves away from the

FIGURE 2 | Prescribed time histories of slider displacement and velocity for the various simulations.

FIGURE 3 | Time histories of friction and normal load for the case of a 5 × 5 slider grid with a vertical surface separation of 0.7.
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surface into the slab, the dimensions of the slab are chosen to be
sufficiently large so that negligible wave energy reflects from the
boundary back into the interface. Now, for an isotropic elastic
half-space, the pressure wave (or dilatational wave) has a speed
a that generally exceeds the speed of longitudinal plane waves
and depends on the value of Poisson’s ratio (ν) (Graff, 1975). For
example, with ν = 1/3, the pressure wave speed is 22.5% higher
than the longitudinal wave speed. However, for ν = 0, the two
speeds are identical. For our harmonically-coupled simple cubic
elastic slab, which is able only to approximate the behavior of an
isotropic half-space, we assume that the longitudinal plane wave
speed co given above is the largest relevant wave speed.

Recall that the time scale of normalization is chosen as the
time for one longitudinal plane wave to traverse a distance b,
the nearest-neighbor distance of the slab. Also, a value of 0.77
is chosen for the ratio ks/k so that the ratio of shear wave speed

FIGURE 4 | Friction force vs. normal load along with the associated vertical

separation. Slider is composed of a 4 × 4 grid of particles.

FIGURE 5 | Friction force and normal load vs. contact area for single square

regions of varying size.

to pressure wave speed would be around 0.5, which is typical
for a solid body (Graff, 1975). This shear wave speed is slightly
greater than of the Rayleigh surface wave (Graff, 1975). Now
since the Rayleigh surface wave, unlike either the pressure or
shear wave, retains much of its energy at the top surface of
the slab, simulations must be performed in such a way that its
reflections from the lateral boundaries do not make it back into
the interface during the simulation time. Roughly speaking, the
Rayleigh wave travels a dimensionless distance of 0.5 in a single
dimensionless time unit. Thus, it takes 2n dimensionless time
units for the Rayleigh surface waves to traverse n slab nearest-
neighbor distances. Suppose, then, that the slider particles are
centered with respect to the slab lateral boundaries, and that the
dimensionless lengths of the slider (or of the array of sliders)

along the x and y directions are L
′

x and L
′

y, respectively. Also
suppose that the dimensionless lengths of the slab along the x and

FIGURE 6 | Friction force vs. total contact area for slider arrays. Each curve

corresponds to a given individual slider area. Graphic shows the slider array

configuration when 9 sliders are used.

FIGURE 7 | Friction force vs. contact area for long and wide sliders.
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y directions are l
′

x and l
′

y, respectively. Then the dimensionless
distance required for a longitudinal plane wave to reach an x-

boundary and return to the interface is approximated by l
′

x − L
′

x,
and the associated dimensionless time for a Rayleigh wave is

approximately twice this value, which is 2
(

l
′

x − L
′

x

)

. Similarly,

for surface waves traveling parallel to the y-axis, one has a go-

and-return time of 2
(

l
′

y − L
′

y

)

. Now consider longitudinal plane

waves traveling in the negative z-direction. These waves must

traverse a dimensionless distance of 2l
′

z , which requires this same
value of dimensionless time.

On the other side of things, the simulation time associated
with slider motion is given by the time of the acceleration
phase added to the time of the constant-speed sliding phase.

This former time is given by
(

π
2

)

(

l1
U

)

, while the latter equals

l2
U . In dimensionless terms, the total time is then given by
[

(

π
2

)

(

l1
b

)

+
(

l2
b

)]

( co
U

)

. Using the simulation parameter values

listed above, one gets a dimensionless sliding time (t′) equal to
(

π
4 + 2

)

(50) ∼= 140.
For all of the simulations with the simple cubic slab

configuration, we choose l
′

x = l
′

y = l
′

z = 120
(corresponding to 121 nodal points in each direction). Thus, in
the z-direction, the longitudinal wave takes 240 dimensionless
time units to return to the interface, which greatly exceeds
the chosen dimensionless sliding time of 140. In the x-
direction the critical dimensionless time for the return of
reflected waves becomes 2

(

120− L
′

x

)

. Keeping this value >140

requires L
′

x to be <50. Similarly, L
′

y must be no greater than

50 to ensure that no surface waves reflected from the y-
boundaries enter the interface. For simulations involving the
fcc geometry, the number of particles in each coordinate
directions is also 121, but the dimensions in the y and z
directions are different from those quoted above owing to the
denser packing.

