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Introduction: Advances in machine vision and mobile electronics will be
accelerated by the creation of sophisticated optoelectronic vision sensors that
allow for sophisticated picture recognition of visual information and data pre-
processing. Several new types of vision sensors have been devised in the last
decade to solve these drawbacks, one of which is neuromorphic vision sensors,
which have exciting qualities such as high temporal resolution, broad dynamic
range, and low energy consumption. Neuromorphic sensors are inspired by the
working principles of biological sensory neurons and would be useful in
telemedicine, health surveillance, security monitoring, automatic driving,
intelligent robots, and other applications of the Internet of Things.

Methods: This paper provides a comprehensive review of various state-of-the-art
AI vision sensors and frameworks.

Results: The fundamental signal processing techniques deployed and the
associated challenges were discussed.

Discussion: Finally, the role of vision sensors in computer vision is also discussed.
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1 Introduction

Vision is the fundamental function of cognitive creatures and agents, responsible for
comprehending and seeing their surroundings. The visual system accounts for more than
80% of information in the human perception system, greatly surpassing the total of the
auditory, tactile, and other perceptual systems (Picano, 2021). How to create a sophisticated
visual perception system for use in computer vision technology and artificial intelligence has
long been a research focus in academia and industry (Liu et al., 2019).

A video is a series of still pictures that was created by the advancement of cinema and
television technologies. It makes use of the human visual system’s visual persistence
phenomena (Hafed et al., 2021). Traditional video has made significant advances in the
visual viewing angle in recent years (Zare et al., 2019), but there are drawbacks such as high
data sampling redundancy, a small photosensitive dynamic range, low resolution in time
domain acquisition, and the ability to produce motion blur in high-speed motion scenes
(Sharif et al., 2023). Furthermore, computer vision has been moving in the mainstream
direction of “video camera + computer + algorithm = machine vision” (Hossain et al., 2019;
Wu and Ji, 2019), but few scholars question the logic of using image sequences (videos) to
express visual information, and even fewer scholars question whether this computer vision
method can be realized.
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The human visual system has the advantages of low redundancy,
low power consumption, high dynamics and strong robustness. It
can efficiently and adaptively process dynamic and static
information, and has strong small sample generalization ability
and comprehensive complex scene perception ability (Heuer
et al., 2020). Explore the mysteries of the human visual system,
and learn from the neural network structure of the human visual
system and the processing mechanism of visual information
sampling and processing (Pramod and Arun, 2022), to establish a
new set of visual information perception and processing theories,
technical standards, chips and application engineering systems. The
ability to better simulate, extend or surpass the human visual
perception system (Ham et al., 2021). This is the intersection of
neuroscience and information science, called neuromorphic vision
(Najaran and Schmuker, 2021; Martini et al., 2022; Chunduri and
Perera, 2023). Neuromorphic vision is a visual perception system
that includes hardware development, soft support, and biological
neural models. One of its ultimate goals is to simulate the structure
and mechanism of biological visual perception (Ferrara et al., 2022)
in order to achieve real machine vision.

The development of neuromorphic vision sensors is based on
scientific and physiologic research on the structure and functional
mechanism of biological retinas. A neuron model with computing
power was proposed by Alexiadis (Alexiadis, 2019). To describe the
neural network, Shatnawi et al. (Shatnawi et al., 2023) established
dynamic differential equations for neurons.

The generation and transmission of the action potential is
called a spike. A Ph.D. student at Caltech, thought: “The brain is
the birthplace of imagination, which makes me very excited. I
hope to create a chip for imagining things”. The topic of stereo
vision is investigated from the standpoints of science and
engineering. The author initially introduced the
Neuromorphic idea (Han et al., 2022), employing large-scale
integrated circuits to replicate the organic nervous system. The
writers featured a moving cat on the cover of “Scientific
American” (Ferrara et al., 2022), launching the first silicon
retina, which models the biology of cone cells, horizontal cells,
and bipolar cells on the retina. It was the formal start of the
burgeoning area of neuromorphic vision sensors. Marinis et al.
(Marinis et al., 2021) presented Address-Event Representation
(AER), a novel form of integrated circuit communication
protocol, to overcome the challenge of dense three-
dimensional integration of integrated circuits, which enabled
asynchronous event readout. Purohit et al. (Purohit and
Manohar, 2022) created Octopus Retina, an AER-based
integral-discharge pulse model that represents pixel light
intensity as frequency or pulse interval. Abubakar et al.
(Abubakar et al., 2023) created a Dynamic Vision Sensor
(DVS) that represented pixel light intensity changes with
sparse spatiotemporal asynchronous events, and its
commercialization was a watershed moment. DVS, on the
other hand, is unable to capture fine texture images of natural
scenes. Oliveria et al. (Oliveria et al., 2021) proposed an
asynchronous time-based image sensor (ATIS) and an event-
triggered light intensity measurement circuit to reconstruct the
pixel grey level as the change occurred. Zhang et al. (Zhang et al.,
2022a) created a Dynamic and Active Pixel Vision Sensor
(DAVIS), a dual-mode technical route that includes an

additional independent traditional image sampling circuit to
compensate for DVS texture imaging flaws. It was then
expanded to colour DAVIS346 (Moeys et al., 2017). To restore
the scene texture, Feng et al. (Feng et al., 2020) increased the bit
width of the event and let the event carry the pixel light intensity
information output. Auge et al. (Auge et al., 2021) adopted the
octopus retina’s principle of light intensity integral distribution
sampling and replaced pulse plane transmission with the AER
method to conserve transmission bandwidth. They also
confirmed that the integral sampling principle can quickly
reconstruct scene texture details. That is, the Fovea-like
Sampling Model (FSM), also called Vidar, as shown in
Figure 1. Neuromorphic vision sensors simulate biological
visual perception systems, which have the advantages of high
temporal resolution, less data redundancy, low power
consumption and high dynamic range, and are used in
autonomous driving (Chen L. et al., 2022), unmanned vehicles
machine vision fields such as machine vision navigation
(Mueggler et al., 2017; Mitrokhin et al., 2019), industrial
inspection (Zhu Z. et al., 2022), and video surveillance (Zhang
S. et al., 2022) have huge market potential, especially in scenarios
involving high-speed motion and extreme lighting. The
sampling, processing, and application of neuromorphic vision
is another important field of neuromorphic engineering (Wang
T. et al., 2022). This activity validates the computational
neuroscience’s visual brain model (Baek and Seo, 2022) and is
a useful method for examining human intellect. The development
of neuromorphic vision sensors is still in its infancy, and more
investigation and study are still required to match or even surpass
the human visual system’s capacity for perception in intricately
interconnected settings (Chen J. et al., 2023).

This paper systematically reviews and summarizes the
development process of neuromorphic vision, the neural
sampling model of biological vision, the sampling mechanism
and types of neuromorphic vision sensors, neurovisual signal
processing and feature expression, and vision applications, and
looks forward to the future of this field. The major challenges
and possible development directions of the research are
discussed, and its potential impact on the future field of machine
vision and artificial intelligence is discussed.

2 Neuromorphic vision model and
sampling mechanism

The technical route of neuromorphic vision is generally
divided into three levels: the structural level imitates the
retina, the device functional level approaches the retina, and
the intelligence level surpasses the retina. If the traditional
camera is a simulation of the human visual system, then this
bionic retina is only a primary simulation of the functional level
of the device. In fact, the traditional camera is far inferior to the
perception ability of the human retina in various complex
environments in terms of structure, function and even
intelligence (Chen et al., 2022b).

In recent years, the “Brain Projects” (Fang and Hu, 2021) in
various countries have been successively deployed and launched,
and the analysis of brain-like vision from the structural level is one of
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the important contents to support, mainly through the use of fine
analysis and advanced detection technology by neuroscientists to
obtain the structure of the basic unit of the retina, functions and
their network connections, which provide theoretical support for the
device function level approaching the biological visual perception
system. The neuromorphic vision sensor starts from the device
function level simulation, that is, the optoelectronic nanodevice is
used to simulate the biological vision sampling model and
information processing function, and the perception system with
or beyond the biological vision ability is constructed under the
limited physical space and power consumption conditions. In short,
neuromorphic vision sensors do not need to wait until they fully
understand the analytic structure and mechanism of the retina
before simulating. Instead, they learn from the structure-level
research mechanism and bypass this more difficult problem, and
use simulation engineering techniques such as device function-level
approximation. The ability to reach, extend or surpass the human
visual perception system.

At present, neuromorphic vision sensors have achieved staged
results (Zhou et al., 2019). There are differential visual sampling
models that simulate the peripheral sensory motor function of the
retina (Jeremie and Perrinet, 2023). There are also integral visual
sampling models that simulate the fine texture function of the fovea,
such as octopus retina (Purohit and Manohar, 2022), and Vidar
(Auge et al., 2021).

Including photoreceptor cells, bipolar cells, horizontal cells,
ganglion cells and other main components (Sawant et al., 2023),
as shown in Figure 2. Photoreceptor cells are divided into two types:
rod cells and cone cells, which are responsible for converting light
signals entering the eye into electrical signals, which are transmitted
to bipolar cells and horizontal cells. Cone cells are sensitive to color
and are mainly responsible for color recognition, and usually work
under the condition of strong scene illumination. Rod cells are
sensitive to light and can perceive weak light, mainly providing work
in night scenes (Soucy et al., 2023), but they have no color
discrimination ability. Bipolar cells receive signal input from
photoreceptors, and they are divided into ON-type and OFF-type
cells according to the different regions of the receptive field (Sun

et al., 2022), which sense the increase in light intensity and the
decrease in light intensity, respectively. Horizontal cells are laterally
interconnected with photoreceptors and bipolar cells, which adjust
the brightness of the signals output by photoreceptors, and are also
responsible for enhancing the outline of visual objects. Ganglion
cells are responsible for receiving visual signal input from bipolar
cells, and respond in the form of spatial-temporal pulse signals,
which are then transmitted to the visual cortex through visual fibers.
In addition, retinal cells have multiple parallel pathways to transmit
and process visual signals, which have great advantages in
bandwidth transmission and speed. Among them, the
Magnocellular and Parvocellular pathways are the two most
important signal pathways (Sawant et al., 2023), which are
respectively sensitive to the temporal changes of the scene. and
spatial structure sensitive.

The primate biological retina has the following advantages:

(1) Local adaptive gain control of photoreceptors: The change of
recorded light intensity replaces the absolute light intensity to
eliminate redundancy, and has a high dynamic range (High
Dynamic Range, HDR) for light intensity perception;

(2) Spatial bandpass filter of rod cells: filter out the visual
information redundancy of low-frequency information and
the noise of high-frequency information;

(3) ON and OFF types: both ganglion cells and retinal outputs are
encoded by ON and OFF pulse signals, which reduces the pulse
firing frequency of a single channel;

(4) Photoreceptor functional area: The fovea has high spatial resolution
and can capture fine textures; its peripheral area has high temporal
resolution and captures fast motion information.

Additionally, biological vision is represented and encoded by
binary pulse information, and the optic nerve only needs to transmit
20 Mb/s data to the vision Cortex, the amount of data is nearly
1,000 times less than what traditional cameras need to transmit in
order to match the dynamic range and spatial resolution of human
vision. Therefore, the retina efficiently represents and encodes visual
information by converting light intensity data into spatiotemporal

FIGURE 1
The development process of neuromorphic visual sensors.
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pulse array signals through ganglion cells, which serves as both a
theoretical foundation and a source of functional inspiration for
neuromorphic visual sensors.

2.1 Vision model of the retina

The information acquisition, processing and processing of the
biological visual system mainly occur in the retina, lateral geniculate
body and visual cortex (Pramod and Arun, 2022), as shown in Figure 3.
The retina is the first station to receive visual information. The lateral
geniculate body is the information transfer station that transmits retinal

visual signals to the primary visual cortex; the visual cortex is the visual
central processor, which is used in advanced visual functions such as
learning and memory, thinking language, and perceptual awareness
(Jeremie and Perrinet, 2023). The entire process of visual cortex
information processing is completed by two parallel pathways: V1,
V2, and V4. the ventral pathway mainly deals with the recognition
of object shape, color, and other information (Toprak et al., 2018), also
known as the what pathway; V1, V2, and MT. The dorsal pathway
mainly deals with spatial position, motion and other information (Freud
et al., 2016), also known as the where pathway. Therefore, the neural
computing model is used to explore the information processing and
analysis mechanism of the human visual system, which can provide

FIGURE 2
Schematic diagram of the cross-section of the primate retina (Sawant et al., 2023).

