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The temperature of the molten pool in Laser Solid Forming has a direct effect on
the dimensional accuracy and mechanical properties of the parts. Accurate
prediction of the melt pool temperature is important to ensure the stability of
themelt pool temperature and to improve the forming accuracy and quality of the
part. In order to accurately predict the melt pool temperature, this study proposes
a melt pool temperature prediction method based on particle swarm optimization
(PSO) optimised long short-termmemory neural network (LSTM). Using IR camera
to obtain melt pool temperature data and establish long short-term memory
neural network melt pool temperature prediction model based on experimental
data. Optimization of the initial learning rate and the number of hidden layer units
of the long short-term memory neural network model using the particle swarm
optimization algorithm to build a PSO-LSTM model for prediction of melt pool
temperature. The results show that the PSO-LSTM prediction model outperforms
the long short-term memory neural network and Ridge Regression models in all
evaluation indicators and can achieve accurate prediction of melt pool
temperature.
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1 Introduction

Laser solid forming (LSF) is an advanced digital additive manufacturing technology that
combines the benefits of free solid forming from fast prototyping with high-performance
cladding deposition using synchronous powder feeding laser cladding (Huang et al., 2022).
The LSF has several advantages, such as no need for mold, short manufacturing cycle, cost-
effectiveness, high performance and fast response capabilities. In recent years, LSF has found
widespread use in diverse fields, including the aerospace, automobile, mold, and defense
industries (Xiao et al., 2022). However, the LSF process is influenced by a multitude of
factors. During the prolonged manufacturing process, temperature fluctuations caused by
variations in parameters and environmental changes can lead to suboptimal forming quality
and diminished forming accuracy. These issues significantly curtail the technology’s
practical applications (Yang et al., 2021). Numerous studies have consistently
demonstrated the significant influence of melt pool temperature stability on both the
dimensional accuracy and mechanical properties of fabricated components. When the
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melt pool temperature is lower, a substantial quantity of unmelted
metal powder tends to accumulate, giving rise to the formation of
large pores. This phenomenon detrimentally affects the density and
mechanical properties of the molded parts. Conversely, higher melt
pool temperatures induce vigorous vibrations within the melt pool,
resulting in the splashing of metal droplets and increased porosity.
Consequently, ensuring a stable melt pool temperature throughout
the cladding process becomes imperative to guarantee the quality of
the resulting component (Zhang et al., 2021). Currently, the
temperature control system has its limitations, such as hysteresis
and other problems, making it challenging to maintain the desired
temperature stability (Kulchin et al., 2022). By accurately predicting
the melt pool temperature in a timely and precise manner, it is
possible to adjust process parameters in real-time based on the
predicted temperature, ultimately leading to improved temperature
stability and part precision. Thus, accurate prediction of the molten
pool temperature is of significant importance in ensuring
temperature stability and improving the forming quality and
precision of the formed parts.

Considerable research has been conducted by researchers on
predicting the temperature of the molten pool. Zhao et al. (2020)
constructed a molten pool temperature monitoring system and
established an empirical formula for predicting the molten pool
temperature based on experimental results. The predicted
temperature results showed a high degree of consistency with the
actual temperature; Wu et al. (2021) used ABAQUS software to
establish a composite heat source model and predicted the
temperature of the 316 L powder during the cladding process
through simulation. The test results showed good agreement with
the predicted results; Bhatnagar et al. (2021) established an analysis
mode based on energy transfer and loss mechanisms to predict the
temperature of the molten pool and achieved good predictive results;
Shao et al. (2021) established 3D temperature and residual stress
field models for the process of laser deposition coating using a
rectangular laser beam and calculated the temperature evolution
during the cladding process; Gao et al. (2020) established a single-
track processing prediction model (STPPM) for laser cladding.
Using Gaussian heat source, the temperature of the cladding
process was predicted based on the birth-death element method,
and the prediction error of temperature was about 8.1%. The
limitations of the above-mentioned study lie in the fact that the
laser melting process is a complex multi-physics coupling process,
and there is currently a lack of knowledge regarding the formation of
the melt pool. In the finite element simulation process, a large
number of overly simplistic assumptions are used, and the accuracy
of the predictions is highly dependent on factors such as element
type, boundary conditions, and mesh scheme. Therefore, the
accuracy and stability of the predictions are relatively low.
Physically based analytical methods are also commonly used to
predict melt pool temperatures. Fathi et al. (2006) have presented a
mathematical model for the analysis of laser powder deposition
(LPD) with the objective of predicting the temperature field within
the system. The proposed method employs the superposition
principle and heat diffusion solution derived from a point heat
source to obtain the temperature distribution within both the clad
and substrate. By comparing the experimental findings with the
predicted values, a remarkable level of agreement has been achieved.
These approaches have disadvantages in that the underlying

physical changes are not understood and the changes in volume
and mass over time are not taken into account, which makes the
analytical results untrustworthy (Khanzadeh et al., 2019).

