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The functional effects of medications, such as those that slow down and calm the
body, have been investigated for the polarized diffusion coefficient based on the
subsequent increase through magnetism. This study examines generalized
Mittag–Lefer kernel-based fractional derivatives in MHD Brinkman-type fluids
under bioconvection that contain hybrid titanium dioxide (TiO2) and silver (Ag)
nanoparticles with water (H2O) and sodium alginate (NaC6H7O6) as the base fluids.
Atangana–Baleanu (AB) and Caputo–Fabrizio (CF) fractional derivatives, which are
two contemporary definitions of fractional-order derivatives with a memory
effect, were used to explore the modified fractional model utilizing the Laplace
transformation and certain numerical algorithms. The impacts of restrictions on
various nanoparticles were investigated and graphically displayed. We observed
that the volumetric fraction improvement controls the fluid velocity by slowing it
down. The water-based hybrid nanofluid has a greater influence on the
temperature and momentum fields than the sodium alginate-based hybrid
nanofluid due to the physical characteristics of the explored nanoparticles and
base fluids. Additionally, the memory effect causes a higher substantial value for
the AB-fractional derivative of the velocity profile than the CF-fractional derivative.
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Abbreviations:W, fluid velocity (m/s); t, times (s); g, gravity acceleration (m/s2); knf , thermal conductivity
of the nanofluid (W

mk); Cf , skin friction (−); ρnf nanofluid density (Kg
m3); U0, characteristic velocity (ms−1); θ,

angle of magnetic inclination (−);Gm, mass Grashof number (−); μnf , dynamic viscosity (Kgms); Preff , Prandtl
number (−); Tw , wall temperature, (K); Gr, heat Grashof number (−); Td, ambient temperature (K); α, β,
fractional parameters (−); Sc, Schmidt number (−);M, magnetic field (−); D, thermal diffusion coefficient
(−); (ρCp)nf , heat capacitance of the nanofluid (−); Bo , magnetic field strength (Kg/s2);Cp, specific heat at
constant pressure (J/kgK); βT , thermal expansion coefficient (1/k); σ, electrical conductivity (−); Nu,
Nusselt number (−); Sh, Sherwood number (−).
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1 Introduction

Channel flow has been applied in various industrial fields
including chemical reactors in pharmacological manufacturing
and thermal exchangers in energy plants. Although various
natural phenomena and Newtonian actions in equal stages may
be named two-phase movements, there are many related
applications where the constant fluid segment displays non-
Newtonian movement characteristics. In the last two decades, the
impact of numerous heat transfer behaviors in the industry and
engineering sectors has benefited from and been improved by
nanofluid science. The development of a hybrid nanofluid is
another recent advancement in nanotechnology. This new
product combines at least two substances with various physical
and chemical features such as heat flow and thermal conductivity. In
essence, the development of a hybrid nanofluid has completely
transformed this new product. Numerous researchers have
become interested in nanofluids due to their thermal solid
conductivity performance. Examples abound in the biomedical,
biochemical, and food distribution industries (Bräuer et al.,
2021). Zheng et al. (2021) explored how a vortex maker formed
affected fluids and the thermal conversion of HNFs in a channel.
D’Ippolito et al. (2021) evaluated the systematic scale conflict of
channel movement caused by vegetation. Using the CF derivative,
Haq et al. (2020) developedMHD’s fractional viscid fluid impact in a
channel across a permeable surface.