It is noted here that no thermostating or velocity scaling
is performed in the current work so as to avoid biasing the
computation of friction toward a particular method of removing
energy (Braun, 2010; Benassi et al., 2012).

RESULTS AND DISCUSSION

Results are now presented for various parameter combinations.
To make the discussion less cumbersome, we omit, in most
cases, explicit reference to the non-dimensional nature of the
quantities discussed. It is to be understood that we have chosen,
as described previously, values of time, length and force with
which to normalize the dimensional quantities. In most cases,
dimensionless parameters are identified as such with a prime
symbol (′) on the associated dimensional parameter.

Slider Motion
Figure 2 displays the time histories of the slider displacement
(left axis) and velocity (right axis) for the various simulations. As
observed, the slider accelerates until a time of about 40 (precisely
12.5π) and then maintains a constant speed of 0.02 until the end
of the simulation. The slider is observed to displace a distance of
precisely 0.5 during the acceleration phase and then a distance of
2 during the constant-speed phase.

FIGURE 8 | Friction force vs. contact area for long and wide sliders with close-packed slider on (111) plane of fcc slab.
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Friction Force vs. Slider Displacement
Figure 3 shows a representative result for friction force (F′)
and normal load (W′) vs. slider displacement 1s′. The slider
is comprised of a 5 by 5 grid of particles, having a nearest-
neighbor distance (a′) of 1/

√
2, and is placed at a separation

(h′) of 0.7. As observed, the friction force begins at zero, rises
smoothly (monotonically) and then falls somewhat sharply after
a displacement value of about 0.25, even reaching significant
negative values. Following this drop, oscillations appear in the
friction force record, which persist throughout the rest of the
sliding process and the friction force shows an overall near-linear
increase, modulated by the aforementioned oscillations. This
increase in friction is followed by a steeper decline. It is noticed
that the overall shape of the friction record for displacement
values between 1 and 2 is similar to that between 0 and 1, the
biggest difference being that no oscillations are observed in the
first part of the sliding process. Additionally, for the constant-
speed phase, a high degree of repeatability is seen in the friction
record in comparing the results for 1.5 ≤ 1s′ ≤ 2.5 to those
corresponding to 0.5 ≤ 1s′ ≤ 1.5.

The normal load record shows an oscillation whose
onset and persistence is similar to that found with the
friction force. However, the normal load does not show
the same degree of repeatability, rather exhibiting a gradual
increase in the amplitude of its oscillations with increasing
displacement distance.

Effect of Load
The effect of normal load on friction was studied by varying
the vertical separation (h′). In each simulation, the slider was
comprised of a 4 by 4 grid of particles, corresponding to an area of
(

3/
√
2
)2

= 4.5. (The contact area of a given slider grid is taken

to be the size of the region bounded by the perimeter nodes.) The
results are displayed in Figure 4, which reveals the friction force
as a function of normal load. The corresponding (prescribed)
values of the surface separation are included on the right axis.
Both the reported friction and load values were averaged using
values from the constant-speed sliding phases in each case. When
the load is negative, which occurs for the higher values of surface
separation, the friction force is seen to increase with increasing
load, first mildly, then rapidly. Shortly after the load becomes
positive, an inflection point is reached, so that the rate of increase
of friction with load goes down. At the higher values of load, the
friction is seen to experience a linear increase with load.

Effect of Contact Area
Single Contact Regions of Square Shape
A set of simulations was performed, each involving a single slider
contact region of square shape. Figure 5 shows how the friction
force and normal load depend on contact area (A′). As observed,
the friction force increases with increasing area in a sub-linear
fashion, roughly following a power law trend with an exponent of
0.63. The normal load, on the other hand, experiences an almost
perfectly linear trend with area, as witnessed by the proximity to
unity of the square of the correlation coefficient.