Different from finite element methods, Machine Learning (ML)
can simulate the dynamic changes of molten pool more quickly and
accurately without complex physical knowledge. In recent years, ML
has been widely concerned and applied in the field of additive
manufacturing (Meng et al., 2020). Zhu et al. (2021) put forth a
physics-informed neural network (PINN) framework that fuses both
data and first physical principles, including conservation laws of
momentum, mass, and energy, into the neural network to inform the
learning processes. Using this method to predict the melt pool
temperature, the predicted values were experimentally verified to
be in high agreement with the true values; Gao et al. (2022) achieved
more satisfactory results by constructing a BP neural network model
to predict the average temperature in the cladding process. Mozaffar
et al. (2018) predicted the melt pool temperature for different
process parameters by proposing a recurrent neural network
(RNN) structure, and the predicted results were in high
agreement with the experimental values. However, such studies
mainly focus on predicting the average temperature of a single
layer and have been unable to effectively predict the fluctuations and
temperature variation trends in the melt pool, thus these studies
have failing to provided effective guidance for controlling the melt
pool temperature during the multi-layer deposition process. The
Long Short-Term Memory Neural Network (LSTM) employs
adaptive gating mechanisms and memory units to exert precise
control over the flow of information and memory retention. This, in
turn, effectively addresses the persistent issue of gradient explosion
encountered in conventional approaches. Additionally, LSTMs
demonstrate a superior ability to capture and learn long-term
time-dependent relationships, making them highly advantageous
for the analysis and processing of temporal data (Bhandari et al.,
2022). Given that real-time molten pool temperature is a type of
time series data, LSTM is an ideal tool for accurately predicting and
managing these temperature fluctuations in real-time. As a result,
LSTM offers a highly suitable and effective approach for real-time
molten pool temperature prediction. When employing the LSTM
model for prediction, choosing suitable network hyperparameters
can pose a challenge (Wang et al., 2023). Inadequate
hyperparameters can greatly compromise the accuracy of the
prediction. Particle Swarm Optimization (PSO) algorithm is a
global random search algorithm with simple structure and good
global search ability (Izumi and Iwai, 2020), which can be used to
optimize the hyperparameters of LSTM network.

To achieve real-time and accurate prediction of the molten
pool temperature, this study proposes a real-time molten pool
temperature prediction method based on PSO-LSTMmodel. This
method uses the real-time molten pool temperature and other
data obtained from the experiment to construct a molten pool
temperature prediction model based on LSTM to predict the
molten pool temperature of the process in real time. The PSO
algorithm is used to optimize the initial learning rate and the
number of hidden layer units of the LSTM network. This process
replaces the previous method of manually setting these
parameters through experience and comparing the prediction
accuracy of the models with different parameters. The PSO-
LSTM prediction model with high prediction accuracy is
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obtained, and the accurate prediction of the temperature and
temperature fluctuation trend of the molten pool is realized. This
study provides decision-making reference and guidance for
designing real-time temperature control system, ensuring the
stability of molten pool temperature, and improving the forming
quality and forming accuracy of parts.

2 Materials and methods

2.1 Materials and setup

The experiments conducted in this study were performed
utilizing a laser solid forming system. Figure 1 provides a
schematic diagram depicting the LCD (Laser Cladding
Deposition) system employed. The system comprised several
key components, namely, a laser head, a coaxial powder
feeding nozzle, an infrared (IR) camera, an industrial camera,
a water cooler, and a data transmission system. Specifically, the
laser head was connected to a 3 kW laser for the transmission of
laser energy. The dimensions of the laser spot were 6 mm by
2 mm, with a corresponding working distance of 18 mm. To
ensure the prevention of excessive heat buildup within the
laser head, a water cooler was interconnected with it.

Moreover, argon gas was utilized as both the powder feed and
the shielding gas, operating at a flow rate of 12 L/min.