The exceptional perception of nanoscience to increase the
amount of heat sources has motivated researchers due to the
constantly growing requirement for heat storage. For example,
thermal transmission properties are claimed in fields ranging
from biomedical to manufacturing industries. Improvements in
thermal efficiency provide an advantage for plasma research,
electronic equipment like computer chips, nuclear reactors,
electricity generation, space cooling, and many others. The
macroscopic fluid convection motion phenomenon, which is
known as “bioconvection,” is caused by the thickness angle
formed by the mass of directional swimming microorganisms.
Bioconvection was a fundamental principle introduced by Plat in
1961. Bioconvection is used, among other things, in the
manufacturing of biological polymers in biotechnology and
biosensors and in the testing and lab equipment sectors (Platt,
1961; Asjad et al., 2021). Sisko’s three-dimensional radiative
bioconvective stream was used by Ge-JiLe et al. (2021) to analyze
nanofluids containing moving microorganisms. Ramzan et al.
(2021) showed the occurrence of bioconvection in a three-
dimensional meandering hyperbolic partially ionized magnetized
nanofluid stream with Cattaneo–Christov heat flux and activation
vitality. An examination of magneto-bioconvective enhancement
and thermal conductivity in a nanofluid stream containing
gyrotactic microorganisms was conducted by Alhussain et al.
(2021). Farooq et al. (2021) adjusted Cattaneo–Christov
equations and exponential space-based heat sources to account
for a thermally radioactive Carreau nanofluid bioconvection flow.
Yusuf et al. (2021) investigated the role of gyrotactic bacteria and
entropy generation in the movement of Williamson nanofluids
across an inclined plate. A Brinkman-type fluid (BTF) fractional
model utilizing hybrid nanoparticles was examined by Saqib et al.
(2020). Danish Ikram et al. considered the heat transfer of an

exponentially moving vertical plate over a viscous fluid
containing clay nanoparticles. Using a hybrid fractional operator,
Asjad et al. (2020) looked into the thermophysical characteristics of
clay nanofluids. Using a constant and proportional Caputo
fractional operator, Ikram et al. (2021) established a fractional
model of a Brinkman-type fluid transporting hybrid
nanoparticles in a confined microchannel.

A specific or isolated nanomaterial might exhibit extraordinary
thermophysical or rheologic properties in addition to the excellent
and typical requirements for a certain use. HNF is controlled to
maintain different properties despite the multiple applications. An
advanced NF, which is called a hybrid nanofluid, combines “two or
more distributed NPs in the base liquid.” The purpose of examining
HNFs is to improve various thermal processes, such as heat transfer,
highly well-organized heat conductivity, and solidity, by balancing
the benefits and drawbacks of remarkable suspensions. Examples of
these processes include the refrigeration of generators, cooling
systems for machines, electric refrigeration, refrigeration of
converters, and atomic structure refrigeration. HNFs’ capacities
to improve thermal conductivity offers an opportunity to account
for them in real-valued energy models. An HNF was tested over a
porous surface in motion along with alumina NPs in Waini et al.
(2019), and studies of the volume fraction for copper NPs were
confirmed. To simulate the HNF, two NPs were included in the
composite along with water. To study the mobility of HNF (Al2O3-
CuO/H2O), Ashwinkumar et al. (2021) used radiation passing
through a vertical plate and cone. Their research focused on
contrasting two different forms and the characteristics of HNF
flow. Samrat et al. (2022) considered heat transmission when
analyzing the movement of NF and HNF due to the stretched
surface. Characteristic groundwork investigations completed on
HNFs have also been conducted (Raza et al., 2019; Anuar et al.,
2020; Sulochana et al., 2020; TÜRKYILMAZOĞLU, 2021; Ibraheem
et al., 2022; Raza et al., 2022; Turkyilmazoglu, 2022; Zhang et al.,
2022; Turkyilmazoglu and Altanji, 2023).

