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therMal and MaSS tranSpOrt

The development of thermal and mass transport as a subject of scientific study holds a central place 
in the origin and advancement of the Industrial Revolution by enabling the steam engine, which in 
turn provided unprecedented levels of power and speed for transportation, material processing, and 
eventually the distribution of electricity. Even earlier, elementary understanding of heat and mass 
transfer were crucial elements in providing for human safety and comfort, as well as food preserva-
tion via cooking and drying. Given this rich and diverse history, a logical question is: how much 
more of this subject remains to be discovered and explored? One answer would point to nuances 
of how heat and mass flow occurs at different scales through various material solid and fluid hosts, 
new forms of which are constantly being discovered and developed (Bergman et al., 2008). However, 
such a perspective seems relatively narrow in comparison to the outsize history of impact in the field, 
yet at the same time global grand challenge problems, such as clean energy and water, food security, 
or eradication of disease are too general to have useful meaning for the present purpose. Instead, 
we consider here how improved understanding of the details of thermal and mass transport might 
rekindle a new set of discoveries and technologies with broad global impact.

tranSient and nOn-eQUiliBriUM prOceSSeS

A useful starting point for imagining the possibilities of transformative discoveries in the area of 
transport processes is the semiconductor industry. Borne of a seemingly simple yet profound com-
bination of materials built into a unique device, the solid-state transistor has served as the genesis 
of multiple industries, ranging from personal computing to telecommunications (Brinkman et al., 
1997). One of the crucial insights to the development of integrated circuits (ICs) was that individual 
devices could be operated away from thermodynamic equilibrium in a repeated and coordinated 
manner to produce a greater overall effect than the “sum of their parts.” With such developments 
arose other specialized circuit elements such as micro-capacitors and dynamic memory devices that, 
along with a set of community-driven and shared design tools (Dutton and Yu, 2012), have enabled 
the simple transistor to form the basis of ICs that now touch nearly every technology-based device 
and product.

In comparison, the study of transport phenomena has focused strongly on near-equilibrium 
and steady- or quasi-steady-state processes. This emphasis is apparent in virtually any textbook on 
heat, mass, and/or fluid transport, largely because of the myriad complexities produced by non-
equilibrium thermodynamics and transient dynamics (Groot and Mazur, 1962). One important 
example of non-equilibrium behavior involves the fast collection of “hot carriers” as proposed 
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FiGUre 1 | notional map of energy and power densities of thermal 
storage approaches (l, liquid; S, solid; V, vapor).
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in the 1980s (Ross and Nozik, 1982) for solar photovoltaics. 
However, actually harnessing such effects, for example, with 
energy conversion devices that exploit the highly energetic 
but ephemeral non-equilibrium states, has presented an ongo-
ing challenge that remains largely unsolved. Moreover, any 
prospective thermal system that exploits transient behavior 
and non-equilibrium effects will almost surely require much-
improved thermal “capacitors,” or storage materials and related 
devices (Doty et  al., in press). Following the “Ragone plot” 
format for electrochemical storage systems that compares 
energy and power densities (Simon et  al., 2014), Figure  1 
provides a notional map of various thermal storage materials 
and approaches. The quantitative metrics for thermal energy 
(1 MJ/kg) and power (1 kW/kg) are surely debatable, but they 
provide reasonable order-of-magnitude goals. Clearly, power 
(i.e., speed) is a serious shortcoming of thermal storage. Few 
existing approaches if any hold the promise of both high energy 
and power simultaneously, and even “volumetric boiling” with 
relatively high levels of both has received relatively little atten-
tion for thermal storage, likely because of its need for active 
control and its highly non-equilibrium nature (Kim and Lior, 
1997). Nevertheless, many emerging phase-change materials 
(and some old ones) offer promise of managing both high power 
and energy (Shamberger, 2016).