In the present experiment, a substrate composed of 45 steel, with
dimensions measuring 20 mm by 10 mm by 8 mm, was employed.
To mitigate any potential temperature-related interferences
resulting from multiple cladding, only a single cladding
experiment was conducted for each individual substrate. Prior to
commencing the experiment, the substrate surface was meticulously
cleansed of impurities employing anhydrous ethanol. Fe55 powder
with a particle size of 200 mesh is used as the cladding material. The
chemical composition of Fe55 powder is shown in Table 1.

2.2 In-situ monitoring of experimental data

Temperature measurement methods for the molten pool can be
classified into two categories: contact and non-contact. Contact
measurements involve the use of thermocouples, which offer
advantages such as affordability, simplicity in structure, and
stability. However, due to the unique characteristics of Laser
Solid Forming (LSF) processing, thermocouples are unable to
provide real-time temperature monitoring of the molten pool.
Non-contact methods, on the other hand, encompass pyrometers
and infrared (IR) cameras. Pyrometers exhibit notable precision and

FIGURE 1
Schematic diagram of laser solid forming system.

TABLE 1 Chemical composition of Fe55.

Element C Cr Ni P S Mo B Fe

Wt% 0.173 17.78 2.68 0.013 0.004 0.90 0.86 Balance
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sensitivity, but they can only provide a single temperature value
representative of the entire molten pool. In this experiment, real-
time monitoring of the melt pool temperature was achieved by
employing an infrared camera, specifically the FLIR A615 model.
The IR camera features a temperature range of 200°C–3,000°C, a
resolution of 640 by 480, and a wavelength range of 7.5–14 μm.
Figure 2A showcases the infrared camera used in the experiment. A
specialized software system was employed to collect temperature
data and thermal images at a frequency of 50 Hz, transmitting the
acquired data to the workstation for further analysis. Additionally, a
pyrometer was utilized to calibrate the emissivity of the molten pool,
with an emissivity value of 0.29 set for the experiment. To mitigate
any potential damage caused by the laser or other external factors, a
filter lens was installed in front of the camera lens. Figure 2B
illustrates the molten pool captured by the infrared camera.

To enable real-time monitoring of the out-of-focus amount, a
CCD camera was positioned parallel to the part. The procedure

involved the following steps: Firstly, the camera was adjusted to
achieve a parallel orientation with respect to the part. Subsequently,
the camera was connected to the workstation, enabling the transfer
of captured images to the designated processing unit. For camera
calibration, a calibration plate was employed to acquire essential
camera parameters, including the rotation matrix, translation
vector, distortion coefficient, and other relevant factors. Utilizing
these calibrated camera parameters, the captured images were then
subjected to calibration procedures to accurately measure the height
of the cladding. The CCD camera system is shown in Figure 3.

The method of converting the cladding height into off-focus
amount is as follows:

S � z × n − 1( ) − h (1)
In the Formula 1, S is the off-focus amount; h is the height of

cladding layer; z is the z-axis lift of the laser head; n is the number of
cladding layers.

FIGURE 2
Schematic diagram of melt pool temperature monitoring. (A) Infrared camera schematic diagram; (B) A thermal image of a melt pool captured.

FIGURE 3
CCD camera system.
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2.3 Design of experiments

Two separate sets of experiments were conducted to gather data
concerning melt pool temperatures under varying process
parameters. The first set of experiments was employed to
establish the model, assess its feasibility, and compare the

predictive accuracy of different models. The second set of
experiments aimed to validate the model’s general applicability.
The design of experiments is presented in detail in Table 2. In both
experiments, a uniaxial scanning strategy was utilized for the
fabrication of thin-walled parts, as depicted in Figure 4. Each
sample consisted of fifteen layers.

3 Prediction modeling

3.1 Long short termmemory neural network

Long Short Term Memory Neural Network (LSTM) is a
modified algorithm of Recurrent Neural network (RNN). The
LSTM neural network adopts the mechanism of control gate,
which is composed of memory cell, input gate, output gate and
forgetting gate (Dupuis et al., 2022). It can keep information for a
long time by updating its internal state (Zhao et al., 2021), the
memory unit structure is shown in Figure 5. In the figure, X
represents the input vector and h represents the output vector.