The field of fractional calculus is rapidly expanding due to the
wide variety of processes that it can be applied to every day.
Numerous definitions of fractional derivatives have been
published in the literature due to the curiosity of academics. A
fractional-order derivative based on an exponential function was
created by Caputo–Fabrizio (CF) to address the challenges with
earlier research on the singularity problem of the kernel. However,
the fractional model of Caputo and Fabrizio lacks a specific kernel.
This idea of fractional order has received significant attention in
recent studies in the area of fractional calculus. Understanding the
viscoelastic and rheologic properties of HNFs in detail are difficult
due to the self-similar properties and memory-taking capacities of
fractional operators. They provide a reasonable explanation for the
behavior and heat efficiency of nanofluids. These operators have
frequently been used to mimic and examine the specifics of various
natural formations over the past few years. Fractional derivatives are
widely applicable in signal processing, epidemiology, population
modeling, economics, dynamic structures, fluid dynamics,
electrochemistry, and many other fields. The three most
fundamental standard fractional operators in fractional calculus
depend on the convolution of regular derivatives and distinctive
kernels. The two leading derivatives in this hierarchy are Riemann-
Liouville and Caputo’s derivatives, where the first operator
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complicates a power-law kernel (Podlubny, 1999). Due to its
widespread use, the definition of CF has been used by numerous
researchers for a variety of scientific inquiries. The kernel’s non-
locality, which is a difficulty in the definition of CF, was addressed by
Atangana and Nieto (2015) in a new formulation. The most current
explanation of fractional derivatives without these problems was
given by Atangana (2016). AB derivatives are rarely used in research,
and this word is brand-new. Arif et al. (2019) used this most recent
concept of AB-fractional derivatives to compare these two ideas, and
the current issue is also applied to CF-fractional derivatives. In
addition, this study solves the well-known pair stress fluid model
with an external pressure gradient in a closed-form channel. Even
though they employed the Caputo and CF-fractional model, Akhtar
(2016) estimated the closed-form solutions (CSF) in channels. To
avoid these obstacles, Atangana and Baleanu produced a novel
operator whose mathematical expansion encompasses the
convolution of the regular derivative and a general kernel, which
is included in the Mittag–Leffler function (Atangana and Baleanu,
2016). Currently, in perceiving the worth of fractional-order
operators, an extensive range of investigators has explored real-
life phenomena in fractional situations rather than in regular
contexts. Asjad et al. (2022) investigated the fractional
bioconvection nanofluid solution moving through a channel.
Investigations on heat transfer and fluid problems were
conducted using local and non-local kernel approaches by Ali
et al. (2022a) and Ali et al. (2022b). Tarasov explained how a
novel rebellion, “memory revolution,” occurred in present
mathematical economics just because of fractional derivatives and
corresponding integrals. The investigation of neurology has also
been impacted by the initiation of fractional calculus (Tarasov, 2019;
Riaz et al., 2022).

In the absence of fractional bioconvection, those previously
mentioned were carried out by or lacking fractional approaches.
However, the fundamental purpose is to combine these two
fascinating topics: bioconvection and fractional operators. In the
previous literature, we did not find any investigation on the focus of
fractional bioconvection of an applied magnetic field on a naturally
occurring Brinkman-type flow of a hybrid nanofluid over two
parallel plates with CF- and AB-fractional derivative approaches.
Consequently, we applied the Laplace transformmethod to solve the
thermal transmission and fluid flow problems of bioconvection. In
addition, graphical analysis was applied to present a graphical
description of the diverse flow parameters.

2 Description of the problem

Suppose an incompressible, unsteady, and free convective
Brinkman-type hybrid nanofluid moves along the path of two
parallel plates with characteristics of mass diffusion and
temperature gradient, as described in Figure 1. Both plates are
fixed in the xy-plane at a distance d that is vertical to the y-axis
and parallel to the x-axis. The whole system, including the fluid and
any relevant limitations, is initially at t � 0 in the rest position. One
plate starts to move at time t> 0+ as a result of the imposed time-
dependent shear force. The hybrid nanofluid made of water and
sodium alginate begins to flow between the poured plates as a result
of oscillations and the rise in temperature. The flowing fluid is

subjected to a consistent magnetic field with an inclination angle of
ϑ. For this flow model, the following suppositions are used.

• The length of the parallel plates is infinite with width d.
• The poured plates are vertical to the y-axis and oriented in the
x-direction.

• At t≤ 0, both temperature and bioconvection have constant
values as Td and Nd, respectively.

• Different nanoparticles in the mixed hybrid nanofluid
accelerate in the x-direction.

• The constant magnetic field of strength Bo is applied to the
flowing fluid.