FIGURE 3
Visual pathway model.
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reference ideas and directions for computer vision and artificial
intelligence technology, and further inspire the theoretical model and
computingmethod of brain-like vision, so as to bettermine visual feature
information. It can process dynamic and static information efficiently
and adaptively, close to biological vision, and has strong generalization
ability of small samples and comprehensive visual analysis ability.

2.2 Differential vision sampling and AER
transmission protocol

The complex connections between neurons and the
transmission of impulse signals between neurons are
asynchronous, so how can neuromorphic engineering systems
simulate this feature? It is the Marinis team (Marinis et al., 2021)
who proposed a new communication protocol AER method, as
shown in Figure 4, which is used for multiple asynchronous
transmission of pulse signals, and also solves the three-
dimensional dense connection problem of large-scale integrated
circuits, that is, the “connection problem”.

Like a regular camera, the AER technique interprets each pixel on
the sensor as independent rather than sending out a picture at a set
frequency. The pulse signal is sent out asynchronously in accordance
with the event’s temporal sequence and is broadcast as an event. The
decoding circuit then parses event attributes according to address and
time. The following are the key components of the AER strategy for
neuromorphic vision sensors (Buchel et al., 2021):

(1) The output events of silicon retinal pixels simulate the function
of neurons in the retina to emit pulse signals;

(2) Light intensity perception, pulse generation and transmission
are asynchronous between silicon retina pixels;

(3) When the asynchronous events output by the silicon retina are
sparse, the event representation and transmission are more
efficient.

As shown in Figure 5, the abstraction of the three-layer structure
of cells and ganglion cells approaches or exceeds the ability of high
temporal resolution perception of the retina periphery from the
functional level of the device. Differential visual sampling is the
mainstream of neuromorphic visual sensor perception models (Dai
et al., 2023). The DVS series of vision sensors primarily employ the
logarithmic differential model, which is to say that the photocurrent
and voltage use a logarithmic mapping relationship in order to

increase the dynamic range of light intensity perception (b). The
pixel produces a pulse signal when the voltage change exceeds the
predetermined threshold due to the relative change in light intensity,
as shown in Figure 5. (c). The basic idea is this:

ΔL^ lnL u, t[ ] − lnL u, t − Δt[ ] (1)
The AER technique is used by the differential vision sensor, and

each pulse signal is represented as an event. Include a quadruple
representation that includes the pixel position u(x, y), release time
t, and event polarity (x,y, t, p). The last factor, polarity p � [−1, 1]
represents the weakening of light intensity OFF and the enhancing of
light intensity ON, respectively. The first three independently establish
the position of the space-time domain. Differential neuromorphic
vision sensors provide the following benefits over conventional cameras:

(1) The output of asynchronous sparse pulses, which is no longer
constrained by shutter time and frame rate and can perceive
changes in light intensity, lacks the concept of “frame” and can
therefore eliminate static and invariable visual redundancy;

(2) High-speed motion vision task analysis is suited for sampling
due to its high temporal resolution;

(3) The capacity to perceive high and low light levels is improved
and the dynamic range is increased because to the logarithmic
mapping connection between photocurrent and voltage.

2.3 Integral vision sampling

Integral visual sampling functionally abstracts the three-layer
structure of photoreceptors, bipolar cells and ganglion cells in the
foveal region of primate retina, such as octopus retina (Purohit and
Manohar, 2022), and Vidar (Auge et al., 2021). Integral vision sensors
simulate the neuron integral firingmodel, encode pixel light intensity as
frequency or pulse interval, and have the ability to reconstruct the fine
texture of visual scenes at high speed (Zhang et al., 2022c), as shown in
Figure 6. The photoreceptor converts the light signal into an electrical
signal.

The accumulation is carried out under the condition of
integrator I(t) to reach the accumulated intensity A(t), when the
intensity value exceeds the pulse release threshold φ, the pixel point
outputs a pulse signal, and the integrator resets to clear the charge
(Gao et al., 2018). The principle is as follows:

A t( ) �∫
t

0
I t( )dt ≥φ (2)

The pixels of the integrating vision sensor are independent of each
other. The octopus retina (Purohit and Manohar, 2022) uses the AER
method to output the pulse signal. Especially when the light intensity is
sufficient, the integrating vision sensor emits dense pulses, and the event
representation is prone to appear multiple times at the same position
and adjacent positions. When requesting pulse output, there will be a
huge pressure of data transmission, so the bus arbitration mechanism
has to be designed to determine the priority for pulse output, and even
the pulse signal will be lost due to bandwidth limitation. Vidar (Auge
et al., 2021) explored a high-speed polling method to transmit the pulse
release at each sampling moment in the form of a pulse matrix. This
method does not require the coordinates and timestamps of the output
pulse, and only needs to mark whether the pixel is released as “1” and

FIGURE 4
Schematic diagram of AER model.
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“0”. Replacing theAERmethodwith the pulse plane pollingmethod can
save the transmission bandwidth.

3 Types of vision sensors in
neuromorphic process

Neuromorphic vision sensor draws on the neural network
structure of biological visual system and the processing
mechanism of visual information sampling, and simulates,

extends or surpasses biological visual perception system at the
device function level. In recent years, a large number of
representative neuromorphic vision sensors have emerged, which
are the prototype of human exploration of bionic vision technology.
There are differential visual sampling models that simulate the
peripheral sensory motor function of the retina, such as DVS
(Abubakar et al., 2023), ATIS (Oliveria et al., 2021), DAVIS
(Mesa et al., 2019; Sadaf et al., 2023), CeleX (Feng et al., 2020).
There are also integral visual sampling models that simulate the fine
texture function of the fovea, such as Vidar (Auge et al., 2021).

FIGURE 5
Differential visual sampling (Najaran and Schmuker, 2021). (A) The outer three-layer structure of the primate retina and the DVS circuit. (B)
Differential sampling of light intensity. (C) DVS pulse signal accumulation plane.
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3.1 DVS

DVS (Abubakar et al., 2023) abstracts the function of the three-
layer structure of photoreceptors, bipolar cells and ganglion cells in
the periphery of primate retina, which is composed of photoelectric
conversion circuit, dynamic detection circuit and comparator
output circuit, as shown in Figure 5. The photoelectric
conversion circuit adopts the logarithmic light intensity
perception model, which improves the light intensity perception
range and is closer to the high dynamic adaptation ability of the
biological retina. The dynamic detection circuit adopts a differential
sampling model, that is, it responds to changes in light intensity, and
does not respond if there is no change in light intensity. The
comparator outputs ON or OFF events according to the increase
or decrease of light intensity.

Traditional cameras have a fixed frame rate sampling technique,
which in fast-moving situations is prone to motion blur. As
illustrated in Figure 7, DVS employs an asynchronous space-time
pulse signal to describe the change in scene light intensity and adopts
the differential visual sampling model of the AER asynchronous
transmission method. High time resolution (106 Hz), high dynamic
range (120 dB), low power consumption, less data redundancy, and
low latency are just a few benefits of DVS over conventional
cameras.

The first commercial DVS128 (Abubakar et al., 2023) developed
by the Delbruck team and IniVation has a spatial resolution of 128 ×
128, the sampling frequency in the time domain is 106 Hz, the
dynamic range is 120 dB, and it is widely used in high-speed moving
object recognition, detection and tracking. In addition, the research
and products of neuromorphic vision sensors such as DVS and its
derivatives ATIS (Oliveria et al., 2021), DAVIS (Mesa et al., 2019;
Sadaf et al., 2023) and CeleX (Feng et al., 2020) have also attracted
much attention, and are gradually applied to automatic driving and
UAV visual navigation and industrial inspection involving high-
speed motion vision tasks. For example, Samsung has developed a
spatial resolution of 640 × 480 of DVS-G2 (Xu et al., 2020), and the
pixel size is 9 μ m × 9 μ m. The IBM company uses DVS128 as the
visual perception system of the brain-like chip TrueNorth for fast
gesture recognition (Tchantchane et al., 2023).

The DVS uses the differential visual sampling model to filter
the static or weakly changing visual information to reduce data
redundancy, and at the same time, it has the ability to perceive
high-speed motion. However, this advantage brings the
disadvantage of visual reconstruction, that is, the ON or OFF
event does not carry the absolute light intensity signal, and no
pulse signal is emitted when the light intensity change is weak, so
that the refined texture image cannot be reconstructed. In order
to solve the visual texture visualization of DVS, neuromorphic
visual sensors such as ATIS (Oliveria et al., 2021), DAVIS (Mesa
et al., 2019; Sadaf et al., 2023) and CeleX (Feng et al., 2020) are
derived.

3.2 ATIS

On the basis of DVS, ATIS (Oliveria et al., 2021) skillfully
introduced a light intensity measurement circuit based on time
interval to realize image reconstruction. The idea is that every time

an event occurs in the DVS circuit, the light intensity measurement
circuit is triggered to work. Two different reference voltages are set,
by integrating the light intensity, and recording the events that
reach the two voltages. Because the time required for the voltage to
change by the same amount is different under the conditions of
different light intensities, by establishing the light intensity and
time mapping can infer that the light intensity is small, so as to
output the light intensity information at the pixel where the light
intensity changes, which is also called Pulse Width Modulation
(PWM) (Holesovsky et al., 2021). In addition, in order to solve the
problem that the visual texture information of the static area
cannot be obtained without DVS pulse signal issuance, ATIS
introduces a set of global emission mechanism, that is, all pixels
can be forced to emit a pulse, so that a whole image is used as the
background, and then the moving area continuously generates
pulses and then continuously triggers the light intensity
measurement circuit to obtain the grayscale of the moving area
to update the background (Fu et al., 2023).

The commercial ATIS (Holesovsky et al., 2021) developed by the
Posch team and Prophesee company has a spatial resolution of 304 ×
240, a sampling frequency of 106 Hz in the time domain, and a
dynamic range of 143 dB, which is widely used in high-speed vision
tasks. In addition, Prophessee has also received a $15 million project
from Intel Corporation to apply ATIS to the vision processing
system of autonomous vehicles. Subsequently, the team of
Benosman (Macireau et al., 2018) further verified the technical
scheme of using ATIS sampled pulse signals in the three RGB
channels to re-integrate the color (Zhou and Zhang, 2022).

When ATIS is facing high-speed motion, there is still a
mismatch between events and grayscale reconstruction updates
(Han et al., 2022; Hou et al., 2023). The reasons are as follows:
the light intensity measurement circuit is triggered after the pulse is
issued, and the measurement result is the average light intensity of a
period of time after the pulse is issued, resulting in motion
mismatch. Slight changes in the scene do not cause pulses, so the
pixels are not updated in time, resulting in obvious texture
differences over time.

3.3 DVAIS

DAVIS (Mesa et al., 2019; Sadaf et al., 2023) is the most intuitive
and effective fusion technology idea, which combines DVS and
traditional cameras, and additionally introduces Active Pixel Sensor
(APS) on the basis of DVS for visual scene texture (Zhuo et al.,
2022).

The Delbruck team and IniVation further introduced a color
scheme based on the DAVIS240 (Zhang K. et al., 2022) with a spatial
resolution of 240 × 180.

Color DAVIS346 (Moeys et al., 2017), its spatial resolution
reaches 346 260, the time domain sampling frequency is 106Hz,
the dynamic range is 120dB, and the spatial position of the event
coordinates generated by DVS carries RGB color information, but
the sampling speed of APS circuit is far less than DVS (Zhao B. et al.,
2022). The frame rate of APS mode is 50FPS, and the dynamic range
is 56.7 dB. Particularly in high-speed motion scenes, the images
produced by the two sets of sampling circuits cannot be precisely
synchronized, and APS images exhibit motion blur.
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At present, DAVIS is themainstream of neuromorphic vision sensor
commercial products, industrial applications and academic research. It
originates from the academic research promotion of DVS series sensors
(DVS128, DAVIS240, DAVIS346 and color DAVIS346), and the

disclosure, code and a good ecological environment created by open-
source software. Therefore, in this paper, the pulse signal processing,
feature expression, and vision applications are mainly based on the DVS
series sensors of the differential vision sampling model.