(1) First, the calculation of the information to be discarded by the
forget gate. As shown in the formula:

ft � σ Wf × ht−1, xt[ ] + bf( ) (2)

Where xt is the input vector; ht−1 is the hidden layer information
at the last moment; σ is sigmoid activation function; bf is offset
parameters; Wf is the weight matrix of training.

(2) Determine the information that the input gate needs to save:

it � σ Wi × ht−1, xt[ ] + bi( ) (3)
~Ct � tanh WC × ht−1, xt[ ] + bC( ) (4)

Then update the old memory unit state, update Ct−1 to Ct:

Ct � ftpCt−1 + itp~Ct (5)
Where tanh is activation function; Wi , WC is weight matrix.

TABLE 2 Design of experiments.

Process parameters (symbol, unit) Value

Laser power (P, W) 2,100, 2,400

Scan speed (v, mm/s) 12, 10

Powder feed rate (f, g/min) 15, 18

Z incremental height (t, mm) 0.35

Argon gas flux (Q, L/min) 12

laser spot diameter (d, mm) 6 mm × 2 mm

FIGURE 4
Scan pattern for fabricating the thin-walled sample.

FIGURE 5
LSTM memory unit structure.
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(3) Calculate the information to be output by the output gate:

Ot � σ WO × ht−1, xt[ ] + bO( ) (6)
ht � Otptanh Ct( ) (7)

Where WO is the weight matrix of training; bO is offset
parameters.

σ x( ) � 1
1 + exp x( ) (8)

tanh x( ) � exp x( ) − exp −x( )
exp x( ) + exp −x( ) (9)

By using LSTM cyclic units, the whole network can establish
long-distance temporal dependency relations. Formulas 1–6 can be
simply described as:

~Ct

Ot

it
ft

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
tanh
σ
σ
σ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ W
xt

ht−1
[ ] + b( ) (10)

Ct � ft ⊙ Ct−1 + it ⊙ ~Ct (11)
ht � Ot ⊙ tanh Ct( ) (12)

From Figure 5, it can be seen that there are three inputs to the
LSTM at time t: the input value of the network at the current time,
the output value of the LSTM at the previous time and the state of
the unit at the previous time. The unit state is updated by two gate
structures of input gate and forgetting gate. The forgetting gate
determines the previous information through the sigmoid function,
as shown in Eq. 2; the input gate uses a sigmoid function to control
which information should be added, as shown in Eqs 3, 4; the output
of these two gates is used to update the unit state. The old unit state is
multiplied by the output of the forgetting gate, plus the output of the
input gate and the output of a tanh function, as shown in Eq. 5. The
structure has two outputs: the output value of the current LSTM and
the state of the unit at the current time, The output gate determines
the information that is output from the cell state, as shown in Eqs 6,
7. In the LSTM input gates, forgetting gates and output gates work
together to control the flow of information.

3.2 Particle swarm optimization algorithm

The PSO algorithm is an intelligent optimization algorithm that
simulates the predatory behaviour of birds. When PSO solves the
optimization problem, each bird in the search space represents a
possible solution of the problem, and these birds are called
“particles.” The characteristic information of each particle
includes three types: position, velocity and fitness value, where
position and velocity determine the direction and distance of the
particle’s flight (Wang and Zhang, 2021). The fitness value is
calculated from the fitness function and its value represents the
quality of the particle (possible solution). Each iteration is not
random, and each particle follows the current optimal particle to
search in the solution space.

The PSO is initialized as a group of random particles (random
solutions). At each iteration, the particles update their states
according to two extreme values: The first value is the optimal
solution found by the particle itself, called the individual optimal

solution (Pbest represents its position); the other value is the optimal
solution found by the whole population, called the global optimal
solution (Gbest represents its position). By tracking the individual
optimal solution (Pbest) and the global optimal solution (Gbest), the
particles in the group constantly update their speed and position.
The optimisation process in the global search space is completed by
continuous iteration to find the optimal region.

The principle of the algorithm is as follows: In anm-dimensional
search space, n particles form a population, the position is expressed
as Xi � Xi1, Xi2, . . . , Xim{ }, the speed is expressed as
Vi � Vi1, Vi2, . . . , Vim{ }. The position and velocity of particles in
the population are usually limited to [−Xmax, Xmax], to prevent
blindness in particle search. The particle updates its position and
velocity during the iteration process using Eqs 13, 14 (Yuming et al.,
2023).