SMall-Scale MaterialS and deViceS

The unique transport characteristics caused by small-scale 
dimensions of materials have captured much attention from 
the research community over the past several decades (Cahill 
et al., 2003). Most such studies have focused on the properties 
of individual nanoscale elements or features (e.g., interfaces), 
often with intricate experimental constructs (Shi et  al., 2003). 
Relatively less attention has been paid to the collective behavior 
of such objects, yet from an engineering perspective, ensemble 
characteristics would certainly seem to be paramount. Another 
important advantage to study collective behavior is the natural 
statistical averaging that is needed to analyze the exceptionally 

high variability in properties and characteristics of individual 
nanoscale objects (Feser et al., 2012) caused by fabrication pro-
cesses with high intrinsic variability. A useful example of the value 
of community-based efforts in this regard is the global round-robin 
testing of a variety of the so-called nanofluids (i.e., suspensions 
of nanoparticles in liquids), which found that (Buongiorno et al., 
2009) “no anomalous enhancement of thermal conductivity was 
achieved in the nanofluids tested in this exercise.” Nevertheless, 
the development of new nanomaterial ensembles that offer unique 
advantages at the human scale remains an important challenge 
and objective for the field. In this sense, a greater emphasis on 
self-organized fabrication and manufacturing of such assemblies 
(Srivastava et  al., 2013), models of complex media through 
rigorous volume-averaging techniques (Sbutega et al., 2015) and 
thorough uncertainty quantification (Murthy and Mathur, 2012) 
will be crucial.

adaptaBle therMOFlUidic 
tranSpOrt

Intimately connected to solid-state nanoscale and composite 
materials are fluid-based thermal and mass transport systems, 
including both man-made and natural architectures. Interestingly, 
few examples of high-transport solid thermal materials exist in 
nature, in contrast to the opposite extreme of highly insulating 
structures, such as animal fur (Simonis et  al., 2014). This state 
of affairs is likely the result of the peculiarly good thermal 
transport properties of water – by far the most abundant natural 
liquid. Nature has developed various means of managing thermal 
and mass balances in plants and animals through exquisitely 
complex aqueous networks that adapt to their environments 
autonomously. In comparison, man-made thermal systems, 
such as power plants, also use water extensively, but they tend to 
employ brute-force thermal management approaches that exploit 
large bodies of water, causing significant thermal pollution and 
other adverse side-effects (Roy et  al., 2005). While biologically 
inspired but coarse facsimiles of multi-phase, vascular networks 
have been studied recently (Chen et al., 2013), the opportunity 
to integrate adaptable materials that autonomously respond to 
dynamic fluidic and thermodynamic conditions remains largely 
unaddressed, and the likely gains in engineering efficiency, 
ecological health, and water conservation make such approaches 
particularly appealing. At the same time, the question of adapta-
tion in thermo-fluid systems has reached the full global scale 
with the contemporary emergence of climate change. More than 
ever, policymakers require the objective expertise of scientists 
and engineers to understand the many complexities of solar forc-
ing, greenhouse gas emissions and accumulation, and the roles 
of evaporation and ocean currents, among many other highly 
technical issues that are not well understood (Incropera, 2015).

MaSS tranSpOrt in Medicine

The full titles of undergraduate courses and books in this field 
commonly use some variant of “Heat and Mass Transfer,” which is 
often colloquially abbreviated to “Heat Transfer.” The truncation 
is not without reason or consequence, as the topics involving 
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transport of mass are typically delivered secondarily through 
analogies to thermal transport. Yet mass transfer technology when 
viewed from a societal perspective would seem to deserve equal 
if not greater billing, as it is central to global grand challenges 
associated with clean water and providing quality health care to 
an aging population. The latter topic is particularly compelling 
as progress in the so-called “personalized medicine” continues to 
accelerate (Chan and Ginsburg, 2011). However, broad adoption 
of personalized medical treatments  –  i.e., beyond clinical tri-
als – will require major new advances in many areas, none more 
important than controlled drug delivery. This area has attracted 
much attention in mass transport research, but with generally 
underwhelming results. For example, concerning nanoparticle-
based drug delivery to tumors, a recent review (Il Keun et  al., 
2012) states, “Almost the whole decade of [the] 2000s has been 
consumed by developing various nanoparticles for targeted drug 
delivery to tumors, and the results are not, on the whole, encour-
aging.” The reasons for this disappointment are numerous and 
complex, but many relate to “oversimplification of biotransport 
phenomena.” Clearly, this area of controlled and targeted drug 
release therapies represents a great challenge to our community, 
with immense potential for impact on the world.