FIGURE 6
Integral visual sampling. (A) Primate retinal foveal three-layer structure and Vidar circuit. (B) Light intensity integral sampling. (C) Vidar pulse signal
texture imaging.
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3.4 CeleX

CeleX (Feng et al., 2020) takes into account the hysteresis of the
light intensity measurement circuit of ATIS, when the DVS circuit
outputs the address (x, y) of the pulse event and the release time t, it
also outputs the light intensity information I of the pixel in time,
namely Available quads for CeleX output events (x, y, t, I) express.
The design idea of CeleXmainly includes three parts (Merchan et al.,
2023):

(1) Introduce buffer and readout switch circuits to directly convert
the circuit of the logarithmic photoreceptor into light intensity
information output;

(2) Use the global control signal to output a whole frame of image,
so that the whole image can be obtained as the background and
Timely global update;

(3) Specially design the light intensity value of the output buffer of
the column analog readout circuit. CeleX cleverly designs the bit
width of the pulse event to be 9 bits, which not only ensures the
semantic information of the pulse itself, but also carries a certain
amount of light intensity information.

The fifth-generation CeleX-V (Tang et al., 2023) recently
released by CelePixel has a spatial resolution of 1,280,800, which
basically reaches the level of traditional cameras. At the same time,
the maximum output sampling frequency in the time domain is
160 MHz and the dynamic range is 120 dB. The “three highs”
advantages of high spatial resolution, high temporal resolution
and high dynamic range of this product have attracted the
attention of the current field of neuromorphic engineering (Ma
et al., 2023; Mi et al., 2023). In addition, CelePixel has also received a
40 million project funding from Baidu, using CeleX-V for automatic
driving assistance systems in cars, and using its advantages to
monitor abnormal driving behaviors in real time (Mao et al., 2022).

The pulse events of CeleX use 9-bit information output. When
the scene is in severe motion or high-speed motion, the data volume
cannot be transmitted in time, and even part of the pulse data is
discarded, so that the sampling signal cannot be fidelity (Zhao
J. et al., 2023), and it cannot respond to light in time. Updates
and other shortcomings. However, CeleX’s “three-high”
performance and its advantages in optical flow information
output have great application potential in automatic driving,
UAV visual navigation (Zhang et al., 2023a), industrial
inspection and video surveillance and other tasks involving high-
speed motion vision.

3.5 Vidar

Vidar (Auge et al., 2021) abstracted the function of the three-
layer structure of photoreceptors, bipolar cells, and ganglion cells
in the primate fovea, and adopted an integral visual sampling
model to encode pixel light intensity as frequency or pulse interval,
with the ability to reconstruct the fine texture of visual scenes at
high speed (Zhang H. et al., 2022). Vidar consists of photoelectric
conversion circuit, integrator circuit and comparator output
circuit, as shown in Figure 6A. The photoreceptor converts the
light signal into an electrical signal, the integrator integrates and
accumulates the electrical signal, and the comparator compares the
accumulated value with the pulse release threshold to determine
the output pulse signal (Mi et al., 2022), and the integrator is reset,
also known as pulse frequency modulation (PFM) (Purohit and
Manohar, 2022).

The pulse signal output between Vidar pixels is independent of
each other. The pulse signals of a single pixel are arranged in a “pulse
sequence” according to the time sequence, and all pixels form a
“pulse array” according to the spatial position relationship. The
cross-section of the pulse array at each moment is called “Pulse
plane”, the pulse signal is represented by “1”, and the no pulse signal
is represented by “0”, as shown in Figure 8.

The first Vidar (Auge et al., 2021) has a spatial resolution of
400 × 250, a time domain sampling frequency of 4 × 104 Hz, and an
output of 476.3M of data per second. Refined texture
reconstruction for static scenes or high-speed motion scenes,
such as the use of sliding window accumulation method or
pulse interval mapping method (Zhang K. et al., 2022). In
addition, Vidar can freely set the duration of the pulse signal
for image reconstruction, and has flexibility in the dynamic range
of imaging. This integral vision sampling chip can perform refined
texture reconstruction for high-speed motion (Zhang H. et al.,
2022), and can be used for object detection, tracking and
recognition in high-speed motion scenes, and applications in
the fields of high-speed vision tasks such as automatic driving,
UAV visual navigation, and machine vision.

Vidar uses an integral visual sampling model to encode the
light intensity signal by frequency or pulse interval. The essence
is to convert the light intensity information into frequency
encoding. Compared with the DVS series sensors for motion
perception, it is more friendly to visual fine reconstruction.
However, Vidar will generate pulses in both static scenes and
moving areas, and there is a huge data redundancy in sampling.
How to control the pulse emission threshold to adaptively

FIGURE 7
Schematic diagram of DVS spatiotemporal pulse signal.
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perceive different lighting scenes and control the amount of data
is an urgent problem that needs to be solved in integrated visual
sampling.

3.6 Performance comparison of imitation
retina vision sensors

Recently, a large number of neuromorphic vision sensors have
emerged and commercialized, including differential visual
sampling models that simulate the peripheral sensory motor
function of the retina. There are also integral visual sampling
models that simulate the foveal function, such as Vidar (Auge et al.,
2021). The comparison of specific performance parameters is
shown in Table 1.

Neuromorphic vision sensors have two major advantages:

(1) the ability of high-speed visual sampling, which has great
application potential in high-speed motion vision tasks;

(2) low power consumption, which is also the essential advantage of
the neuromorphic engineering proposed by Mead (Han et al.,
2021) and possible final form in the future. However, how to
process the spatiotemporal pulse signals output by
neuromorphic vision sensors, feature expression and high-
speed visual task analysis is the current research focus of
neuromorphic vision. At the same time, how to sample
brain-like chips for high-speed processing of pulse signals is
used in applications involving high-speed vision tasks are the
focus of the neuromorphic engineering industry, such as IBM’s
TrueNorth (Chen et al., 2022c) chip, Intel’s Loihi (Davies and
Srinivasa, 2018) chip, and Manchester University’s SpiNNaker
(Russo et al., 2022) chip.

Currently, the spatial resolution of neuromorphic vision
sensors has developed from 128 × 128 of the first commercial
DVS128 developed by IniVation (Abubakar et al., 2023) to 640 ×
480 of Samsung’s DVS-G2 (Xu et al., 2020), CelePixel’s CeleX-V
(Tang et al., 2023) 1,280 × 800, but compared with traditional
HD and UHD cameras, there is a big gap due to: 1) Spatial

resolution and imaging quality; 2) The original intention of
dynamic vision sensor design is to perceive high-speed motion
instead of high-quality visual viewing. In a word, neuromorphic
vision sensors are still in the early stage of exploration, and a lot
of exploration and research are needed to achieve the perception
ability of the human visual system in complex interactive
environments.

4 Asynchronous spatiotemporal pulse
signal processing

Neuromorphic vision sensors simulate the pulse firing
mechanism of the biological retina. For example, the DVS
series sensors using the differential visual sampling model are
stimulated by changes in the light intensity of the visual scene to
emit pulse signals and record them as address events. The pulse
signals present three-dimensionality in the spatial and temporal
domains. The sparse discrete lattice of space is shown in
Figure 7.

The traditional video signal is represented by the “image frame”
paradigm for visual information representation and signal
processing, which is also the mainstream direction of existing
machine vision. However, “asynchronous spatiotemporal pulse
signal” is different from “image frame”, and the existing image
signal processing mechanism cannot be directly transferred to the
application. How to establish a new set of signal processing theory
and technology (Zhu R. et al., 2021) is the research difficulty and
hotspot in the field of neuromorphic visual signal processing (Qi
et al., 2022).

4.1 Analysis of asynchronous space-time
pulse signals

In recent years, the analysis of asynchronous spatiotemporal
pulse signals (Chen et al., 2020a) mainly focuses on filtering, noise
reduction and frequency domain variation analysis.

The filtering analysis of pulse signal is a preprocessing
technique from the perspective of signal processing, and it is
also the application basis of the visual analysis task of
neuromorphic vision sensor. Sajwani et al. (Sajwani et al.,
2023) proposed a general filtering method for asynchronous
spatiotemporal pulse signals, which consists of hierarchical
filtering in the time domain or spatial domain, which can be
extended to complex non-linear filters such as edge detection.
Linares et al. (Linares et al., 2019) filter noise reduction and
horizontal feature extraction of asynchronous spatiotemporal
pulse signals on FPGA, which can significantly improve target
recognition and tracking performance. Li et al. (Li H. et al., 2019)
used an inhomogeneous Poisson generation process to realize the
up-sampling of the asynchronous spatio-temporal pulse signal
after performing spatio-temporal difference filtering for the pulse
signal’s firing rate.

Neuromorphic vision sensor outputs an asynchronous
spatiotemporal pulse signal that is interfered with by leakage
current noise and background noise. Khodamoradi et al.
(Khodamoradi and Kastner, 2018) implemented the

FIGURE 8
Schematic diagram of Vidar spatiotemporal pulse signal.
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spatiotemporal correlation filter as hardware on the sensor to
minimise the DVS background noise. The spatiotemporal pulse
signal generated by ATIS was denoised by the Orchard team
(Padala et al., 2018) using the Spiking Neural Network (SNN) on
the TrueNorth chip, and the performance of target object
identification and recognition was enhanced. Du et al. (Du
et al., 2021), presents an events other than moving objects
were seen as noise, and optical flow was used to assess the
motion consistency in order to denoise the spatiotemporal
pulse signal produced by DVS.

Transform domain analysis is the basic method of signal
processing (Alzubaidi et al., 2021), which transforms the time-
space domain into the frequency domain, and then studies the
spectral structure and variation law of the signal. Sabatier et al.
(Sabatier et al., 2017) suggested an event-based fast Fourier
transform for the asynchronous spatiotemporal pulse signal and
conducted a cost-benefit analysis of the pulse signal’s frequency
domain lossy transform.

The analysis and processing of asynchronous spatiotemporal
pulse signals has the following exploration directions:

(1) The asynchronous spatiotemporal pulse signal can be
described as a spatiotemporal point process in terms of data
distribution (Zhu Z. et al., 2022), and the theory of point
process signal processing, learning and reasoning can be
introduced (Remesh et al., 2019; Xiao et al., 2019; Ru et al.,
2022);

(2) Asynchronous spatiotemporal pulse signal is similar to point
cloud in spatiotemporal structure, and deep learning can be
used in the structure andmethod of point cloud network (Wang
et al., 2021; Lin L. et al., 2023; Valerdi et al., 2023);

(3) The pulse signal is regarded as the node of the graph model, and
the graph model signal processing and learning theory can be
used (Shen et al., 2022; Bok et al., 2023);

(4) The timing advantage of the high temporal resolution of the
asynchronous spatiotemporal pulse signal is to mine the
temporal memory model (Zhu N. et al., 2021; Li et al., 2023)
and learn from the brain-like visual signal processing
mechanism (Wang X. et al., 2022).

4.2 Asynchronous spatiotemporal pulse
signal measurement

Asynchronous spatiotemporal impulse signal metric is to
measure the similarity between impulse streams, that is, to
calculate the distance between impulse streams in metric space
(Lin L. et al., 2023). It is one of the key technologies in
asynchronous spatiotemporal impulse signal processing. It has a
wide range of important applications in fields such as compression
and machine vision tasks.

The asynchronous pulse signal appears as a sparse discrete
lattice in the space-time domain, lacking the algebraic operation
measure in the Euclidean space. Stereo vision research (Steffen et al.,
2019) measured the output pulse signal in two-dimensional space
projection and extracted the time plane of spatio-temporal
relationship, and applied it to depth estimation in three-
dimensional vision. Using the perspective of visual features, Lin
et al. (Lin X. et al., 2022) methodically quantified the spatiotemporal
pulse signal produced by DVS and used it to vision tasks including
motion correction, depth estimation, and optical flow estimation.
These techniques add up the time-space pulse signal’s frequency
characteristics, but they do not fully use its time-domain properties.
The kernel method metric was discussed in (Lin Z. et al., 2022) from
the viewpoint of the signal domain, i.e., converting the discrete time-
domain pulse signal into a continuous function and determining the
separation of the pulse sequences in the inner product of the Hilbert
space. Wu et al. (Wu et al., 2023) utilized the convolutional neural
network structure to the test and verification of retinal prosthesis
data by mapping discrete pulse signals to the feature space and
measuring the distance between the pulse signals. Such techniques
do not take into account the labelling characteristics of genuine
asynchronous spatiotemporal spikes and are instead tested using
neurophysiological or simulation-generated spike data (Kim and
Jung, 2023).