Vk+1
id � ωVk

id + C1r1 Pk
id −Xk

id( ) + C2r2 Pk
gd −Xk

id( ) (13)
Xk+1

id � Xk
id + Vk+1

id (14)
Where k represents the number of iterations; Vk

id, X
k
id, P

k
id, P

k
gd

denote the particle’s velocity, position, individual optimal solution
and global optimal solution respectively; C1, C2 are learning factors
that regulate the step size of the flight towards the global optimal
solution and the individual optimal solution respectively,
appropriate learning factors can accelerate convergence and
reduce the likelihood of falling into a local optimum; r1 and
r2 are random numbers between (0, 1); ω is the inertial factor.
As shown in Figure 6, the particles’ position and velocity are
updated.

In the Figure 6, V1 is the direction of motion of particle i at
moment t; V2 is the velocity of the particle in the direction of the
individual optimal solution; V3 is the velocity in the direction of the
global optimal solution. Ultimately, v is the combined effect of the
velocities in all three directions, so that the particle reaches Xi+1 at
the instant t+1.

The PSO process can be described as:

Step 1. Initialise the position and velocity of the particles, set the
position of each particle to Pbest, calculate the fitness value of
each particle and set the particle with the best fitness value to
Gbest.

FIGURE 6
Particle state update diagram.
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Step 2. Calculate the fitness value of each particle; if there is a
particle with better fitness than the current Pbest, set the particle to
Pbest; if there is a particle with better fitness than the current Gbest,
set the particle to Gbest and update the global optimal solution.

Step 3. Update the velocity and position of each particle using
Eqs 1, 2.

Step 4. If the current number of iterations reaches the specified
maximum number or minimum error requirement, stop the
iteration and output the optimal solution. Otherwise, go to Step 2.

3.3 PSO-LSTM prediction model

The melt pool temperature during the LSF manufacturing process
is a time series that is influenced by many factors and has complex
nonlinearity and instabilities. In order to accurately predict the real-time
molten pool temperature, this study establishes a molten pool

temperature prediction model based on the LSTM algorithm that
performs well in time series data prediction. Since the learning rate
and the number of hidden layer units of the LSTM model have a great
influence on the prediction results, the PSO algorithm is used to find the
best learning rate and the most suitable number of hidden layer units to
improve the prediction accuracy. In this study, the off-focus amount
and real-time molten pool temperature data are used as model inputs
and the output is the predicted temperature.

First, the learning rate and the number of hidden layer units are
used as the optimization objects of PSO to initialize the position
information of each particle. Secondly, the LSTM model is built
based on the hyperparameters corresponding to the particle
positions. The adaptation degree of each particle is calculated, the
individual optimal solution and the global optimal solution are
determined according to the adaptation degree, and the velocity and
position of the particle are updated via Eqs 13, 14. Iterate until the
termination condition is met and output the optimal solution.
Finally, the PSO-LSTM model is built with the optimal
hyperparameters. The algorithm flow is shown in Figure 7.

The PSO-LSTM process can be described as:

Step 1. Data preprocessing the experimental data is not a unified
gauges, and large differences in values have a large effect on the
prediction results, so the data are normalised. This is shown in Eq. 5:

X′ � X −X min

X max −X min
(15)

Where X is the original data; Xmax and Xmin are the maximum
andminimum values in this group of data;X′ is the normalized data.

Divide the normalized data into a training set, a test set and a
validation set.

Step 2. Initialize the PSO algorithm with the learning rate and the
number of hidden layer units in the LSTM model as optimization
objects.

Step 3. The LSTM model is constructed based on the
hyperparameters represented by the particles, the model is
trained using the training data, and the validation data is put
into the trained model for prediction. The fitness value is
calculated for each particle and the fitness function f is defined as:

f � 1
k
∑k
i�1

ŷi − yi

∣∣∣∣ ∣∣∣∣
yi

(16)

Where k is the number of validation data; yi is the i-th true value
of the validation data; ŷi is the i-th predicted value of the test data.

Step 4. Comparing the particle adaptation degree to determine the
individual optimal solution Pbest and the global optimal solution
Gbest.

Step 5.Update the velocity and position of the particle according to
Eqs 1, 2.

Step 6. Determine whether the termination conditions are met. If
the termination condition is met, the optimum parameter value is
output; if the termination condition is not met, return to Step 3.

FIGURE 7
PSO-LSTM process diagram.
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Step 7. The LSTM model is constructed using the optimal learning
rate and the number of hidden layer units.

