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Breast cancer is one of the most common diseases of the modern age. Although
many methods for its treatment have been reported so far, the report and
synthesis of new compounds based on new technologies, especially
nanotechnology, is important. One of the laboratory methods for evaluating
the anticancer properties of compounds is the in vitro MTT method (3-(4,5-
Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide). In this study, the in vitro
anti-breast cancer activity of the newly synthesized (Titanium Metal-Organic
Framework) Ti-MOF cross-linked oxidized pectin and chitosan hydrogel, which
uses biopolymers in its synthesis and structure, was investigated. The anticancer
activity results showed that the synthetic nanopolymer had cell proliferation and
viability of 27% more than the control and (the half maximal inhibitory
concentration) IC50 of 111 μg/mL against breast cancer cells. Before the
anticancer evaluation, the structure of the synthesized Ti-MOF cross-linked
oxidized pectin, and chitosan hydrogel was confirmed by (X-Ray Diffraction)
XRD pattern (Fourier Transform Infrared) FT-IR spectrum (Energy-dispersive
X-ray) EDAX spectroscopy, N2 adsorption/desorption isotherm and (Scanning
Electron Microscope) Scanning Electron Microscope images. The results of
identification and characterization showed that the synthetic nanopolymer was
in the range of nanoparticles. The peaks of the expected functional groups and
reactant elements were observed in the FT-IR spectrum and energy-dispersive
X-ray spectroscopy of the final product. High physicochemical capabilities such as
the uniformmorphology, crystallization of particles, and high specific surface area
from synthesized Ti-MOF cross-linked oxidized pectin, and chitosan hydrogel
were observed. The unique properties of the synthesized Ti-MOF cross-linked
oxidized pectin and chitosan hydrogel can be attributed to the appropriate
method of its synthesis that was carried out in this study.
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1 Introduction

According to a previous study, the synthesis of nanoparticles with
hydrogel assisted method can be produced nanoparticles with uniform
morphology and small particle size distribution (Wang et al., 2008;
Harish et al., 2023). Crystallization of nanoparticles is another crucial
advantage of using the hydrogel method in the synthesis of
nanoparticles (Chen et al., 2009; Su et al., 2020; Li L. et al, 2021;
Azadbakht et al., 2023). Various bioactive nanostructures, including
metal oxides, nano complexes and metal-organic frameworks (MOFs),
etc., can be synthesized by the hydrogel method (Akbari et al., 2022; Liu
Y. et al, 2022; Bustamante-Torres et al., 2022; Oderinde et al., 2022; Li
et al., 2023; Lim et al., 2023). The MOFs are an essential group of
nanostructures whose unique physical and chemical properties, such as
high heat stability, high porosity, etc. These unique properties have led
to an increase in their reactivity and have attracted the attention of
scientists in various fields. Industrial applications such as
electrochemical energy conversion and storage, the removal of toxic
dyes, adsorbents, and catalysts in the removal of persistent organic
pollutants, etc., have been reported so far from these nanostructures
(Peng et al., 2022; Sriram et al., 2022; Naghdi et al., 2023). In addition,
biomedical applications such as enzyme immobilization, drug delivery,
antimicrobial activity, anticancer activity, etc., have been reported from
MOFs compounds (Alavijeh and Akhbari, 2022; Han et al., 2022;
Maranescu and Visa, 2022; Silva et al., 2022; Guo et al., 2023). In the
synthesis of MOF, various metals, such as copper, cobalt, titanium, etc.,
can be used and synthesized, and depending on the metal used, MOFs
have different properties (Liu P. et al, 2022; Fan and Tahir, 2022; Pan
et al., 2022). As you know, metal is a significant part of the MOF
compounds, which can diversify the hybridization states by varying the
oxidation number (Guan and Han, 2019). The titanium is not only
effective in hybridization and formation of MOF nanostructures, but
also has anti-corrosion properties (Zhang et al., 2021), wear resistance
(Bai et al., 2021) and desirable physicochemical properties. As
mentioned, MOFs containing titanium have been synthesized so far,
and there have been reports of photocatalytic activity, antimicrobial
activity, and anticancer activity of Ti-MOFs (Abdelhameed et al., 2022;
Kar et al., 2022; Abdelhameed et al., 2023). Advanced nanostructures
containing polymer compounds and Ti-MOFs, such as potassium poly
(heptazine imide)/Ti-based metal-organic framework composites, have
been reported (Rodríguez et al., 2017). Nowadays, the use of polymers
in our daily life is unavoidable. Polymers are used in various
compounds and industries. In addition, the structure of many vital
body compounds and natural compounds such as DNA, starch,
cellulose, pectin, and chitosan are also polymeric. Pectin is a robust
fiber found naturally in many plants and vegetables (Sila et al., 2009).
There have been several reports on using pectin in the structure of
synthesized catalysts to synthesize organic compounds and heterocyclic
compounds (Dohendou et al., 2021; Khashei Siuki et al., 2022).
Pharmacological applications and bioactive compounds containing
pectin have been synthesized and reported (Minzanova et al., 2018;
Devasvaran and Lim, 2021). According to one of the recent reports,
composite films containing pectin derivatives and chitosan have been
synthesized with blood compatibility and antibacterial activity
(Chetouani et al., 2017). Chitosan is another natural polymer
compound that has many capabilities. This polymer, which is
abundantly found in the exoskeleton of arthropods such as shrimp,
crab, yeast, and insect cuticle, is a biodegradable, biocompatible, and