Dong et al. (Dong et al., 2018) proposed a pulse sequence
measurement method with independent pulse labeling attributes,
that is, the pulse signals of ON and OFF labeling attributes output by
DVS were measured separately, and the discrete pulse sequence was
transformed into a smooth continuous function by using a Gaussian

TABLE 1 Comparison of performance parameters of neuromorphic vision sensors.

Sensor type (Abubakar et al.,
2023) [DVS128]

(Oliveria et al.,
2021) [ATIS]

(Moeys et al.,
2017) [DVS346]

(Lenero et al.,
2018) [DVS-G2]

(Feng et al.,
2020) [CeleX]

(Auge et al.,
2021) [Vidar]

Commercial time 2008 2011 2017 2017 2018 2018

Spatial resolution 128 × 128 304 × 240 346 × 260 640 × 480 1280 × 800 400 × 250

Maximum sample
rate (Hz)

1 × 106 1 × 106 1.2 × 107 3 × 109 1.6 × 108 4 × 104

Dynamic range (dB) 120 143 120 90 120 70

Power
consumption (mW)

23 50–175 10–170 27–50 390–470 370

Chip size (mm2) 6.3 × 6 9.9 × 8.2 8 × 6 8 × 5.8 14.3 × 11.6 10 × 6

Cell size (μ m2) 40 × 40 30 × 30 18.5 × 18.5 9 × 9 9.8 × 9.8 20 × 20

Fill factor 8.1% 20% 22% 100% 9% 13.75%

Delay (μ s) 12 3 20 65–410 1 25

Voltage (V) 3.3 1.8 and 3.3 1.8 and 3.3 1.2 and 2.8 1.2 and 3.3 1.5 and 3.3

Texture image No Gray scale Color No Gray scale Gray scale
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kernel function, using the inner product of the Hilbert space to
measure the distance of the pulse sequence. In this method, the pulse
sequence is used as the operation unit, and the spatial structure
relationship of the pulse signal is not considered. Subsequently, the
team (Schiopu and Bilcu, 2023) further modeled the asynchronous
spatiotemporal pulse signal as a marked spatiotemporal point
process, and used a conditional probability density function to
characterize the spatial position and labeling properties of the
pulse signal, which was applied to the motion in lossy encoding
of the asynchronous pulse signal.

Asynchronous spatiotemporal pulse signals are unstructured
data, different from normalizable structured “image frames”, and the
differences cannot be directly measured in subjective vision. How to
orient the measurement of asynchronous pulse signals to visual tasks
and the evaluation of normalization is also a difficult problem that
needs to be solved urgently.

4.3 Coding of asynchronous space-time
pulse signals

With the continuous improvement of the spatial resolution of
DVS series sensors, for example, the spatial resolution of Samsung’s
DVS-G2 (Xu et al., 2020) is 640 × 480, and the spatial resolution of
CeleX-V (Tang et al., 2023) is 1,280 × 800. The generated
asynchronous spatiotemporal pulse signal is faced with huge
challenges of transmission and storage. How to encode and
compress the asynchronous spatiotemporal pulse signal is a
brand-new spatiotemporal data compression problem (Atluri
et al., 2018; Khan and Martini, 2019).

Kim et al. (Kim and Panda, 2021) first proposed a coding
compression framework for spatio-temporal asynchronous pulse
signals, which took the pulse cuboid as the coding unit and designed
address-priority and time-priority predictive coding strategies to
achieve effective compression of pulse signals. Subsequently, the
team (Dong et al., 2018) further explored more flexible coding
strategies such as adaptive division of octrees in the spatiotemporal
domain, prediction within coding units, and prediction between
coding units, which further improved the compression efficiency of
spatiotemporal pulse signals. In addition, the team (Schiopu and
Bilcu, 2023) performed a metric analysis of the distortion of pulse

spatial position and temporal firing time, and explores vision-
oriented tasks.

Analyzing the lossy coding scheme of (Cohen et al., 2018), the
specific coding frame of the asynchronous spatiotemporal pulse
signal is shown in Figure 9.

The compression scheme of the asynchronous spatiotemporal
pulse signal is a preliminary attempt based on the traditional video
coding framework and strategy, but the spatiotemporal
characteristics of the asynchronous spatiotemporal pulse signal
have not been fully analyzed. Can end-to-end deep learning or
adaptive encoders of spiking neural networks inspired by neural
computational models be applied to the encoding of asynchronous
spatiotemporal spiking signals? At present, it is faced with the
problems of network input, distortion measurement and
sufficient data labeling of asynchronous pulse signals. Therefore,
how to design a robust adaptive encoder for data compression of
asynchronous spatiotemporal pulse signals will be a very challenging
and valuable research topic, which can be further extended to the
field of coding and compression of biological pulse signals.

5 Characteristic expression of
asynchronous spatiotemporal pulse
signal

Asynchronous spatiotemporal pulse signals are presented as
sparse discrete lattices in three-dimensional space in both time
and space domains, which are more flexible in signal processing
and feature expression than the traditional “image frame” paradigm,
especially in the time domain length of the pulse signal processing
unit or the choice of the number of pulses also increases the difficulty
of inputting the visual analysis algorithm of asynchronous
spatiotemporal pulse signals. Therefore, how to express the
characteristics of asynchronous spatiotemporal pulse signals (Guo
et al., 2023), as shown in Figure 10, mining the spatiotemporal
characteristics of asynchronous spatiotemporal pulse signals for the
visual analysis tasks of “high precision” and “high speed” is the most
important method in the field of neuromorphic vision. Important
and core research issues also determine the promotion and
application of neuromorphic vision sensors. The overview and
distribution of research literature in recent years mainly focus on

FIGURE 9
Coding framework of asynchronous spatiotemporal pulse signal.
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four aspects: rate-based image, hand-crafted feature, end-to-end
deep network and spiking neural network.

5.1 Frequency accumulation image

In order to apply the output of neuromorphic vision sensor to
the existing visual algorithm based on “image frame”, the
asynchronous spatiotemporal pulse signal can be projected or
accumulated in time domain according to the fixed length or
number of time domain, that is, the frequency accumulation image.

Model method: The frequency accumulation image is modeled
and feature extracted according to the prior knowledge of the image
pattern. Ghosh et al. (Ghosh et al., 2022) projected the pulse signals
output by the two DVSs into binary images in the time domain to
reconstruct the 360° panoramic visual scene. Huang et al. (Huang
et al., 2018) used the pulse signal output by CeleX to interpolate
image frames and guide the motion area for high-speed target
tracking. The Jiang and Gehrig (Jiang et al., 2020a; Gehrig et al.,
2020) accumulated the DVS frequency in the time domain as a
grayscale image, and then performedmaximum likelihoodmatching
tracking with the APS image.

Deep learning method: The frequency accumulation image is
input into the deep learning network based on “image frame”. Lai

et al. (Lai and Braunl, 2023) accumulated the ON and OFF pulse
streams into grayscale images according to the frequency in the time
domain, and then used ResNet to predict the steering wheel angle of
the autonomous driving scene. Zeng et al. (Zeng et al., 2023) used the
pseudo-label of APS for vehicle detection in autonomous driving
scenes after mapping the pulse stream output by DVS into a
grayscale image. Ryan et al. (Ryan et al., 2023) combined the
APS image for vehicle detection in autonomous driving scenes
after extracting the pulse stream output by the DVS as an image
using the integral distribution model. Cifuentes et al. (Cifuentes
et al., 2022) integrated APS for pedestrian detection with the DVS
pulse stream output to create a grayscale picture with a set time
domain duration. Shiba et al. (Shiba et al., 2022a) utilized the
suggested EV-FlowNet network for optical flow estimation and
translated the pulse flow generated by the DVS into grayscale
pictures in accordance with the time domain sequence. Lele et al.
(Lele et al., 2022) performed high dynamic and high frame rate
picture reconstruction after amassing images with a set length or a
certain number in the temporal domain in accordance with the pulse
flow. Xiang et al. (Xiang et al., 2022) used a fixed time domain
duration and toggled ON and OFF. The proposed EV-SegNet
network is used to segment autonomous driving scenes using the
histogram data, which is separately counted and combined into
grayscale images. Yang et al. (Yang F. et al., 2023) uses the attention

FIGURE 10
Image representation of frequency accumulation of asynchronous pulse signal (Guo et al., 2023).
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mechanism to find the target by mapping the pulse flow to a
grayscale image in accordance with the pulse flow’s sequence.

These techniques can quickly and successfully apply
neuromorphic vision sensors to visual tasks involving high-speed
motion because they succinctly convert the asynchronous
spatiotemporal pulse stream into time-domain projection or
frequency accumulation, which is directly compatible with the
“image frame” vision algorithm. However, this approach does not
completely take use of the spatiotemporal properties of the
impulsive flow. The current mainstream of the feature
representation of asynchronous spatiotemporal pulse signals.

5.2 Hand-designed features

Before the dominance of deep learning algorithms, hand-designed
features were also widely used in the field of machine vision, such as
the well-known SIFT (Tang et al., 2022) operator. How to design
compact hand-designed features for asynchronous pulse signals
(Ramesh et al., 2019), and have the robust characteristics of scale
and rotation invariance, is an important technology for neuromorphic
vision sensors to be applied to vision tasks.

How to create hand-designed characteristics for vision tasks is
being investigated by certain researchers in the field of
neuromorphic vision. Edge and corner features were extracted
from asynchronous spatiotemporal pulse signals using their
temporal and spatial distribution properties. These features were
then employed for tasks including target recognition, depth
estimation in stereo vision, and target local feature tracking.
Zhang et al. (Zhang et al., 2021) used a sampling-specific
convolution kernel chip to extract features from the pulse stream
and use it for high-speed target tracking and recognition. Rathi et al.
(Rathi et al., 2023) used spatiotemporal filters for unsupervised
learning to extract visual receptive field features for target
recognition tasks in robot navigation.

A feature of the Bag of Events (BOE) was proposed in (Afshar
et al., 2020), which is used for handwritten font recognition data
collected by DVS and statistical learning to analyses the
probability of events. Ye et al. (Ye et al., 2023) extracted the
recognition-oriented HOTS features using hierarchical clustering
from the pulse stream produced by ATIS by treating each event as
a separate unit and accounting for their temporal relationships
within a specific airspace. Dong et al. (Dong et al., 2022) then
averaged the event time surfaces in the sample neighborhood and
aggregated HATS features in the time domain to remove noise’s
impact with feature extraction. The edge operator feature of the
pulse stream from (Scheerlinck et al., 2019) was extracted using
the spatiotemporal filter and then utilized for local feature
recognition and target tracking. Wang et al. (Wang Z. et al.,
2022) used the time-domain linear sampling kernel to
accumulate the weights of the pulse flow as a feature map, and
used an unsupervised learning autoencoder network for visual
tasks such as optical flow estimation and depth estimation. In
addition, also the feature output is used for video reconstruction
in the LSTM network. The DART feature operator proposed by
the Orchard team (Ramesh et al., 2019) has scale and rotation
invariance, and can be applied to the field of target object
detection, tracking and recognition.

Hand-designed features have better performance in specific
vision task applications, but hand-designed features require a lot
of prior knowledge, in-depth understanding of task requirements
and data characteristics, and a lot of debugging work. Therefore,
using the task-driven cascade method to supervise learning and
expressing features (Guo et al., 2023) can better exploit the
spatiotemporal characteristics of asynchronous spatiotemporal
pulse signals.

5.3 End-to-end deep networks

Deep learning is the current research boom in artificial
intelligence, and it has shown obvious performance advantages in
image, speech, text and other fields. How to make the asynchronous
spatiotemporal pulse signal learn in the end-to-end deep network
and fully exploit its spatiotemporal characteristics is the hotspot and
difficulty of neuromorphic vision research.