4 Results and discussions

4.1 Melt pool temperature distribution and
thermal history

Figure 2B shows an image of the melt pool taken during the
experiment. In this study, the peak temperature within the melt pool
boundary was used to measure the melt pool temperature. Figure 8
shows the melt pool temperature measured during Experiment 1,
where the process parameters were laser power of 2,100 W, scan
speed of 12 mm/s and powder feed rate of 15 g/min. During the
experiment, the dwell time between adjacent layers was kept
constant at 6 s. When we focus only on the melt pool
temperature within each layer, the temperature collected during
the dwell time between adjacent layers is removed from the
modelling process. Figure 8A shows the temperature data of the
15 layers during the manufacturing process, from the graph it can be
visually observed that there are temperature fluctuations in each
layer. The temperature fluctuation is caused by the varying localized
thermal histories. The energy absorbed by the melt pool changes
continuously over the course of the long processing time due to
fluctuations in the amount of off-focus and other factors. The
inconsistent energy input further influences the melt pool size
and geometry, which determines the local temperature and
cooling rate (Pinkerton, 2010). In order to observe the
temperature fluctuation more clearly, Figure 8B shows the
temperature data of 1, 15 layers.

From the melt pool temperature variation curve, it can be seen
that in layers 1 to 9, the melt pool temperature gradually increases
with the number of layers due to the heat accumulation effect; once
the number of layers reaches 10 or more, we can observe a similar
periodicity of melt pool temperature variations between adjacent
layers. The reason for this phenomena is because as the deposited
layers accumulate to a certain height, the volume of the material

melting increases, the material’s heat capacity also increases, and the
absorbed heat is distributed throughout a larger volume of the
material. At the same time, heat conduction within the material
increases gradually. Heat conduction is the process of transferring
heat from a high temperature zone to a low temperature zone. When
heat is rapidly transferred within a material, the rate of local
temperature change is also slowed. As a result, when a certain
height is reached, heat generation and transport approach a dynamic
balance, and the overall trend of melt pool temperature fluctuations
has a cyclical nature.

4.2 Model parameters settings and
performance evaluation

The PSO-LSTM model consists of one input layer, two LSTM
layers and one output layer. The model training process is

FIGURE 8
Experiment 1 Melt pool temperature profile. (A) Measured melt pool temperature of experiment 1; (B) Measured melt pool temperature of layer 1,
15 in (A).

FIGURE 9
Ridge regression prediction results.
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optimised using the Adma algorithm and the number of
iterations is set to 250. The hyperparameters in the LSTM
model are set as follows: the learning rate is set in the range
(0.001, 0.01) and the number of hidden layer units is set in the
range (10, 30). The number of particles in the swarm is set to 50,
the maximum number of iterations is 400, the velocity inertia
weight is set to 0.85 and the sum of the acceleration factors is 2.

In order to evaluate the prediction performance of the model
scientifically and objectively, this paper uses root mean square error
(RMSE), mean absolute error (MAE) and coefficient of
determination (R2) as evaluation indicators to quantitatively
assess the accuracy of the prediction model. These error metrics
are defined as:

MAE � 1
n
∑n
i�1

ŷi − yi

∣∣∣∣ ∣∣∣∣ (17)

RMSE �
������������
1
n
∑n
i�1

ŷi − yi( )2√
(18)

R2 �
∑n
i�1

ŷi − �y( )2
∑n
i�1

yi − �y( )2 (19)

The notations ŷi represents the i-th predicted value of the test
set; yi denotes the i-th true value of the test set; �y represents the
average of the true values of the test data set. The MAE is smaller
if the predicted value is closer to the observed value. Similarly, the
smaller the RMSE, the closer the model’s predictions are to the
true results. The R2 shows how much of the variation in the
response can be explained by the model. If a model’s R2 is close to
100%, it means that it can explain most of the variability. Because
all input and output variables were standardized for LSTM, the
error metrics were found by switching the predicted
temperatures back to their original range.

4.3 Analysis of predicted results

Firstly, the melt pool temperature data obtained from
Experiment 1 was divided into a training set, a validation set,
and a test set, where the last 100 sampling points were used as
test data, 80% of the remaining data were used as training data, and
20% as validation data. The LSTM, PSO-LSTM, and ridge regression
models were then used for temperature prediction, respectively.