By utilizing Boussinesq’s (Mayeli and Sheard, 2021) and
Roseland approximations (Chu et al., 2020), the governed partial
differential equations can be formulated as follows (Asjad et al.,
2022):

ρhnf
zw y,t( )

zt
+ ρhnfβ1

*w y,t( ) � μhnf
z2w y,t( )
zy2

− σhnfB
2
o sin θ( )w y,t( )

− μhnfφhnf

K
w y,t( ) + g ρβT( )hnf T y,t( ) − To( )(

−γ ρm − ρ( ) N y,t( ) −No( )), (1)

ρCp( )
hnf

zT y,t( )
zt

� khnf
z2T y,t( )
zy2

, (2)

zN y,t( )
zt

� D
z2N y,t( )
zy2

, (3)

where ρhnf, μhnf, σhnf, (ρCp)hnf, khnf and D represent the dynamic
density viscosity, electrical conductivity, volumetrically thermal
expansion, heat capacitance of the nanofluid, thermal
conductivity, and thermal diffusion coefficient, respectively. Its
corresponding boundary conditions are as follows:

FIGURE 1
Flow geometry.
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w y,0( ) � 0, T y,0( ) � To, N y,0( ) � No; ∀y≥ 0 (4)
w 0,t( ) � 0, T 0,t( ) � To, N 0,t( ) � No ; y � 0 (5)

w d,t( ) � UoH t( ) cos ωt( ), zT
zy

∣∣∣∣∣∣∣∣
y�d

� −h
k
T d,t( ), N d,t( ) � Nw (6)

The initial conditions of the entire system are considered in Eq. 4
at t � 0, where in Eq. 5, the boundary conditions are taken at y � 0
in which the whole system is in a rest position for y � 0, where in the
last boundary condition (6) at y � d, the rate of shear stress and the
Newtonian heating effect are considered with the constant
bioconvection parameter. Now that the following dimensionless
variables have been included, the linked governed equations may not
be analyzed with the dimension of influence of all influencing
parameters as follows:

w* � d

]f
w, t* � ]t

d2
, y* � y

d
, T* �

T y,t( ) − To

Tw − To
,

N* � N y,t( ) −No

Nw −No
, λhnf � khnf

kf
,

Sc � ]
D
, M � σfd2B2

o

μf
, Gr � gβTd

3 Tw − To( )
]2

,

Ra � γ ρm − ρ( ) Nw −No( )
ρf βT( )f Tw − To( ) , N � Gm

Gr
,

Keff � ]φ
K*U2

o

, Pr � μfCp

kf
, Gm � gβC Nw −No( )d3

]2
,

ϕo � 1 − φ( ) + φ
ρs
ρf
,

ϕ1 �
1

1 − φ( )2.5, ϕ2 � 1 +
3 σs

σf
− 1( )φ

σs
σf
+ 2( ) − σs

σf
− 1( )φ,

ϕ3 � 1 − φ( ) + φ
ρβT( )s
ρβT( )f,

Λo � 1 − φ( ) + φ
ρβC( )s
ρβT( )f, Λ1 � ]f

Dhnf
,

and utilizing the aforementioned none-dimensional constraints in
the governed equations and conditions (1)–(6), one can obtain the

following results by adjusting the abovementioned dimensionless
variables while ignoring the ″*″ symbols:

ϕo

zw y,t( )
zt

� ϕ1

z2w y,t( )
zy2

− β1w y,t( ) − ϕ2Msin θ( ) +Keff( )w y,t( )
+ Gr ϕ3T y,t( ) − RaN y,t( )( ),

(7)

Λo

zT y,t( )
zt

� z2T y,t( )
zy2

, (8)

Λ1

zN y,t( )
zt

� z2N y,t( )
zy2

, (9)

with consistent dimensionless circumstances

w y,0( ) � 0, T y,0( ) � 0, N y,0( ) � 0, (10)
w 0,t( ) � 0, T 0,t( ) � 0, N 0,t( ) � 0, (11)

w d,t( ) � H t( ) cos ωt( ), zT
zt

∣∣∣∣∣∣∣y�d � − 1 + T d,t( )( ), N d,t( ) � 1, (12)

where M,Gr, β1, Keff, Gm, Ra stand for the applied magnetic field
constraint, heat Grashof number, Brinkman fluid parameter,
porosity, mass Grashof number, and the dimensionless
bioconvection Rayleigh number, respectively. The hybrid
nanofluid model, base material, and solid nanoparticles’ thermal
characteristics are listed in Tables 1 and 2.