Multiple Contact Regions of Square Shape
Figure 6 shows friction results for multiple contact regions. For
this set of simulations, the total contact area was varied by
increasing the number of sliders, starting with a square region of
given size. The sliders are arranged symmetrically with respect
to the center of the slab surface and are separated from each

FIGURE 9 | Friction force vs. inter-slider separation for separation along

x-axis. Inset shows the effect of slider offset for an isolated slider.

FIGURE 10 | Comparison of slider friction in cases with and without a pairing

slider. Pair is separated by
√
2 along the x-axis. (A) Friction experienced by left

slider of pair and by isolated slider at same locations. (B) Friction experienced

by right slider of pair and by isolated slider at same locations.
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other by a distance of 10a in both x- and y-directions. The
number of sliders progresses according to squares of consecutive
integers (i.e., 1, 4, 9, etc.). An illustration of a 3 by 3 array of
sliders is included in Figure 6 and the data points associated with
this geometry are indicated. The simulation results correspond
to arrays of contact regions based on three different individual
contact areas: 2, 8, and 12.5. As observed, for each chosen
individual contact area size, the friction force grows in proportion

FIGURE 11 | Comparison of slider friction in cases with and without a pairing

slider. Pair is separated by 3
√
2 along the x-axis. (A) Friction experienced by

left slider of pair and by isolated slider at same locations. (B) Friction

experienced by right slider of pair and by isolated slider at same locations.

FIGURE 12 | Comparison of mean displacements induced in opposite region

by isolated slider.

to the total area. However, while the results for individual areas
of 8 and 12.5 are similar, there is much higher friction associated
with a given total contact area when that area is comprised of
multiple regions of area 2. In particular, when a total contact area
equaling 32 is comprised of 16 regions, the friction force is 11.6,
whereas when this same total contact area is formed by 4 regions,
the friction force is 3.4. Note that the lower friction in the latter
case cannot be attributed to a drop in normal load: for the case of
16 regions, which has the substantially higher friction, the normal
load is 3.5, whereas for the case of 4 regions the normal load is
higher at 5.9.

Regions With Different Length-to-Width Ratios
Simulations were conducted to investigate the role of contact
region shape: One set of sliders (“long” sliders) were given a y-
direction length of 4a, with varying length in the x-direction
(the direction of sliding), while the other set of sliders (“wide”
sliders) were of length 4a along the x-direction and varying length
in the y-direction. Figure 7 displays the results and shows the
friction force as a function of area for the two sets of sliders. As
observed, increasing the length of the slider in the direction of
motion has little effect upon the resulting friction force. (There
is some variation from one value of length to another, but the
trend is flat.) On the other hand, increasing the dimension that
is transverse to the direction of sliding results in a linear increase
in friction force. For the largest contact area considered (98), the
wide slider experiences a friction force that is more than 20 times
that felt by the long slider.

To investigate the robustness of foregoing effect, which
corresponds to the rectangular-grid slider against the simple
cubic slab configuration, simulations were conducted for a slider
of hexagonal-grid geometry sliding against the (111) plane of
a slab having a face-centered cubic (fcc) structure. The overall
shape of the slider remained rectangular, but its particles were
arranged in a manner that corresponds to the (111) plane of
an fcc crystal. Additionally, the slab orientation was chosen so
that its particles were separated by nearest-neighbor distance b
along the x-axis. The slider was similarly aligned, but was given
a nearest-neighbor distance of b/

√
2. As in the case of Figure 7

“long” sliders were all of the same width in the y-direction,
but with increasing length in the x-direction, whereas, “wide”
sliders, were of fixed length in the x-direction, but with varying
width in the y-direction. For these tests, the slider was located
at a distance of 0.5b above the undeformed slab. The results are
displayed in Figure 8. As observed, the friction force for long
sliders tends to remain flat with increasing area, whereas wide
sliders exhibit a friction force that grows approximately linearly
with increasing area. These results are qualitatively similar to
those for the simpler geometry, as discussed above (see Figure 7).
Moreover, the friction forces are of comparable magnitude for the
same values of contact area.