Convolutional Neural Networks: Using 3D Convolution to
Process Asynchronous Spatio-Temporal Pulse Signals. Sekikawa
et al. (Sekikawa et al., 2018) used an end-to-end deep network to
analyze the visual task of asynchronous spatiotemporal pulse signals
for the first time. They used 3D spatiotemporal decomposition
convolution as the calculation of the input end of the
asynchronous spatiotemporal pulse signal, that is, the 3D
convolution kernel was decomposed into 2D spatial kernel and
1D motion velocity kernel, and then use recursive operation to
process continuous pulse flow in an efficient way, compared with the
method of frequency accumulation image, it has a significant
improvement in steering wheel angle prediction task in
automatic driving scenes, which is a milestone in the field of
neuromorphic vision tasks. Uddin et al. (Uddin et al., 2022)
proposed an event sequence embedding, which uses spatial
aggregation network and temporal aggregation network to extract
discrete pulse signals as continuous embedding features, and its
performance is compared with frequency accumulation images and
hand-designed features in depth. It is estimated that the application
has obvious performance advantages.

Point cloud neural network: The asynchronous spatiotemporal
pulse signal is treated as a point cloud in three-dimensional space.
The pulse signal output by neuromorphic vision sensor is similar to
the point cloud in the three-dimensional spatial data structure
distribution, but is sparser in the time domain distribution.
Valerdi et al. (Valerdi et al., 2023) first used the PointNet (Wang
et al., 2021; Lin L. et al., 2023) structure based on point cloud
network to process asynchronous spatiotemporal pulse signals,
called EventNet, which adopted efficient processing methods of
temporal coding and recursive processing, and applied semantic
segmentation of autonomous driving scenes and exercise
assessment. Chen et al. (Chen X. et al., 2023) regarded
asynchronous spatiotemporal impulse signals as event clouds,
and adopted the multi-layer hierarchical structure of point cloud
network PointNet++ (Lin L. et al., 2023) to extract features for
gesture recognition. Jiang et al. (JiangPeng et al., 2022) regarded the
asynchronous pulse signal as a point cloud, and proposed an
attention mechanism to sample the domain of the pulse signal,
which has a significant performance advantage compared to
PointNet in gesture recognition.

Frontiers in Materials frontiersin.org14

Li and Sun 10.3389/fmats.2023.1269992

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2023.1269992


Graph neural network: The impulse signal is regarded as the
node of the graph model, and the processing method of the graph
model is adopted. Bok et al. (Bok et al., 2023) proposed to represent
the asynchronous spatiotemporal pulse signal by the relevant nodes
of the probabilistic graph model, and verified the spatiotemporal
representation ability of this method on visual tasks such as pulse
signal noise reduction and optical flow estimation. Shen et al. (Shen
et al., 2023) modeled asynchronous spatiotemporal pulse signals for
the first time in a graph neural network, and achieved a significant
performance improvement over frequency cumulative images and
hand-designed features in recognition tasks such as gestures (Zhang
et al., 2020), alphanumeric, and moving objects (Luo et al., 2022; Lin
X. et al., 2023).

The end-to-end deep network can better mine the spatiotemporal
characteristics of asynchronous spatiotemporal pulse signals, and its
significant performance advantages have also attracted much
attention. The performance advantage of deep network supervised
learning driven by big data, but the asynchronous pulse signal can
hardly be directly subjectively annotated like traditional images,
especially in high-level visual tasks such as object detection,
tracking and semantic segmentation (Lu et al., 2023a). In addition,
the high-speed processing capability and low power consumption of
asynchronous spatiotemporal pulse signals are the prerequisites for
the wide application of neuromorphic vision sensors, while deep
learning currently has no advantages in task processing speed and
power consumption. At present, the feature expression of
asynchronous pulse signal by end-to-end deep network is still in
its infancy, and there are a lot of research points and optimization
space.

5.4 Spiking neural networks

The spiking neural network is the third-generation neural
network (Bitar et al., 2023), which is a network structure that
simulates the biological pulse signal processing mechanism. It
considers the precise time information of the pulse signal, and is
also one of the important research directions for the feature learning
of asynchronous spatiotemporal pulse signals.

The application of spiking neural network in neuromorphic
vision mainly focuses on target classification and recognition. Wang
et al. (Wang et al., 2022d) proposed a time-domain belief
distribution strategy for back-propagation of spiking neural
networks, and used GPU for accelerated operations. Fan et al.
(Fan et al., 2023) designed a deep spiking neural network for
classification tasks, and performed supervised learning and
accelerated operations on the deep learning open-source
platform. In addition, some researchers have also tried using
spiking neural networks in complex visual tasks. Wang and Fan
(Wang et al., 2022e; Fan et al., 2023) designed a spiking neural
network with multi-layer neuron combination based on empirical
information, which was applied to the stereo vision system of
binocular parallax and monocular zoom, respectively. Joseph
et al. (Joseph and Pakrashi, 2022) proposed a multi-level
cascaded spiking neural network to detect candidate regions of
fixed scene objects. Quintana (Quintana et al., 2022) designed an
end-to-end spiking neural network based on STDP learning rules for
robot vision navigation system (Lu et al., 2023b).

At present, the spiking neural network is still in the theoretical
research stage, such as the gradient optimization theory of
supervised learning of asynchronous spiking spatiotemporal
signals (Neftci et al., 2019), the synaptic plasticity mechanism of
unsupervised learning (Saunders et al., 2019), the deep learning
structure inspired spiking neural network design (Tavanaei et al.,
2019). Its performance on neural vision analysis tasks is far less than
that of end-to-end deep learning networks. However, the spiking
neural network draws on the neural computing model and is closer
to the brain visual information processing and analysis mechanism,
and has great development potential and application prospects (Jang
et al., 2019). Therefore, how to further use the visual cortex
information processing and processing mechanism to inspire
theoretical models and calculation methods, provide reference
ideas and directions for the design and optimization of spiking
neural networks, better mine visual feature information and
improve computational efficiency, how to solve the spiking
neural network supervised learning of neural networks is suitable
for complex visual tasks, and how to simulate the efficient
calculation of neuron differential equations in hardware circuits
or neuromorphic chips is an urgent problem that needs to be solved
from theoretical research to practical application of spiking neural
networks.

6 Applications

With the rise of cognitive brain science and vision-like
computing, machine vision is an important direction to
promote the wave of artificial intelligence. Neuromorphic
machine vision is an important direction to promote the wave
of artificial intelligence. Inspired by the structure and sampling
mechanism of biological systems, neuromorphic vision is one of
the effective ways to reach or surpass human intelligence, and it
has become one of the effective ways for computing gods to reach
or surpass human intelligence. The high temporal resolution of
the morphological vision sensor, the high temporal resolution of
the dynamic range, low power consumption data redundancy,
data redundancy and other advantages in automatic driving, low-
power data redundancy, in automatic driving, low-power data
redundancy and other advantages, in automatic driving, UAV
Visual Navigation (Mitrokhin et al., 2019; Galauskis and Ardavs,
2021), Industrial Inspection (Zhu S. et al., 2022), Video
Surveillance (Zhang et al., 2022c), and other machine vision
fields, especially in the fields of machine vision involving
high-speed photography, sports.

6.1 Dataset and software platform

6.1.1 Simulation dataset
The simulation data simulates the neuromorphic vision sensors’

sampling mechanism using computational imaging techniques. The
simulation data also simulates the optical environment, signal
transmission, and circuit sampling in the form of rendering. It
generated a pulse flow of DVS, an APS image, and a depth map of
the scene while simulating DAVIS moving through a virtual 3D
environment. These outputs can be applied to vision tasks like image
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reconstruction, depth estimation of stereo vision, and visual
navigation. The Event Camera Simulator (ESIM), which
simulates and produces data such DVS pulse flow, APS picture,
scene optical flow, depth map, camera position and route, was open-
sourced by Ozawa et al. (Ozawa et al., 2022). A large-scale multi-
sensor interior scene simulation dataset for indoor navigation and
localization was supplied by Qu et al. (Qu et al., 2021). In particular,
to offer data-driven end-to-end deep learning algorithms,
simulation datasets can simulate the effect of actual data
gathering in a low-cost manner, which can further enhance the
study and development of neuromorphic vision.

6.1.2 Real dataset
At present, the real data sets are mainly classification and

recognition tasks: Wunderlich et al. (Wunderlich and Pehle,
2021) recorded motion MNIST and Caltech101 pictures using
ATIS and displayed them on an LED monitor. The DVS128 LED
was separately reported in (Li et al., 2017; Dong et al., 2022).

MNIST numerical characters and CIFAR-10 image data may be
moved around on the screen. IBM (Tchantchane et al., 2023) created
the DVS-Gesture gesture recognition dataset by using DVS128 to
record 11 gesture motions in a variety of lighting situations. Dong
et al. (Dong et al., 2022) created a binary data set of N-CAR vehicles
by using ATIS to record cars in real-world road scenes. The largest
dataset in the field of recognition, Shen et al. (Shen et al., 2023)
assembled the genuine ALS-DVS dataset of 100,000 American letter
motions using DAVIS240. Miao et al. (Miao et al., 2019) created the
DVS-PAF dataset for pedestrian identification, behavior
recognition, and fall detection using color DAVIS346. Zhang
et al. (Zhang Z. et al., 2023) recorded the DHP19 dataset of
17 types of 3D pedestrian postures using DAVIS346.

Datasets for scene image reconstruction tasks using
neuromorphic vision sensors DDD17 dataset which is also
commonly used in neuromorphic vision tasks. Xia et al. (Xia
et al., 2023) employed DAVIS346 to record the pulse flow,
picture, and steering wheel angle of various illumination
conditions. Using DAVIS240 and colour DAVIS346 respectively,
Chen et al. (Chen and he, 2020) built the DVS-Intensity and CED
datasets for visual scene reconstruction. Zhang et al. (Zhang S. et al.,
2022) created the PKU-Spike-High-Speed dataset by using Vidar to
record high-speed visual sceneries and moving objects.

Datasets for the Object Detection, Tracking, and Semantic
Segmentation Neuromorphic Vision Sensor Vision Task includes
(Munir et al., 2022). Ryan et al. (Ryan et al., 2023) created the
PKU-DDD17-CAR vehicle detection dataset by marking the
vehicles in the driving scene on the DDD17 (Xia et al., 2023)
dataset. Cifuentes et al. (Cifuentes et al., 2022) created the DVS-
Pedestrian pedestrian detection dataset by usingDAVIS240 to capture
pedestrians in campus scenarios. Liu et al. (Liu C. et al., 2022) created a
DVS-Benchmark data set that may be utilized for target tracking,
pedestrian recognition, and target recognition by using DAVIS240 to
record the target tracking data set on the LED display. For object
detection, tracking, and semantic segmentation, Zhao et al. (Zhao D.
et al., 2022) built the EED and EV-IMO datasets, respectively. Munir
et al. (Munir et al., 2022) recorded DET data from CeleX-V for lane
line detection in scenarios involving autonomous driving.

Datasets for neuromorphic vision sensors include (Zhu et al.,
2018; Pfeiffer et al., 2022; Nilsson et al., 2023) for tasks like depth

estimation and visual odometry. Using DAVIS346 to record a
significant number of autopilot and UAV scenes, Zhu et al. (Zhu
et al., 2018) revealed the MVSEC dataset for stereo vision, which is
extensively used in the field of neuromorphic vision. A
DAVIS240 and an Astra depth camera mounted on a mobile
robot were used to record interior scenes in (Nilsson et al.,
2023) large-scale multimodal LMED dataset. For the SLAM
problem, Pfeiffer et al. (Pfeiffer et al., 2022) created a UZH-
FPV dataset with built-in information such as DAVIS346 pulse
flow, APS image, optical flow, camera posture, and route (Paredes
et al., 2019).

In conclusion, relatively few large-scale datasets are publicly
available for neuromorphic vision sensors, especially for complex
vision tasks such as object and semantic-level annotation in
applications such as object detection, tracking, and semantic
segmentation. Developing large-scale datasets for neuromorphic
vision applications is the source of data-driven end-to-end
supervised learning.

6.2 Visual scene image reconstruction

ATIS and DAVIS can make up for the defect that DVS cannot
directly capture the fine texture of the scene, but cannot directly
reconstruct the images of high-speed motion and extreme lighting
scenes. Some visual scene image reconstruction methods are
dedicated to making the DVS series sensors higher. Nagata et al.
(Nagata et al., 2021) utilized a sliding spatiotemporal window and
minimized optimization functions for scene optical flow and light
intensity evaluation. Singh et al. (Singh N. et al., 2022) collected the
pulse signal in accordance with the predetermined time domain
length before reconstructing the picture using the block sparse
dictionary learning technique. A complicated optical flow and
manifold construction calculation was presented in (Reinbacher
et al., 2018) to rebuild visual scene pictures in real time. Wang
et al. (Wang et al., 2020) suggested an asynchronous filteringmethod
that can reconstruct high frame rate and high dynamic video by
fusing APS pictures with DVS pulse stream.