3 Basic preliminaries

In the fractional modeling of the set, as mentioned
previously for the governing equations, the ABC (Atangana
and Baleanu, 2016) and CF (Caputo and Fabrizio, 2015)
formulations are employed, and these temporal derivatives
are specified as follows:

ABCDβ
t f y, t( ) � 1

1 − β
∫t
0

Eβ
β t − τ( )β
1 − β

( ) zf y, τ( )
zτ

dτ,

with its LT

TABLE 1 Quantities of hybrid nanofluids’ thermophysical properties.

Thermal feature Regular nanofluid Hybrid nanofluid

Density ρf � ρnf
(1−φ)+φ ρs

ρs

ρf � ρhnf
((1−φ2)((1−φ1)+φ1

ρs1
ρf
)+φ2ρs2)

Dynamic viscosity μf � μnf(1 − φ)2.5 μf � μhnf(1 − φ1)2.5(1 − φ2)2.5

Electrical conductivity σf � σnf

(1+
3(σsσf−1)φ

(σsσf+2)−(σsσf−1)φ)
σbf � σhnf

(1+ 3φ(φ1σ1+φ2σ2−σbf(φ1+φ2))
(φ1σ1+φ2σ2+2φσbf−φσbf(φ1σ1+φ2σ2−σbf(φ1+φ2 ))))

Thermal conductivity kf � knf

(ks+(n−1)kf−(n−1)(kf−ks )φ
ks+(n−1)kf+(kf−ks )φ )

kbf � khnf

(ks2+(n−1)kbf−(n−1)(kbf−ks2)φ2
ks2+(n−1)kbf+(kbf−ks2 )φ2 )

and kf � kbf

(ks1+(n−1)kf−(n−1)(kf−ks1)φ1
ks1+(n−1)kf+(kf−ks1)φ1 )

Heat capacitance (ρCp)f � (ρCp)nf
(1−φ)+φ (ρCp)s

(ρCp )f
(ρCp)s � (ρCp)hnf

(1−φ2)((1−φ1)+φ1
(ρCp)s1
(ρCp )f)+φ2(ρCp)s2

Thermal expansion coefficient (ρβ)f � (ρβ)nf
(1−φ)+φ (ρβ)s

(ρβ)f
(ρβ)f � (ρβ)hnf

(1−φ2)((1−φ1)+φ1 (ρβ)s1(ρβ)f1)+φ2(ρβ)s2
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L{ABCDβ
t f y, t( )} � qβL f y, t( ){ } − qβ−1f y, 0( )

1 − β( )qβ + β
. (13)

The mathematical form of the CF-fractional derivative is
(Caputo and Fabrizio, 2015)

CFDα
t g y, t( ) � 1

1 − α
∫t
0

exp
α 1 − τ( )
1 − α

( )g′ τ( )dτ,

and the LT of the CF-fractional derivative is

L{CFDα
t g y, t( )} � sL g y, t( ){ } − g y, 0( )

1 − α( )s + α
. (14)

4 Solution with the AB-fractional
derivative

4.1 Solution of the temperature profile

The solution of the non-dimensional equation of the
temperature field can be represented as follows in the sense of
the AB-time fractional derivative:

ΛABC
o Dβ

t T y,t( ) �
z2T y,t( )
zy2

,

with

zT

zy

∣∣∣∣∣∣∣∣y�d � − 1 + T 1,t( )( ), T 0,t( ) � 0.

The result of the temperature field can be found by applying the
Laplace transformation to the abovementioned equation and
utilizing the relevant conditions as follows:

�T y,q( ) �
1

q
�������

Λo qβ

1−β( )qβ+β
√

− 1( )
Sinh y

�������
Λo qβ

1−β( )qβ+β
√[ ]

Sinh
�������

Λo qβ

1−β( )qβ+β
√[ ] . (15)

The Laplace inverse of the solution, as described previously, will
be numerically evaluated using Stehfest and Tzou’s methods in
Tables 3–5.

4.2 Solution of the bioconvection profile

In terms of the AB-time fractional derivative, the solution of a
non-dimensional equation of the bioconvection profile may be
attained by employing the Laplace transformation on the
governed equations in terms of the AB-time fractional derivative,
and we get

Λ1
qβ

1 − β( )qβ + β
( ) �N y,q( ) �

z2 �N y,q( )
zy2

, (16)

with the corresponding conditions

�N 1,q( ) �
1
q
, �N 0,q( ) � 0.