Effect of Spacing Between Tandem Square Contact

Regions
To investigate the possible influence of one contact region on
the friction experienced by another, two identical square sliders,
each having an area of 8, were separated along either the x-axis

Frontiers in Mechanical Engineering | www.frontiersin.org 8 May 2019 | Volume 5 | Article 23

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


Streator Nanoscale Friction

or y-axis by a specified distance. Figure 9 shows the effect of
separating the contact regions along the direction of sliding. This
figure shows the average friction force per region (to facilitate
comparison to results obtained with a single contact region of
the same area). The friction force shows an irregular oscillatory
behavior, with a decreasing amplitude and increasing wavelength
as the separation distance is increased. Note that the smallest
value of separation is equal to a, so that this case actually
represents a single rectangular contact region of dimension 9a by
4a. Thus, the total friction force (0.80), which is twice the value
shown on the graph, is the same as plotted in Figure 7 for the
“long” slider having an area of 18. As the separation is increased
beyond the initial values, the friction force per section is seen to
rise quickly, ultimately reaching a maximum value of 0.94 at a
separation value of 1.33. Following this the friction force reaches
a minimum of 0.27, which occurs when the separation distance is
1.77. For the large separations, the friction force per slider region
hovers around a value near 0.55. This value is to be compared to
the friction force for a single square slider region having an area of
8, which is 0.54 (see first data point in Figure 7 for both curves).

Figure 9 includes an inset that shows the effect of offsetting a
single slider a specified fraction of one slab lattice spacing along
the x-direction. In the default case, the slider is perfectly centered
with respect to the lateral boundaries of the slab, representing an
offset of zero. That is, the “southwest” corner of the slider will be
situated with a particular x-distance from the slab particle that
has the largest x coordinate less than or equal to that of this slider
corner. When an array of sliders is considered, the array is also
centered, meaning that, for example, each slider region will have
its southwest corner at a different x-position relative the default
case. Moreover, along the x-axis each slider of the array will have
a different offset (owing to the irrationality of a′). However, as
seen in the inset, there is almost no effect of x-offset. Thus, the
observed dependence of friction on separation distance in the x-
direction may be attributed to the mutual influence of the slider
regions on one another.

FIGURE 13 | Friction force vs. inter-slider separation for separation along

y-axis. Inset shows the effect of slider offset for an isolated slider.

Additional insight into slider mutual influence can be seen
in Figure 10. Figure 10A shows the friction record for the left
slider of a pair of sliders that are separated by a dimensionless
distance of

√
2 along the x-axis, along with the friction record of

an individual slider moving through precisely the same locations,
but in the absence of the right slider. All differences, then, in the
two friction records are related to the presence (or absence) of
the tandem slider. As observed, there is a big effect on the friction
experienced by a slider when another slider is present. First of
all, the initial friction force (i.e., when the slider displacement is
zero) is seen to be lower when there is a right slider present. This
result is due to the (static equilibrium) surface deformation that
the right slider causes in the slab surface region directly under the
left slider. Secondly, there are higher-amplitude oscillations and
an overall skewing toward higher friction values. It is noted that
the average friction during the constant-speed phase for the left
slider of the pair is 0.924, while that for the isolated slider is 0.537.
Thus, the presence of the right slider causes a 72% increase in the
friction force exerted on the left slider for this particular case.

Figure 10B compares the friction record of the right slider of
the tandem to that of an isolated slider traversing the exact same
positions over time. In this case, the differences in the two records
don’t appear to be as dramatic as in the case of Figure 10A.
Nevertheless, the average friction for the right pair of the tandem
is 0.909, as compared to a value of 0.537 for the right individual
slider, representing a 69% increase in friction force felt by the
right slider due to the presence of the left slider.