non-toxic polymer that has many biomedical applications (Pakdel and
Peighambardoust, 2018; Tapdiqov, 2020; Li D.-q. et al, 2021). Polymeric
structures with numerous and remarkable properties of chitosan have
been reported. For example, super hydrophobic chitosan-based derived
coatings have been reported in 2022 (Roy et al., 2022). Polymers
containing chitosan, pectin, and Ti-MOF can have unique biological
capabilities, and in this study, using the hydrogel method, we
synthesized a new polymer containing them. After identifying and
confirming the structure of synthesized Ti-MOF cross-linked oxidized
pectin and chitosan by the MTT method, the anticancer properties of
breast cancer cells were investigated in different concentrations,
treatment time, and various parameters such as IC50 and cell
proliferation and viability were reported.

2 Material and methods

2.1 Materials

All solvents and raw materials used for the synthesis of
compounds such as Titanium (IV) nitrate tetrahydrate
(Sigma-Aldrich, 295.89 g mol-1, 99.9%), 2, 6- pyridine
dicarboxylic acid (Sigma-Aldrich, MW 167.12 g mol-1, 99%),
Chitosan (Sigma-Aldrich, 10 mg/mL acetic acid: water) and
Pectin (Pectin from citrus peel, impurities ≤10% moisture,
Sigma-Aldrich) were obtained from Merck and Sigma-Aldrich
companies with high purity. MCF-7 breast cancer cells (ATCC
HTB-22) were prepared from the American Type Culture
Collection.

2.2 Devices

By using Bruker Tensor 27 FT-IR, FT-IR spectra of synthesized
compounds were prepared. The XRD patterns of synthesized
nanostructure by using Bruker D8 X-ray diffractometer were
obtained. The SEM images of synthetic compounds were
obtained using Hitachi S-4800 FESEM. The N2 adsorption/
desorption of synthesized nanostructure by using Micromeritics
ASAP 2460 was prepared.

2.3 Synthesis of Ti-MOF

A mixture of 0.1 mmol Titanium (IV) nitrate tetrahydrate and
0.1 mmol 2, 6- pyridine dicarboxylic acid in 25 mL double-distilled
water were placed in an ultrasonic bath with power of 150 W in 30°C
for 20 min. Finally, the synthesized Ti-MOF, after separation, was
washed three times with a mixture of water and ethanol and dried at
25 C for 48 h (Scheme 1).

2.4 Synthesis of Ti-MOF cross-linked
oxidized pectin and chitosan hydrogel

For the synthesis of Ti-MOF cross-linked oxidized pectin and
chitosan hydrogel (Figure 1), a previously reported protocol was
used (Salama and Aziz, 2020). At first, 0.1 mmol of oxidized pectin
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were dissolved in 10 mL of double-distilled water under stirring at
30°C. In different containers, 0.2 mmol of chitosan were dispersed in
20 mL of double-distilled water using ultrasonic at 30°C. Then
0.1 mmol of Ti-MOF was added to the container containing
oxidized pectin and stirred for 1 h at the same temperature with
a speed of 800 rpm. Then, the mixture containing chitosan was
added drop by drop to the container containing oxidized pectin and
Ti-MOF. After that, the mixture was stirred at the same temperature
for 1 h under the previous temperature conditions. Finally, the
resulting mixture was placed in a water bath at 37°C for 4 h
(Scheme 2).