Kim et al. (Kim et al., 2023) suggested an event-based double-
integral model that can deblur and reconstitute APS pictures using
the pulse signal produced by DVS. To survive image-video
sequences with high dynamics and high frame rates, Du et al.
(Du et al., 2021) employed adversarial generative networks and
event-accumulated pictures of defined temporal duration or fixed
data. Wang et al. (Wang et al., 2022e) employed the temporal
relationship of the LSTM network to reconstruct videos by
sampling fixed-length pulse streams in the time domain as
feature maps.

Neuromorphic vision sensors are not intended for high-quality
visual viewing since they are focused on machine vision perception
systems, particularly dynamic vision sensors. Therefore, visual
sensors like CeleX-V should directly sample high-quality, high-
efficiency, and high-fidelity visual pictures. The visual scene
image reconstruction algorithm must also think about how to
take use of the benefits of high temporal resolution and high
neuromorphism dynamics, as well as how to leverage the timing
relationship of pulse signals to further enhance image reconstruction
quality.
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6.3 Optical flow estimation

Optical flow is the instantaneous speed of pixel motion of space
objects on the observation imaging plane. It not only covers the
motion information of the measured object, but also has rich three-
dimensional structure information. It plays an important role in the
research of vision application tasks such as target detection, tracking
and recognition. Zhang and Mueggler (Mueggler et al., 2017; Zhang
et al., 2023c) proposed optical flow estimation in the pixel domain,
which can evaluate targets in high-speed and high-dynamic scenes
in real time. In addition, Ieng et al. (Ieng et al., 2017) used 4D
spatiotemporal properties to further estimate the optical flow of
high-speed moving objects in 3D stereo vision. Wu and Haessig
(Haessig et al., 2018; Wu and Guo, 2023) sampled the spiking neural
network on the TrueNorth chip for millisecond-level motion optical
flow evaluation. Nagata et al. (Nagata et al., 2021) performed scene
optical flow on the pulse flow of DVS and used it for visual scene
reconstruction. Rueckauer and Hamzah (Rueckauer and Delbruck,
2016; Hamzah et al., 2018) used block matching to evaluate optical
flow on FPGA, and further explored the block matching of adaptive
time segments (Lee and Kim, 2021), which can evaluate sparse or
dense pulse flows in real time. Shiba et al. (Shiba et al., 2022b)
accumulated the pulse flow as a feature map by frequency, and then
used the supervised learning EV-FlowNet to evaluate the optical
flow. A general maximum contrast framework for motion
compensation, depth estimation and optical flow estimation is
employed. Hordijk et al. (Hordijk et al., 2018) used DVS128 for
optical flow estimation, which could keep the UAV landing
smoothly. Pardes et al. (Pardes et al., 2019) further used an
unsupervised learning hierarchical spiking neural network to
perceive global motion. Song et al. (Song et al., 2023) proposed
an optical flow estimation method that combines the rendering
mode and event gray level in the pixel domain, and samples the
optical flow information in CeleX-V.

Due to the difficulty of feature representation in end-to-end
supervised learning of asynchronous spatiotemporal pulse signals
and the lack of large-scale optical flow datasets, the current optical
flow evaluation method is mainly based on the model of prior
information, which can directly provide light for the sampling chip
of neuromorphic vision sensor. Stream information output.
However, the end-to-end supervised learning method can fully
exploit the spatiotemporal characteristics of asynchronous
spatiotemporal pulse signals, thereby further improving the
performance of optical flow motion estimation.

6.4 Object recognition

Neuromorphic vision sensors are widely used in character
recognition, object recognition, gesture recognition, gait
recognition, and behavior recognition, especially in scenes
involving high-speed motion and extreme lighting. Object
recognition algorithm is the mainstream of neuromorphic vision
task research (Yang H. et al., 2023). From the perspective of
processing asynchronous spatiotemporal pulse signals, it is
mainly divided into: frequency accumulation image, hand-
designed features, end-to-end deep network and spiking neural
network.

Frequency cumulative image: Younsi et al. (Younsi et al., 2023)
projected the pulse flow into an image according to a fixed time
length, and used a feedforward network to recognize the human
posture. Morales et al. (Morales et al., 2020) encoded the
asynchronous pulse stream into a frequency-accumulated image
with a fixed length in the time domain, and then used a
convolutional neural network to recognize human poses and
high-speed moving characters. Gong (Gong, 2021) accumulated
the pulse stream output by DVS as image and speech signal and
input it to the deep belief network for character recognition. In
addition, Li et al. (Li et al., 2023) used a fixed temporal length to
accumulate image sequences and used LSTM to recognize moving
characters. Cherskikh (Cherskikh, 2022) accumulated the pulse
stream output by ATIS into images according to fixed time
domain length or fixed pulse data, and used convolutional
network to identify objects. IBM (Tchantchane et al., 2023)
accumulated pulse signals into images in time domain, and used
convolutional neural network for gesture recognition on the
neuromorphic processing chip TrueNorth. Yang et al. (Yang H.
et al., 2023) used the attention mechanism to detect and recognize
the target from the image of the pulse stream. Lakhshmi et al.
(Lakhshmi et al., 2019) accumulated pulse streams as images, and
then used convolutional neural networks for action recognition. Du
et al. (Du et al., 2021) first preprocessed the pulse signal to denoise,
and then input the accumulated images into a convolutional neural
network for gait recognition.

Hand-designed features: Mantecon et al. (Mantecon et al., 2019)
used an integral distribution model to segment the motion region,
and used a hidden Markov model to extract features from the target
region for gesture recognition. Afshar et al. (Afshar et al., 2020)
carried out handwritten motion font recognition by extracting BOE
features. Clady et al. (Clady and Maro, 2017) extracted the motion
features of the pulse flow and used it for gesture recognition. In
addition, Bartolozzi and Zhang (Bartolozzi et al., 2022; Zhang et al.,
2023d) extracted temporal features such as HOTS and HATS
respectively for the pulse stream, and used a classifier to
recognize handwritten fonts. Shi et al. (Shi et al., 2018) extracted
binary features from the pulse stream, and used the framework of
statistical learning to recognize characters and gestures. Li et al. (Li
et al., 2018) used the time domain coding method to convert the
pulse stream into an image, and used the convolutional neural
network to carry out features and digital recognition in the classifier.

End-to-end deep network: Chen et al. (Chen J. et al., 2023) treat
asynchronous spatiotemporal pulse signals as event clouds, and
adopt the hierarchical structure of the end-to-end deep point cloud
network PointNet++ (Lin L. et al., 2023) for gesture recognition.
Jiang et al. (JiangPeng et al., 2022) adopted an attention mechanism
to sample the domain of the impulse signal and used a deep point
cloud network structure for gesture recognition. Shen et al. (Shen
et al., 2023) modeled asynchronous spatiotemporal pulse signals for
the first time in a graph neural network for recognition tasks such as
gestures, alphanumeric, and moving objects.

Spiking Neural Network: Xu et al. (Xu et al., 2023) proposed a
multi-level cascaded feedforward spiking neural network for
handwritten digits.

Character recognition: Zhou et al. (Zhou et al., 2023)
constructed a multi-level cascaded spiking neural network model
to recognize fast-moving characters. Subsequently, Wang et al.

Frontiers in Materials frontiersin.org17

Li and Sun 10.3389/fmats.2023.1269992

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2023.1269992


(Wang et al., 2022e) further adopted an end-to-end supervised
learning spiking neural network for alphanumeric recognition.
Fan et al. (Fan et al., 2023) designed a deep spiking neural
network for classification tasks and performed supervised
learning on the deep learning open-source platform.

The end-to-end deep network has obvious advantages in the
performance of target classification and recognition tasks, as shown
in Table 2. Because the asynchronous spatiotemporal pulse signal is
modeled as event points, which can better tap the spatiotemporal
characteristics. In addition, large-scale classification and recognition
datasets provide data-driven insights for deep network models. How
to further utilize the timing advantage of high temporal resolution,
mine the temporal memory model, learn from the brain-like visual
signal processing mechanism (Schomarker et al., 2023), and perform
high-speed recognition on the neuromorphic processing chip is an
urgent problem that needs to be studied in current neuromorphic
vision tasks.

6.5 Object detection, tracking and
segmentation

6.5.1 Object detection
In recent years, object detection methods in neuromorphic

vision are divided into two directions from the task perspective:
primitive detection and target object detection.

Primitive detection: Khan and Zhao (Khan et al., 2022; Zhao K.
et al., 2023) performed corner detection on pulsed streams on the
iCub robot platform. In (Khan et al., 2022), a spatial geometric
relationship is used to match and detect the corners of targets. In
(Zhao K. et al., 2023), the authors extracted the time plane from the
pulse signal and used the edge operator to detect the corners of the
target. Zheng and Na (Na et al., 2023; Zheng et al., 2023) adopted an
asynchronous spatiotemporal filtering method for corner detection,
and applied the visual navigation system of high-speed moving
robots. Yilmaz et al. (Yilmaz et al., 2021) proposed a velocity-
invariant temporal plane feature and used random forest learning
for corner detection. Li et al. (Li et al., 2021) proposed a fast
computational FA-Harris corner detection operator (Li et al.,
2021; Ge et al., 2022; Zhang et al., 2023e; Gomes et al., 2023).
Singh et al. (Singh K. et al., 2022) used spiking neural network to
implement Hough transform to detect straight lines in pulsating
flow. Valeiras et al. (Valeiras and Clady, 2018) used iterative
optimization and least squares fitting method to detect the
straight line of the pulsed flow. In addition, Lee et al. (Lee and
Hwang, 2023) defined a buffer of pulse streams for object edge
detection.

Target object detection: Ren et al. (Ren et al., 2022) used the
pulse stream output by DVS to accumulate into images according to
the frequency and synchronized with APS, and used DVS to cluster
the generated target candidate area, and then used convolutional
neural network to classify the target area target. Zeng et al. (Zeng
et al., 2023) utilized pseudo-labels of APS for vehicle detection in
autonomous driving scenarios. Ryan et al. (Ryan et al., 2023)
synchronously fused the DVS pulse stream according to the APS
frame rate, and then used the convolutional neural network to detect
vehicles in autonomous driving scenarios. Cifuentes et al. (Cifuentes
et al., 2022) also adopted the strategy of synchronizing DVS and APS

to detect pedestrians jointly. Jiang et al. (Jiang et al., 2020b) used the
convolutional neural network to detect the target from the
accumulated graph of the ATIS pulse flow, and applied it to the
iCub mobile robot platform. Ji et al. (Ji et al., 2023) used
convolutional networks to convert the pulse stream into image
and alphanumeric detection, respectively.

The research and application of target detection in
neuromorphic vision is still in its infancy, mainly for primitive
detection, that is, to study the primitive features of vision and detect
them to provide basic features for advanced vision tasks such as
attitude estimation and visual odometry. At present, some target
object detection methods also convert the pulse flow into image
features, and do not fully exploit the spatiotemporal characteristics
of the pulse flow, especially the advantages of high temporal
resolution. DVS has the characteristics of continuous time
domain and low spatial resolution, very few large-scale object
labeling data sets, and it is difficult to achieve high-precision
detection of target objects. Some research methods explore the
integration of detection and tracking using time domain
information. Therefore, how to further mine the spatiotemporal
information of the impulsive flow and use supervised learning and
data-driven end-to-end deep networks or bio-inspired brain-like
vision methods to achieve high-speed moving object detection is an
urgent problem to be solved.

6.5.2 Target tracking
The target tracking algorithm is divided into two directions from

the perspective of tracking tasks: primitive feature tracking and
target object tracking.