FIGURE 10
Comparison of prediction results of different models. (A) LSTM prediction results; (B) PSO-LSTM prediction results.

FIGURE 11
Predicted melt pool temperature of experiment 1 (p = 2,400, v =
10, f = 18).

TABLE 3 Evaluation results of each model.

Ridge regression LSTM PSO-LSTM

R2 0.468 0.815 0.925

MAE 54.26 42.67 23.29

RMSE 66.72 57.45 37.42
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Using ridge regression as the control group, the prediction results
are shown in Figure 9: the red curve represents the true temperature
values, and the blue curve represents the predicted temperature
values.

The LSTM and PSO-LSTM prediction results are shown in
Figure 10. The prediction results show that the ridge
regression model has the worst prediction accuracy. This
suggests that machine learning algorithms with low flexibility
are not as capable of modeling non-linear relationships for
complex time-series data and cannot achieve accurate
predictions; The prediction curve of the PSO-LSTM model
proposed in this study is closer to the real melt pool
temperature curve, especially at large temperature
fluctuations, and the prediction effect of the PSO-LSTM is
better than that of other models.

To further validate the predictive performance of the model,
Table 3 shows the results of the evaluation metrics calculated for
each predictive model. The RMSE andMAE evaluation indicators of
the PSO-LSTM model are lower than the other two models; In the
coefficient of determination (R2) evaluation criteria, the PSO-LSTM
model calculates results closer to 1 than other prediction models.
The results show that the prediction accuracy of the PSO-LSTM
model is higher than the prediction accuracy of other models.

To further validate the accuracy, stability and general
applicability of the PSO-LSTM model, three models were used to
predict the melt pool temperature for Experiment 2. The process
parameters for experiment 2 are as follows: laser power 2,400 w,
scanning speed 10 mm/s and powder feed rate 18 g/min. Again

using Ridge regression as a reference, the predicted results are shown
in Figure 11.

The predicted melt pool temperatures for the LSTM and PSO-
LSTM are shown in Figure 12. The results show that PSO-LSTM has
the best prediction performance, and Ridge regression has the worst.

Table 4 shows the evaluation metrics for each model for
Experiment 2. Comparing the PSO-LSTM model to the other
two models, the MSE and MAE assessment indices are lower for
the PSO-LSTM model; the PSO-LSTM model generates
outcomes that are closer to 1 than other prediction models in
terms of the coefficient of determination (R2) assessment
criterion. This shows that PSO-LSTM has the best prediction
performance.

5 Conclusion

In order to achieve accurate prediction of real-time melt pool
temperature, a PSO-LSTM based melt pool temperature
prediction method is proposed in this paper. Based on Ridge
regression, LSTM, and PSO-LSTM methods, three melt pool
temperature prediction models were created. Perform different
experiments to validate and train the models. The following
conclusions were obtained:

1) A PSO-LSTM basedmelt pool temperature prediction model was
developed using the PSO algorithm to optimize the learning rate
and the number of hidden layer units of the LSTM model. The
results show that the PSO-LSTM can accurately predict real-time
melt pool temperatures, and in particular predicts temperature
trends at sharp temperature fluctuations better than other
models.

2) Based on the experimental results, a comparison of the predictive
performance of PSO-LSTM, LSTM models and ridge regression
models is performed. The PSO-LSTM model has lower values of
MAE and RMSE evaluation indicators than other models, and
the coefficient of determination is closer to 1. The PSO-LSTM
model has better predictive performance than other models and

FIGURE 12
Comparison of prediction results of different models. (A) LSTM predicts melt pool temperature; (B) PSO-LSTM predicts melt pool temperature.

TABLE 4 Experiment 2(p = 2,400 w, v = 10 mm/s, f = 18 g/min) evaluation
results for each model.

Ridge regression LSTM PSO-LSTM

R2 0.493 0.827 0.968

MAE 52.24 34.85 14.93

RMSE 64.73 49.67 26.67
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can predict the melt pool temperature more accurately,
providing guidance for real-time regulation of the melt pool
temperature.

3) In this study, prediction of molten pool temperature in laser solid
forming were carried out, with high agreement between
predicted and real temperatures. However, other performance
index of cladding layer such as laser cladding height and tensile
strength need to be modeled and predicted to guide the
application of LSF process in the future study. In addition to
the machine algorithms used in this paper, more advanced
machine learning algorithms can be used to build optimal
prediction models.
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