The synthesis procedure of oxidized pectin developed in this
study was reported based on previous literature. In 75 mL EtOH,
0.5 mmol g of Pectin was dispersed. Then, at dark and room
temperature, sodium periodate solution (0.15 mmol/50 mL)

dropwise was added. The mixture was stirred for 2 h at room
temperature, and added ethylene glycol to the oxidation reaction
to be terminated. By centrifuging at 6000 rpm, the supernatant layer
was collected, and synthesized Oxidized pectin was kept in a dialysis
bag for 3 days to be freeze-dried (Nejati et al., 2020).

2.5 Anti-breast cancer cells activity of Ti-
MOF cross-linked oxidized pectin and
chitosan

In the control medium containing RPMI (Roswell Park
Memorial Institute) 1640, 10% FBS (Fetal Bovine Serum), and
penicillin G/streptomycin (200 μL), MCF-7 breast cancer cells
were cultured. In microplates, 200 μL MCF-7 breast cancer cells

SCHEME 1
Proposed mechanism for synthesis Ti-MOF
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with a density of 1.2 × 104 cells per well were seeded and, in
conditions of 5% CO2 and 37°C for 24 h, were incubated.
Concentrations of 5, 10, 20, 40, 80, 120, and 200 mg/μL from Ti-
MOF cross-linked oxidized pectin were added to each well, and were
treated for 24 and 48 h under conditions of 5% CO2 and 37°C. A
solution of 2 μg/mLMTT was prepared in PBS. After the stated time
(24 and 48 h), the medium containing Ti-MOF cross-linked
oxidized pectin and chitosan were removed, and 50 μL of
prepared MTT solution and 150 μL of fresh medium were added
to the wells and placed in the incubator under conditions of 5% CO2

and 37°C for 4 h. Then the medium containing MTT was removed,
and 200 μL of dimethyl sulfoxide was added to the wells. The

absorbance at 570 nm was read by an ELISA (Anzyme-Linked
Immuno Sorbent Assay) reader (Heidari Majd et al., 2017).

3 Result and discussion

3.1 Result and characterization of Ti-MOF
cross-linked oxidized pectin and chitosan
hydrogel

From the complexation of Ti-MOF with oxidized pectin and
finally using the Schiff base reaction of Ti-MOF-oxidized pectin

FIGURE 1
Proposed structure for oxidized pectin-chitosan hydrogel (I) Ti-MOF cross-linked oxidized pectin and chitosan hydrogel (II).
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complex with chitosan, novel Ti-MOF cross-linked oxidized pectin
and chitosan hydrogel was synthesized.

First, by using Titanium (IV) nitrate tetrahydrate and 2, 6-
pyridine dicarboxylic acid under ultrasonic conditions, Ti-MOF was
synthesized (Scheme 1). By adding Ti-MOF to the oxidized pectin
solution, Ti-MOF containing oxidized pectin was synthesized.
Finally, by adding a mixture containing chitosan to Ti-MOF/
oxidized pectin and performing the Schiff base reaction, Ti-MOF

cross-linked oxidized pectin, and chitosan hydrogel were
synthesized (Scheme 1).

The structure of Figure 1 is proposed for the new synthesized Ti-
MOF cross-linked oxidized pectin and chitosan hydrogel, which was
identified and confirmed by spectral data and analyses of XRD
(X-Ray Diffraction pattern, and FT-IR (Fourier Transform Infrared
spectrum, EDAX (Energy-dispersive X-ray) spectroscopy, N2

adsorption/desorption isotherm and SEM (Scanning Electron
Microscope) images.

Figure 2 shows the XRD patterns (A) and FT-IR spectrums (B)
of synthesized Ti-MOF (I) and Ti-MOF cross-linked oxidized pectin
and chitosan hydrogel (II). As can be seen in XRD patterns (Figure
2A), based on previous reports, the peaks related to the crystal
structure of titanium nanoparticles were observed in the XRD
pattern of Ti-MOF and Ti-MOF cross-linked oxidized pectin and
chitosan hydrogel. In the XRD patterns (I) and (II), plates
corresponding to Ti nanostructures ([011], [002], [121], [222],
and [132]) were obverted (Hacisalihoglu et al., 2015; Han et al.,
2015; Gómez-Avilés et al., 2020).