Primitive feature tracking: Zhao and Rui (Rui and Chi, 2018;
Zhao K. et al., 2023) established a tracking hypothesis model for the
corner motion path of the target (Ryan et al., 2023), which was
applied to the visual navigation system of high-speed moving robots.
Rakai et al. (Rakai et al., 2022) proposed a probabilistic model of data
association, and used optical flow information to optimize the
association model to continuously track target feature points
under high-speed motion and extreme lighting conditions. Jiang
and Gehrig (Jiang et al., 2020a; Gehrig et al., 2020) established a
maximum likelihood optimization matching model between the
DVS pulse flow integral image and the APS image gradient feature to
achieve stable tracking of feature points. In addition, Wu et al. (Wu
et al., 2018) proposed a method for fast localization and tracking of
straight-line edges for camera pose estimation. Everding et al.
(Everding and Conradt, 2018) performed line tracking in a stereo
vision system and applied the visual navigation system of mobile
robots. Li et al. (Li K. et al., 2019) used DVS pulses, APS images and
camera IMU parameters for segment feature tracking.

Target tracking: Lim, Zihao and Berthelon (Berthelon et al.,
2017; Zihao et al., 2021; Lim et al., 2022) tracked moving targets such
as faces, vehicles in traffic scenes, and high-speed moving particles
on optical instruments on ATIS pulse streams. Zhao et al. (Zhao
J. et al., 2022) projected the pulse flow as a feature surface in space,
and used the methods of motion compensation and Kalman filtering
to stably track high-speedmoving targets. Ren et al. (Ren et al., 2022)
used DVS and APS jointly for moving target detection, which
detected target candidate regions from DVS pulse flow and
classified them with CNN, and then used particle filter to locate
and track the target. Huang et al. (Huang et al., 2018) used CeleX’s
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pulse signal to reconstruct and interpolate frames to improve the
frame rate of the image sequence, and the pulse flow can guide the
moving area for high-speed target tracking. Kong et al. (Kong et al.,
2020) converted the pulse stream of DVS into an image, and used
rotation evaluation to track the sky star target. Shair et al. (Shair and
Rawashdeh, 2022) proposed an adaptive time plane to convert the
pulse stream into an image sequence, and used an integrated
detection and tracking method to track the target. These
methods all convert the pulses into images or time planes, and
do not fully exploit the visual spatiotemporal characteristics of
asynchronous pulse signals. Some methods used cluster and track
pulse signals in space and time, and Wu et al. (Wu et al., 2022)
perform online clustering of pulse signals, which are applied to
vehicle target tracking in traffic scenes. Makhadmeh et al.
(Makhadmeh et al., 2023) proposed a multi-core parallel
clustering target tracking method, which is suitable for multi-
target high-speed motion with changing direction and scale. In
addition, Camunas et al. (Camunas et al., 2017) further adopted the
algorithm of stereo vision matching clustering tracking, which can
solve the problem of high-speed moving multi-target occlusion.
Such methods can effectively track multiple targets in simple visual
scenes, but have the disadvantage of poor robustness in overlapping
regions of clustering regions.

High temporal resolution, high dynamics for neuromorphic
vision sensors range, low redundancy and low power
consumption, especially suitable for target tracking under
high-speed motion or extreme lighting conditions (Zhao Q.
et al., 2022). At present, the target tracking algorithms all
convert the pulse signal into an image or feature surface, and
the spatiotemporal characteristics of the pulse signal are not fully
exploited (Gelen and Atasoy, 2022). In particular, the “image

frame” processing paradigm is difficult to achieve ultra-high-
speed processing capabilities. How to learn from the biological
visual signal processing mechanism and The computing power of
neuromorphic processing chips to achieve “high precision” and
“ultra-high speed” target tracking is an urgent problem to be
solved.

6.5.3 Object segmentation
The target segmentation of neuromorphic vision is a

technique of dividing the pulse flow into several specific and
characteristic regions and extracting the precise location of the
target of interest. Asad et al. (Asad et al., 2021) performed
spatiotemporal clustering of the pulse flow and constructed a
stereo vision system, which can perform real-time segmentation
and behavior analysis for multiple pedestrians. Chen et al. (Chen
et al., 2018) proposed a real-time clustering tracking algorithm,
which can segment and track vehicle objects in traffic scenes in
real time. Amosa et al. (Amosa et al., 2023) proposed a mean-shift
clustering method to segment and track multiple targets in real
time on a manipulator robot. Liu et al. (Liu X. et al., 2022)
sampled the pulse stream as a feature sequence in the time
domain, and used convolutional neural network for object
segmentation. Zhang et al. (Zhang et al., 2021) performed
spatiotemporal clustering of pulse flow to segment moving
objects and backgrounds, which is especially suitable for
moving objects segmentation and background modeling in
high-speed motion and extreme lighting conditions.

At present, there are relatively few large-scale datasets for
target segmentation of pulse flow, and some research works try
to use empirical clustering methods. The impulsive flow appears as
a three-dimensional sparse lattice in the spatiotemporal domain,

TABLE 2 Test performance table of typical target recognition algorithms on public datasets.

Way of
expression

Recognition
methods

Yang
et al.
(2022)

Dong
et al.
(2022)

Yang
et al.
(2022)

Li et al.
(2017)

Amosa
et al. (2023)

Tchantchane
et al. (2023)

Shen
et al.
(2023)

VGG_19 (Shen et al.,
2023)

0.972 0.983 0.549 0.334 0.728 - 0.806

Frequency
accumulation image

RestNet_50 (Shen
et al., 2023)

0.984 0.982 0.637 0.558 0.903 - 0.886

LSTM (Li et al., 2023) 0.837 0.824 0.196 0.245 0.789 0.769 0.621

Hand designed
feature

HOTS (Ye et al., 2023) 0.808 0.803 0.210 0.271 0.624 0.785 0.656

HATS (Dong et al.,
2022)

0.991 0.984 0.642 0.524 0.902 0.933 0.871

End-to-end depth
network

PATs (JiangPeng et al.,
2022)

- - - - - 0.974 -

RG-CNNs (Shen
et al., 2023)

0.990 0.986 0.657 0.540 0.914 0.938 0.901

H-Frist (Zhou et al.,
2023)

0.712 0.595 0.054 0.077 0.561 0.529 0.479

Spiking neural
network

Direct-SNN (Fan
et al., 2023)

0.995 - - 0.605 - - -

SLAYER (Wang et al.,
2022a)

0.992 0.956 0.598 0.532 0.907 0.936 0.896

The bold values indicates the highest recognition values.
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and its essence is the subspace clustering problem of
spatiotemporal sparse signals. When DVS is applied to ego-
motion scenes with relative motion such as drones, autopilots,
and robots, it also triggers the background pulse flow while sensing
the moving target. At the same time, the spatial resolution of the
pulse signal is low and lacks texture structure information.
Therefore, the sparse subspace clustering of asynchronous pulse
signals is a difficulty in current neuromorphic vision research, and
it is also an urgent problem to be solved for neuromorphic vision
sensors to be applied to complex visual tasks.

6.6 3D scene depth estimation

At present, the main stereo vision applications using neuromorphic
vision sensors are binocular imaging and measurement systems, and a
few researchers have discussed the methods of monocular visual
odometry and monocular zoom. From the processing point of
asynchronous spatiotemporal pulse signal, it is mainly divided into:
frequency accumulation image, hand-designed features, end-to-end
deep network and spiking neural network.

Frequency accumulation image: Mantecon et al. (Mantecon et al.,
2019) accumulated the DVS output pulse stream as a histogram to
calculate the disparity, which was applied to the gesture recognition task
in the stereo vision system. Yan and Rebecq (Rebecq et al., 2018; Yan
and Zha, 2019) used binocular DVS to simulate lidar 360° panoramic
visual scene reconstruction, which projected the pulse flow in the sensor
scanning period as an image to calculate the parallax, and the scene
depth could be calculated in real time in the autonomous driving scene.

Hand-designed features: Morales et al. (Morales et al., 2019) first
developed a stereo vision system for binocular DVS, which uses the
output pixel pulse sequence as feature matching to calculate
disparity, and Osswal et al. (Osswal et al., 2017) considers the 3D
geometric features of the target to match the depth information and
perform 3D reconstruction of the target. Ieng et al. (Ieng et al., 2018)
aggregated multiple features such as the time plane and other
features from the pulse stream output from ATIS to calculate the
disparity, and applied it to the binocular and trinocular stereo vision
systems. Ghosh et al. (Ghosh and Gallego, 2022) constructed the
disparity container feature of the binocular pulse flow respectively,
and then constructed the disparity matching optimization function
to calculate the disparity. Zhang et al. (Zhang C. et al., 2023)
extracted corner features and spatio-temporal text features
respectively for the pulse flow for matching and computing depth
information. Xie et al. (Xie et al., 2018) used DAVIS240 to build a
binocular stereo vision system, and extracted local features from the
pulse stream for stereo matching to calculate depth information. In
addition, Liu et al. (Liu et al., 2023a) constructed a multi-view 3D
reconstruction of a monocular camera for the first time for pulse
flow, which used an event-based scan plane method to generate a
time difference map to estimate depth information. Wang et al.
(Wang et al., 2022e) extracted the temporal surface features of the
pulse signal and established an optimization function to calculate the
disparity, which was used for multi-view 3D reconstruction of a
monocular camera.

End-to-end deep network: Uddin et al. (Uddin et al., 2022) first
proposed an end-to-end deep network for depth estimation in stereo
vision systems for asynchronous spatiotemporal pulse signals, which

used spatial aggregation network and temporal aggregation network
to extract discrete pulse signals as continuous Compared with the
frequency accumulated image and hand-designed features, the
performance and processing speed of the embedded feature in
the visual task of depth estimation are significantly improved.

Spiking Neural Networks: Risi et al. (Risi et al., 2020) proposed a
bio-inspired event-driven collaborative network for stand-alone
disparity estimation. IBM (Gallego et al., 2022) used
DAVIS240 to build a binocular stereo vision system, and
performed cascade computing parallax on the neuromorphic
processing chip TrueNorth to perform real-time 3D
reconstruction of high-speed motion scenes. Osswald et al.
(Osswald et al., 2017) used a spiking neural network composed
of multi-level cascaded neurons for depth estimation and 3D
reconstruction of binocular vision. In addition, Haessig et al.
(Haessig et al., 2019) further explored the stereo vision system of
monocular zoom by using the spiking neural network.

In recent years, the successful application of deep learning in the
field of stereo vision has significantly improved the computational
speed and performance of depth estimation and 3D reconstruction,
as shown in Table 3, but the application of stereo vision in
neuromorphic vision is just in its infancy (Uddin et al., 2022).
Large-scale stereo vision datasets, the fusion of ranging sensors such
as LiDAR (Huang et al., 2021), the feature expression of
asynchronous pulse signals, and the use of neuromorphic
processing chips for high-speed processing in stereo vision
(Gallego et al., 2022) are all problems that need to be solved urgently.

6.7 Position estimation and visual odometry

Visual Odometry (VO) is to use the output signals of single or
multiple visual sensors to estimate the position and attitude of an agent,
also known as the problem of obtaining camera attitude through visual
information (Huang and Yu, 2022). From the perspective of camera
calibration, it can be divided into camera pose estimation (Pose
tracking) and Visual-Inertial Odometry (VIO).

Camera attitude estimation: Colonnier et al. (Colonnier et al., 2021)
equipped the UAV with DVS, accumulated the pulse flow into images
according to the frequency, and tracked the linear features to evaluate
the camera attitude. Liu et al. (Liu et al., 2023b) used a monocular
DAVIS camera to jointly evaluate 3D scene structure, 6-DOF camera
pose and scene light intensity for the first time.Murai et al. (Murai et al.,
2023) used APS images in DAVIS240 to detect corners, and used DVS
pulse flow for feature tracking to estimate camera pose. Gallego et al.
(Gallego et al., 2017) constructed a scene depth map from the pulse
stream, and used a Bayesian filtering strategy to estimate the pose of a 6-
DOF camera, and could perform real-time estimation under high-speed
motion and extreme lighting conditions. In addition, Gao et al. (Gao
et al., 2022) further integrated 3D reconstruction method with parallel
acceleration for pose tracking. Belter et al. (Belter and Nowicki, 2019)
proposed a 3D photometric feature map containing light intensity and
depth information, and adopted a most-likelihood optimization model
for 6-DOF pose estimation. Jin et al. (Jin et al., 2021) accumulated a
stream of pulses as images and employed a spatially stacked LSTM to
learn the 6-DOF camera pose.