OUtlOOK FOr thiS Specialty 
SectiOn

Given the foregoing challenges, the study of thermal and mass 
transport is as rich and interesting as ever, while also holding a 
unique legacy of translating fundamental scientific discoveries into 
technologies that change the world (Viskanta, 2014). This specialty 
section of Frontiers in Mechanical Engineering seeks to draw from 
the broader interdisciplinary ethos that already exists within the 
transport research community, as evident from the foregoing dis-
cussion, and that also has come to characterize the “Frontiers In” 
project and family of journals. The section will broaden the reach 
of the field through a successful and growing open-access model of 
scholarly publication, along with a refreshing and technically rig-
orous style of collaborative peer review that has been pioneered by 
the “Frontiers In” family. We hope that you will consider engaging 
in this venue for world-changing scholarship in this exciting field.

aUthOr cOntriBUtiOnS

The author confirms being the sole contributor of this work and 
approved it for publication.

reFerenceS

Bergman, T. L., Faghri, A., and Viskanta, R. (2008). Frontiers in transport phe-
nomena research and education: energy systems, biological systems, security, 
information technology and nanotechnology. Int. J. Heat Mass Transf. 51, 
4599–4613. doi:10.1016/j.ijheatmasstransfer.2008.01.024 

Brinkman, W. F., Haggan, D. E., and Troutman, W. W. (1997). A history of the 
invention of the transistor and where it will lead us. IEEE J. Solid-State Circuits 
32, 1858–1865. doi:10.1109/4.643644 

Buongiorno, J., Venerus, D. C., Prabhat, N., Mckrell, T., Townsend, J., Christianson, 
R., et al. (2009). A benchmark study on the thermal conductivity of nanofluids. 
J. Appl. Phys. 106, 14. doi:10.1063/1.3245330 

Cahill, D. G., Ford, W. K., Goodson, K. E., Mahan, G. D., Majumdar, A., Maris, 
H. J., et  al. (2003). Nanoscale thermal transport. J. Appl. Phys. 93, 793. 
doi:10.1063/1.1524305 

Chan, I. S., and Ginsburg, G. S. (2011). Personalized medicine: progress and 
promise. Annu. Rev. Genomics Hum. Genet. 12, 217–244. doi:10.1146/
annurev-genom-082410-101446 

Chen, I. T., Pharkya, A., and Stroock, A. D. (2013). Analysis of superheated loop 
heat pipes exploiting nanoporous wick membranes. AIChE J. 60, 762–777. 
doi:10.1002/aic.14303 

Doty, J., Yerkes, K., Byrd, L., Murthy, J., Alleyne, A., Wolff, M., et al. (in press). 
Dynamic thermal management for aerospace technology: review and outlook. 
J. Thermophys. Heat Transf. 1–13. doi:10.2514/1.T4701 

Dutton, R. W., and Yu, Z. (2012). Technology CAD – Computer Simulation of IC 
Processes and Devices. New York: Springer Science & Business Media.

Feser, J. P., Sadhu, J. S., Azeredo, B. P., Hsu, K. H., Ma, J., Kim, J., et  al. (2012). 
Thermal conductivity of silicon nanowire arrays with controlled roughness. 
J. Appl. Phys. 112, 114306–114308. doi:10.1063/1.4767456 

Groot, S. R. D., and Mazur, P. (1962). Non-Equilibrium Thermodynamics. 
Amsterdam, New York: North-Holland Publishing Company; Interscience 
Publishers.

Il Keun, K., Lee, S. C., Han, B., and Park, K. (2012). Analysis on the current status of 
targeted drug delivery to tumors. J. Control. Release 164, 108–114. doi:10.1016/j.
jconrel.2012.07.010 

Incropera, F. P. (2015). Climate Change: A Wicked Problem. New York: Cambridge 
University Press.

Kim, J. I., and Lior, N. (1997). Some critical transitions in pool flash 
evaporation. Int. J. Heat Mass Transf. 40, 2363–2372. doi:10.1016/
S0017-9310(96)00296-7 

Murthy, J. Y., and Mathur, S. R. (2012). Computational heat transfer in complex 
systems: a review of needs and opportunities. J. Heat Transfer 134, 031016. 
doi:10.1115/1.4005153 

Ross, R. T., and Nozik, A. J. (1982). Efficiency of hot-carrier solar energy convert-
ers. J. Appl. Phys. 53, 3813–3817. doi:10.1063/1.331124 

Roy, S. B., Ricci, P. F., Summers, K. V., Chung, C.-F., and Goldstein, R. A. (2005). 
Evaluation of the sustainability of water withdrawals in the United States, 1995 to 
2025. J. Am. Water Resour. Assoc. 41, 1091–1108. doi:10.1111/j.1752-1688.2005.
tb03787.x 

Sbutega, K., Geb, D., and Catton, I. (2015). “Modeling of multiscale heat transfer 
systems using volume averaging theory,” in Advances in Heat Transfer, Vol. 47, 
eds E. M. Sparrow, J. P. Abraham, and J. M. Gorman  (Waltham, MA: Elsevier), 
41–165.