Using XRD patterns and the Debye-Scherer equation, the mean
crystalline size of Ti-MOF and Ti-MOF cross-linked oxidized pectin
and chitosan hydrogel was calculated and found to be 52 and 67 nm,
respectively. As a signicant result, it can be stated that the synthesis
method in this study had a good effect on the crystallization and
nanosizing of the synthesized Ti-MOF and Ti-MOF cross-linked
oxidized pectin and chitosan hydrogel.

In the FT-IR spectra of Ti-MOF (Figure 2B-I) and Ti-MOF
cross-linked oxidized pectin and chitosan hydrogel (Figure 2B-II), as
seen in Figure 2B, the peaks related to the links and functional
groups of the proposed structure of the desired product are
observed. For example, the peak related to Ti-O near 650 cm-1

was observed (Al-Amin et al., 2016). Peaks related to groups
C-O, C=C, C=N, and C=O were observed in areas 1,100, 1,400,
1,500, and 1,600 cm-1, respectively (Bakhshi et al., 2022). One of the
most important peaks that represent the synthesis of Ti-MOF cross-
linked oxidized pectin and chitosan hydrogel based on the proposed
structure is C-H peaks, as seen in Figure 2B-II. These peaks are
observed in the region below 3,000 cm-1. The peak related to the OH
group was also observed in the areas above 3,000 cm-1.

Energy-dispersive X-ray spectroscopy and the elemental analysis
related to the final product (Ti-MOF cross-linked oxidized pectin
and chitosan hydrogel) are shown in Figure 3 and Table 1. As shown
in Figure 3, the raw material elements are present in the structure of
the proposed final product. The elemental analysis results next to
Energy-dispersive X-ray spectroscopy prove the formation of the
proposed compound. As an important result, elemental analyses
confirmed the successful synthesis of Ti-MOF and Ti-MOF cross-
linked oxidized pectin.

The curves of N2 adsorption/desorption isotherm of Ti-MOF (I)
and Ti-MOF cross-linked oxidized pectin and chitosan hydrogel (II)
are given in Figure 4. The specific surface area for Ti-MOF (I) and
Ti-MOF cross-linked oxidized pectin and chitosan hydrogel (II),
based on the results of BET, was obtained about 28 and 34 m2/g,
respectively. According to the IUPAC classification of adsorption/
desorption isotherm, the behavior of both samples is similar to the
second type of isotherms, which confirms the macroporous size
distribution for Ti-MOF and Ti-MOF cross-linked oxidized pectin
and chitosan hydrogel (Sargazi et al., 2018). The significant porosity

SCHEME 2
Proposed mechanism for synthesis Ti-MOF cross-linked
oxidized pectin and chitosan hydrogel
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of the products provides good potential for diverse applications of
these novel materials. The results proved that the polymerization of
Ti-MOF with oxidized pectin and chitosan increases its specific
surface area. As we know, the high specific surface area in
nanoparticles makes compounds highly effective in biological
fields and their catalytic applications. On the other hand, the
specific surface area is highly dependent on the synthesis method
of nanoparticles. Therefore, the synthesis methods in this study are

suitable for synthesizing the desired products and have increased the
specific surface area of the synthetic compounds.

The scanning electron microscope images related to Ti-MOF (I)
and Ti-MOF cross-linked oxidized pectin and chitosan hydrogel are
shown in Figure 5. The images show the nanosize structure, uniform
morphology, and good crystallinity. According to the SEM image,
the Ti-MOF nanostructure has homogeneous morphology with
nanosized distribution. Compared to Ti-MOF, Ti-MOF cross-

FIGURE 2
XRD patterns (A) and FT-IR spectrums (B) of Ti-MOF (I) and Ti-MOF cross-linked oxidized pectin and chitosan hydrogel (II).

FIGURE 3
EDAX spectroscopy of Ti-MOF cross-linked oxidized pectin and chitosan hydrogel.
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linked oxidized pectin, and chitosan hydrogel tend to aggregate in
final structures, slightly. It can be related to the efficient loading of
the linkers in Ti-MOF nanostructures. Also, the acceptance stability
of Ti-MOF cross-linked oxidized pectin in final products can be
related to the efficient synthesis method of nanoparticles. As
mentioned in the previous parts, the synthesis method has
caused the above characteristics to the synthesized nanoparticles
of this study (Sargazi et al., 2019; Moghaddam-manesh et al., 2022).