Visual-Inertial Odometry: Wang et al. (Wang T. et al., 2022)
were the first to combine DVS with APS for visual odometry. Li et al.
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(Li et al., 2020) extracted the feature surface from the pulse flow and
used the extended Kalman filter for feature tracking, and then
combined with the internal measurement parameters of the IMU
to evaluate the 6-DOF camera attitude. Mueggler et al. (Mueggler
et al., 2018) combined DVS pulse flow and IMU parameters to
propose a continuous visual-inertial odometry.

At present, most of the work of neuromorphic vision sensors in
visual odometry is based on the solution of geometric motion
constraints, involving feature extraction, feature matching, motion
estimation and other processes. Compared with traditional cameras,
its processing speed and performance accuracy are significantly
improved. Especially in high-speed motion scenes and high-dynamic
scenes. However, the model method has shortcomings such as
cumbersome design process and re-calibration of camera replacement
platform. The end-to-end deep network has the potential to greatly
improve the processing speed and performance accuracy under the data
drive, but deep learning maps high-dimensional observation vectors to
high-dimensional poses. Vector spaces are an extremely difficult
problem. In addition, the use of binocular or multi-purpose visual
scene depth information to further improve the performance of
visual odometry is also an urgent problem to be solved.

6.8 Neuromorphic engineering system
applications

The application of neuromorphic vision sensors in engineering
systems mainly includes the following aspects:

Consumer electronics: Samsung (Naeini et al., 2020) utilizes the
advantages of DVS to quickly perceive dynamic changes, low data
redundancy and low power consumption, and apply it to the touch
screen wake-up function of mobile phones. In addition, DVS pulse
streaming enhances the video capture quality of traditional cameras
(Kim et al., 2023), especially in high-speed scenes and extreme
lighting conditions, thereby further improving the high-speed
photography and dynamic perception capabilities of consumer
electronics cameras.

Industrial inspection: Zhang et al. (Zhang H. et al., 2022) used
the high temporal resolution of ATIS for tracking and system
feedback of the high-speed moving gripper of an industrial
micro-machine tool. Lv et al. (Lv et al., 2021) used DVS for real-
time identification of industrial components on high-speed running

platforms. As a visual perception system for industrial inspection,
the advantages of low power consumption of neuromorphic vision
have huge application potential in the Internet of Things era of the
Internet of Everything (IoE) (Vanarse et al., 2019).

Mobile robot: Cao et al. (Cao et al., 2019) used DVS as a visual
perception system for mobile robots, which can grasp objects in real
time under high-speed movement. Rast et al. (Rast et al., 2018) used
DVS for the visual perception system of the iCub humanoid robot,
which has the ability to perceive low latency, high-speed motion and
extreme illumination (Vidal et al., 2018).

Autonomous driving: Feng et al. (Feng et al., 2020) used CeleX
for the driver’s fatigue detection system. Lai et al. (Lai and Braunl,
2023) used DVS for steering wheel angle prediction in autonomous
driving scenarios. Ryan et al. (Ryan et al., 2021) used a combination
of DVS and APS for The performance of joint detection of targets for
autonomous driving is significantly improved in high-speed motion
scenes and extreme lighting conditions.

UAV navigation: Falanga et al. (Falanga et al., 2019; Falanga
et al., 2020) used DVS as a visual navigation system for UAVs, which
has better tracking ability than traditional cameras in high-speed
motion scenes and extreme lighting.

High-speed vision measurement: Hsu et al. (Hsu et al., 2022)
designed a 64 × 64 dynamic vision sampling chip, which integrates
an optical flow calculation module and can measure the speed of
high-speed moving targets.

7 Research challenges and possible
development directions

The research and application of neuromorphic vision sensors
have achieved staged development, but there are still many problems
and challenges to reach or surpass the perception ability of the
human visual system in complex interactive environments. In
addition, this chapter further discusses the main research
directions for possible development.

7.1 Research challenges

Neuromorphic vision sensors have the advantage of high
resolution in the temporal domain. The output pulse signal

TABLE 3 Test performance of typical depth estimation algorithms on the MVESC dataset (Zhu et al., 2018).

Way of expression Estimation method Average depth estimation error (cm)

Sequence1 Sequence3

Frequency accumulation image Uddin et al. (2022) 99 103

Uddin et al. (2022) 93 119

Bi et al. (2023) 36 36

Hand designed feature Semi-Dense (Liu et al., 2023a) 13 33

CopNet (Bi et al., 2023) 61 64

Deep network DDES (Uddin et al., 2022) 13.6 18.4

The bold value indicates the highest value of depth estimation.
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presents a three-dimensional sparse lattice in the temporal and
spatial domains. The visual signal processing and application have
the following challenges:

(1) Large-scale datasets: Supervised learning vision tasks provide
data-driven and visual analysis model evaluation. At present,
the datasets of neuromorphic vision tasks are mainly
classification and recognition tasks. The data scenarios are
simple and small in scale. Generally, there are few large-scale
datasets publicly available, especially in complex vision tasks
such as object detection, tracking and object detection.
Segmentation and other applications, the reason is that the
pulse flow presents an asynchronous lattice in space and time,
which cannot be directly marked and evaluated manually in
subjective vision, and needs to be calibrated with the help of
other sensors. Developing large-scale datasets for neuromorphic
vision applications is an urgent problem, and computational
graphics can be used to build simulation datasets at low cost
(Falanga et al., 2019; Falanga et al., 2020). Mapping from
existing large-scale vision datasets to datasets of spiking
signals (Lin et al., 2021). Large-scale collection and
annotation of real datasets with the help of other sensors.

(2) Measurement of asynchronous spatiotemporal pulse signals:
calculating the distance between pulse streams in metric
space (Lin X. et al., 2023) is one of the basic key
technologies in asynchronous spatiotemporal pulse signal
processing. It has a wide range of applications in many fields
such as tasks. Asynchronous spatiotemporal pulse signal is
unstructured data, different from normalized structured
“image frame”, it lacks the direct measurement of Euclidean
space, and the difference in subjective vision cannot be directly
measured. How to orient the measurement of the asynchronous
pulse signal to visual tasks and the evaluation of normalization is
also a research problem that needs to be solved urgently. The
asynchronous spatiotemporal pulse signal can be modeled as a
spatiotemporal point process in the data distribution (Zhu Z.
et al., 2022), and the point process signal processing,
measurement and learning theory (Xu et al., 2022b).

(3) Characteristic expression of asynchronous spatiotemporal pulse
signals: Mining the spatiotemporal characteristics of
asynchronous spatiotemporal pulse signals for high-precision
visual analysis tasks. The machine vision method of the “image
frame” paradigm is the current mainstream direction, but the
asynchronous spatiotemporal pulse signal is different from the
“image frame”, and the existing deep learning algorithms cannot
be directly transferred to the application. In addition, compared
with the traditional “image frame” paradigm, the pulse signal is
more flexible in terms of feature expression, especially in the
selection of the time domain length or the number of pulses of
the pulse signal processing unit, which also increases the input
value of the visual analysis algorithm of the asynchronous
spatiotemporal pulse signal. How to efficiently express
features of asynchronous spatiotemporal pulse signals is one
of the core research issues in the field of neuromorphic vision.
Data-driven end-to-end neural networks for specific visual tasks
can be established. Mining mechanisms with temporal memory
(Zhu R. et al., 2021; Li et al., 2023) spiking neural network
(Wang et al., 2022e) for learning and reasoning.

(4) High-speed processing capability: Mining high-resolution
characteristics in time domain, oriented to high-speed vision
tasks. The high-speed processing capability of asynchronous
spatiotemporal pulse signals is the premise for the wide
application of neuromorphic vision sensors, while existing
feature expression methods such as hand-designed features and
end-to-end deep networks have no advantage in task processing
speed. Neuromorphic processing chips have high-speed and
parallel processing capabilities on pulse signals, such as IBM’s
TrueNorth chip, Intel’s Loihi (Davies and Srinivasa, 2018) chip,
and Manchester University’s SpiNNaker (Russo et al., 2022)
chip. The focus of the neuromorphic engineering industry.

(5) Neuromorphic open source learning framework: Develop an open
source framework suitable for asynchronous pulse signal
processing and learning. At present, there are few similar deep
learning frameworks in the neuromorphic field, and it is urgent to
develop frameworks suitable for unstructured spiking data (Hazan
et al., 2018), such as spiking neural networks or hybrid frameworks
compatible with deep learning and spiking networks, to provide
neuromorphic vision researchers open source learning tools and
ecological environment (Eshraghian et al., 2020; Yu et al., 2020). In
(Zhou et al., 2019), optical resistive random access memory
(ORRAM) arrays are utilized as synaptic devices for
neuromorphic vision sensors. Lenero et al. (Lenero et al., 2018)
used the integral sampling model in the infrared band, which can
image in the infrared band and has the advantages of high temporal
resolution (Xu C. et al., 2022), high dynamics and low data
redundancy (Shu et al., 2022). Galan et al. (Galan et al., 2021)
first developed a neuromorphic sensor for speech signals, namely
Dynamic Audio Sensor (DAS). Bartolozzi (Bartolozzi, 2018) a
neuromorphic tactile sensor and published a paper in Science
(Vidar et al., 2018). It also serves as a guide for computer vision and
artificial intelligence technological concepts and directions (Roy
et al., 2019)

8 Conclusion

This paper provides a detailed comparative study of various state-
of-the-art vision sensors in neuromorphic systems. The principles,
systemmodels and important characteristics were evaluated. Detailed
comparison and contrast of various neuromorphic vision sensors
were presented and their key performance indicators were elaborated.
The advantages and features were also discussed. The performance of
various depth estimation algorithms was compared and evaluated.
Finally, the applications and future prospects were described. The
coding framework of spatio-temporal visual signal is presented with
detailed emphasis on spiking neural network.

Neuromorphic vision sensor draws on the neural network
structure of biological visual system and the processing mechanism
of visual information sampling, and simulates, extends or surpasses
biological visual perception system at the device function level. There
are the following possible development directions in the sensor device
material process, visual sampling model, visual analysis task,
perception system and its application promotion:

(1) Neuromorphic vision sensors for new materials: new materials,
new devices and other applications build neuromorphic vision
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sensors with neurons, synapses and memory functions. They
have preprocessing storage, signal memory, and visual signal
perception. It can improve the performance of back-end visual
analysis tasks, and has huge application value in edge computing
and the Internet of Things (IoT). Therefore, the development of
new materials and device processes is one of the most effective
ways for neuromorphic vision sensors to simulate, extend or
surpass biological visual perception systems from the device
functional level.

(2) Neuromorphic sampling model for multi-spectral bands: The
differential and integral sampling models of neuromorphic
vision sensors are applied to the spectral bands of visible
light, such as infrared, ultraviolet and microwave. How to
apply the biological vision sampling model to multi-spectral
signal sampling to further improve the perception range and
capability of existing single-band neuromorphic vision sensors.

(3) Collaboration for multi-vision tasks: Analysis of the samemodel
with processing multiple visual analysis tasks, it shares the
underlying features, and the tasks use each other, and has a
stronger generalization ability. At present, neuromorphic vision
tasks are specific empirical models and learning methods for a
single visual task, and the traditional “image frame” multi-task
collaborative model can be used for reference, which
functionally approximates the human multi-task visual
information processing and analysis capabilities.

(4) Neuromorphic engineering system for multi-sensor fusion: the
fusion of multiple neuromorphic sensors such as vision, voice
and touch is applied to the intelligent perception system of
neuromorphic engineering. How to integrate multiple
neuromorphic sensors such as vision, voice and touch, and
even with traditional cameras, LiDAR and other sensors, to
build a perception system in complex interactive environments
is the goal of neuromorphic engineering applications.

(5) Coupling of computational neuroscience and neuromorphic
engineering: computational neuroscience studies the fine
analysis and sampling mechanism of the retina, uses the optic
nerve inversion computing theory to study the retinal codec
model, and proposes a new type of neuromorphic visual
sampling and reconstruction The model provides theoretical
support for the device function level approximation to the
biological visual perception system. Draws inspiration for the
theoretical model and calculation technique of brain-like vision
from the biological visual system. At the same time, the application

of neuromorphic vision in signal sampling, processing and
analysis provides model verification for computational
neuroscience, and even provides bionic medical devices such as
retinal prostheses for the field of life medicine, thereby promoting
the research and development of computational neuroscience. The
two are coupled with each other, providing theoretical and
application support for the construction of a new set of visual
information perception, processing and analysis.
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