A qualitatively different result can also occur, as displayed in
Figure 11. In comparison to Figure 10, the separation distance
for the tandem sliders is now increased to 3

√
2 and the slider

positions for the isolated cases are shifted to coincide with the
new locations. Figure 10A shows that the friction force is a little
bit higher for the left slider at a given location when the right
slider is present. The average friction force for the left slider
during the constant speed phase is 0.591 with the right slider
present, and 0.535 when it is isolated. On the other hand, the
right slider experiences an average friction force of only 0.057
when the left slider is present, whereas it experiences a friction
force of 0.535 when it slides alone. Owing to the complex, non-
linear interactions between the slider particles and those of the
slab surface, we are unable to explain, in simple terms, the
reasons for the particular ways that one slider affects another as
a function of in-plane separation. Such an endeavor is left for a
future investigation. However, the results depicted in Figure 12

make it clear that phonons are primarily responsible. In this
figure a comparison is made in the mean surface displacement
(in the sliding direction) induced in the opposing region by
an isolated slider—either left or right—for the configuration of
Figure 11. As observed, the mean displacement caused in the
left region by the right isolated slider is significantly greater than
that induced in the right region by the left isolated slider. Since
neither of these regions is in a contact zone, the characteristics
of the displacement profiles are due primarily to surface waves
that have been generated by the isolated slider as it slides in the
opposing region. As seen at the beginning of the sliding process,
where the displacement is zero, the induced displacement is of
equal magnitude (about 0.7), but opposite sign, for the left and
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right cases. However, the low friction experienced by the right
slider when the left slider is present, cannot be attributed to
static deflection caused by the left slider. Notice, as shown in
Figure 11B, the initial friction force on the right slider is actually
higher when the left slider is present.

Figure 13 shows results corresponding to tandem sliders
separated along the y-axis by varying distance. As compared to
the results for separation in the sliding direction (Figure 9), there
are qualitative differences. First, as shown by the inset, there is
a significant effect of slider offset. When this effect is accounted
for by superposing the friction results for a single (isolated)
slider, one sees that the mutual effect of the slider pair is to
enhance the friction for each slider at small separations and leave
it essentially unchanged at large separations. Note that, unlike
the case of Figure 9, each slider influences the other in precisely
the same way since the slider configuration is symmetric about
the line parallel to the x-axis that goes through the center of the
slab surface.

CONCLUSIONS

A generic model of nanoscale sliding was developed to investigate
the contributions of phonons to kinetic friction. A 2D rigid
slider or, alternatively, a 2D array of sliders interacted with an
elastic slab via a Lennard-Jones intermolecular potential. The
elastic slab was comprised of 121 × 121 × 121 harmonically-
coupled masses arranged in either a 3D simple cubic lattice or fcc
structure. The vast majority of simulations were performed with
the simple cubic structure, for which normal and shear spring
constants were defined. For the simple cubic configuration,
sliding occurred in the (100) surface of the slab. For the fcc
structure sliding occurred on the (111) plane and the slider was
similarly close-packed. In all cases, the nearest-neighbor distance
within the slider to that of the slab was chosen to be 1/

√
2 yielding

an incommensurate interface. Sliders were translated according
to a specified velocity profile, starting from a rest position. All slab

particles were initially motionless, and sliding commenced after
the slab was allowed to relax to achieve static equilibriumwith the
slider. Simulations were performed to study the effects of normal
load, contact area, slider-slider separation, and slider length-to-
width ratio on friction force. The combination of slab size and
slider translation speed was selected so as to avoid significant
wave energy entering the interface after being reflected from slab
boundaries. Results of the simulations lead to the following key
findings for this class of nanoscale contacts:

1) The friction force on a given slider may be significantly
affected by the presence of another slider nearby. When a
pair of sliders translates in a series configuration, the average
friction force per slider may either increase or decrease as
compared to a slider translating by itself, depending on the
precise in-plane separation between the sliders. When a pair
of sliders translates in a parallel configuration, the friction
experienced by each slider is enhanced. At large slider-slider
separation, the sliders become independent of one another.

2) Friction force grows in proportion to contact region width
(i.e., the dimension transverse to the sliding direction) rather
than in proportion to contact area.

3) For the same total contact area, a large number of very small
contact regions experiences a significantly larger force than a
single contact region.
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