As a general result, it can be said that the ultrasonic and hydrogel
method used in this study is an effective method for the synthesis of

Ti-MOF and Ti-MOF cross-linked oxidized pectin and chitosan
hydrogel, with high physicochemical capabilities such as nano-size
and uniform morphology, crystallization of particles and high
specific surface area.

3.2 Result of anti-breast cancer cells activity
of Ti-MOF cross-linked oxidized pectin and
chitosan hydrogel

Based on the MTT method, the anti-breast cancer cell activity
of Ti-MOF cross-linked oxidized pectin and chitosan was studied
based on the MTT method. For this purpose, breast cancer cells
were treated with various concentrations of Ti-MOF cross-linked
oxidized pectin and chitosan. In addition to different
concentrations, studies were evaluated at 24 and 48 h. The
results of the investigations are given in the curves of Figure 6
and Figure 7.

As seen in Figure 6 and Figure 7, the highest cell proliferation
and viability of Ti-MOF cross-linked oxidized pectin and
chitosan is at a concentration of 200 mg/mL at 24 and 48 h.
The cell proliferation and viability at 200 μg/mL of Ti-MOF
cross-linked oxidized pectin and chitosan in 24 h were 33.68%
more than the control, and in 48 h,27% more than the control
were observed.

From the results of the observed values, it can be concluded that
the effect on breast cancer cells depends on the concentration of Ti-
MOF cross-linked oxidized pectin and chitosan and treatment time.

The IC50 (The half maximal inhibitory concentration) values for
24 and 48 h, using the equation of the line that was obtained from
the curve of concentration and cell proliferation and viability in
different concentrations, were calculated as 137 and 111 μg/mL,
respectively.

The effectiveness of nanoparticles on breast cancer cells can be
attributed to factors such as the porous and specific surface area of
Ti-MOF, the presence of titanium as bioactive metal, and the
bioactive polymers, including chitosan and oxidized pectin, that
are present in the structure of newly synthesized polymer (Leclere

FIGURE 4
N2 adsorption/desorption isotherm of Ti-MOF (I) and Ti-MOF
cross-linked oxidized pectin and chitosan hydrogel (II).

FIGURE 5
Scanning electron microscope images of Ti-MOF (I) and Ti-MOF cross-linked oxidized pectin and chitosan hydrogel (II).

TABLE 1 Elemental analysis of Ti-MOF cross-linked oxidized pectin and
chitosan hydrogel.

Element C H N O

Actual 45.17 5.64 5.26 36.31

Theoretical 46.80 5.70 5.28 36.20
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et al., 2013; Wimardhani et al., 2014; Murugan et al., 2016; Adhikari
and Yadav, 2018; Aswini et al., 2021; Ali et al., 2022).

4 Conclusion

Ti-MOF cross-linked oxidized pectin and chitosan hydrogel
were synthesized as a novel polymeric nanostructure. Prediction
and confirmation of the structure of the newly synthesized
nanopolymer using XRD pattern, FT-IR spectrum, EDAX
spectroscopy, N2 adsorption/desorption isotherm, and SEM
images were done. In examining the structure of the
synthesized nanoparticles, high specific surface area,
crystallization of particles, and uniform morphology were
observed. These unique features can be attributed to the

method used in the synthesis. The unique physical and
chemical properties of the synthesized Ti-MOF cross-linked
oxidized pectin and chitosan hydrogel, especially the high
specific surface area, made it highly active in inhibiting breast
cancer cells. The MTT method was used to determine the
anticancer effects of the synthesized Ti-MOF cross-linked
oxidized pectin and chitosan hydrogel, and cell proliferation
and viability and IC50 values in different concentrations and
times of 24 h and 48 h were evaluated and calculated. The
highest cell proliferation and viability were observed at a
concentration of 200 mg/mL in 48 h at a rate of 27% compared
to the control. The best IC50 values were calculated at 111 μg/mL in
48 h. Observations proved that the effect on breast cancer cells
depends on the concentration of Ti-MOF cross-linked oxidized
pectin and chitosan and exposed time.

FIGURE 6
The cell proliferation and viability of Ti-MOF cross-linked oxidized pectin and chitosan hydrogel on breast cancer cells activity at 24 h (mean (n =
3) ± SD).

FIGURE 7
The cell proliferation and viability of Ti-MOF cross-linked oxidized pectin and chitosan hydrogel on breast cancer cells activity at 48 h (mean (n =
3) ± SD).
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