Shamberger, P. J. (2016). Cooling capacity figure of merit for phase change materi-
als. J. Heat Transfer 138, 024502–024508. doi:10.1115/1.4031252 

Shi, L., Li, D., Yu, C., Jang, W., Kim, D., Yao, Z., et al. (2003). Measuring thermal 
and thermoelectric properties of one-dimensional nanostructures using a 
microfabricated device. J. Heat Transfer 125, 881–888. doi:10.1115/1.1597619 

Simon, P., Gogotsi, Y., and Dunn, B. (2014). Where do batteries end and superca-
pacitors begin? Science 343, 1210–1211. doi:10.1126/science.1249625 

Simonis, P., Rattal, M., Oualim, E. M., Mouhse, A., and Vigneron, J.-P. (2014). 
Radiative contribution to thermal conductance in animal furs and other woolly 
insulators. Opt. Express 22, 1940–1951. doi:10.1364/OE.22.001940 

Srivastava, I., Sadasivam, S., Smith, K. C., and Fisher, T. S. (2013). Combined 
microstructure and heat conduction modeling of heterogeneous interfaces and 
materials. J. Heat Transfer 135, 061603. doi:10.1115/1.4023583 

Viskanta, R. (2014). “Chapter two  –  developments in radiation heat transfer: a 
historical perspective,” in Advances in Heat Transfer, Vol. 46, eds E. M.Sparrow, 
Y. I. Cho, J. P. Abraham, and J. M. Gorman  (Waltham, MA: Elsevier), 47–86.

Conflict of Interest Statement: The author declares that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2016 Fisher. This is an open-access article distributed under the terms 
of the Creative Commons Attribution License (CC BY). The use, distribution or 
reproduction in other forums is permitted, provided the original author(s) or licensor 
are credited and that the original publication in this journal is cited, in accordance 
with accepted academic practice. No use, distribution or reproduction is permitted 
which does not comply with these terms.

http://www.frontiersin.org/Mechanical_Engineering/
http://www.frontiersin.org
http://www.frontiersin.org/Mechanical_Engineering/archive
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.01.024
http://dx.doi.org/10.1109/4.643644
http://dx.doi.org/10.1063/1.3245330
http://dx.doi.org/10.1063/1.1524305
http://dx.doi.org/10.1146/annurev-genom-082410-101446
http://dx.doi.org/10.1146/annurev-genom-082410-101446
http://dx.doi.org/10.1002/aic.14303
http://dx.doi.org/10.2514/1.T4701
http://dx.doi.org/10.1063/1.4767456
http://dx.doi.org/10.1016/j.jconrel.2012.07.010
http://dx.doi.org/10.1016/j.jconrel.2012.07.010
http://dx.doi.org/10.1016/S0017-9310(96)00296-7
http://dx.doi.org/10.1016/S0017-9310(96)00296-7
http://dx.doi.org/10.1115/1.4005153
http://dx.doi.org/10.1063/1.331124
http://dx.doi.org/10.1111/j.1752-1688.2005.tb03787.x
http://dx.doi.org/10.1111/j.1752-1688.2005.tb03787.x
http://dx.doi.org/10.1115/1.4031252
http://dx.doi.org/10.1115/1.1597619
http://dx.doi.org/10.1126/science.1249625
http://dx.doi.org/10.1364/OE.22.001940
http://dx.doi.org/10.1115/1.4023583
http://creativecommons.org/licenses/by/4.0/

	Contemporary Challenges for Thermal and Mass Transport Technologies: A Perspective on Twenty-First Century Opportunities for the Field
	Thermal and Mass Transport
	Transient and Non-equilibrium Processes
	Small-Scale Materials and Devices
	Adaptable Thermofluidic Transport
	Mass Transport in Medicine
	Outlook for This Specialty Section
	Author Contributions
	References