By using the aforementioned conditions and Eq. 16, the solution
of the bioconvection profile can be derived as

�N y,q( ) �
1
q

Sinhy
�������

Λ1 qβ

1−β( )qβ+β
√[ ]

Sinh
�������

Λ1 qβ

1−β( )qβ+β
√[ ] . (17)

TABLE 2 Thermal features of nanoparticles and regular fluids.

Material NaC6H7O6 H2O TiO2 Ag

ρ(kg/m3) 989 997.1 425 10,500

Cp(J/kgK) 4,175 4,179 6,862 235

k(W/mK) 0.6376 0.613 8.9538 429

βT × 10−5(K−1) 18 21 0.9 1.89

TABLE 3 Numerical analysis of numerical algorithms at different times.

y T(y,t) by Stehfest T(y,t) by Tzou’s N(y,t) by Stehfest N(y,t) by Tzou’s W(y,t) by Stehfest W(y,t) by Tzou’s

0.1 0.0280 0.0294 0.0617 0.0630 0.1603 0.1643

0.2 0.0566 0.0595 0.1254 0.1279 0.3151 0.3229

0.3 0.0866 0.0908 0.1933 0.1969 0.4584 0.4689

0.4 0.1158 0.1240 0.2674 0.2719 0.5839 0.5986

0.5 0.1531 0.1599 0.3502 0.3554 0.6845 0.7021

0.6 0.1913 0.1991 0.4442 0.4498 0.7520 0.7720

0.7 0.2332 0.2426 0.5526 0.5580 0.7770 0.7990

0.8 0.2817 0.2911 0.6786 0.6832 0.7481 0.7724

0.9 0.3361 0.3451 0.8267 0.8236 0.6545 0.6795
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TABLE 4 Numerical analysis of governed solutions with the AB- and CF-fractional derivatives at t = 0.5

y T(y,t) by AB T(y,t) by CF N(y,t) by AB N(y,t) by CF W(y,t) by AB W(y,t) by CF

0.1 0.0333 0.0360 0.0650 0.0659 1.1174 1.0972

0.2 0.0672 0.0726 0.1320 0.1337 1.0630 1.0432

0.3 0.1023 0.1103 0.2028 0.2053 0.9906 0.9711

0.4 0.1390 0.1495 0.2793 0.2825 0.9018 0.8829

0.5 0.1782 0.1910 0.3639 0.3675 0.7966 0.7782

0.6 0.2204 0.2352 0.4588 0.4626 0.6695 0.6517

0.7 0.2663 0.2828 0.5667 0.5704 0.5092 0.4922

0.8 0.3166 0.3345 0.6901 0.6937 0.2926 0.2764

0.9 0.3724 0.3910 0.8337 0.8356 0.0324 0.0463

TABLE 5 Numerical analysis of the Nusselt number and skin friction coefficient at different times.

α, β Nu at t � 0.5 Nu at t � 1.0 Cf at t � 0.5 Cf at t � 1.0

0.1 0.8830 0.8839 1.8983 0.8842

0.2 0.8821 0.8861 1.8353 0.8332

0.3 0.8807 0.8906 1.7467 0.7590

0.4 0.8791 0.8982 1.6349 0.6644

0.5 0.8771 0.9105 1.4992 0.5483

0.6 0.8768 0.9287 1.3348 0.4067

0.7 0.8762 0.9544 1.1312 0.2318

0.8 0.8717 0.9876 0.8687 0.0892

0.9 0.8294 1.0239 0.5108 0.0285

TABLE 6 Numerical analysis of attained results with the ordinary derivative and Asjad et al. (2022).

α, β Velocity by AB Velocity by CF Velocity by ordinary derivative α, β → 1 Velocity by Asjad et al. (2022)

0.1 0.2151 0.2182 0.2347 0.2264

0.2 0.4236 0.4297 0.4623 0.4460

0.3 0.6186 0.6277 0.6753 0.6516

0.4 0.7928 0.8047 0.8661 0.8357

0.5 0.9385 0.9529 1.0261 0.9903

0.6 1.0483 1.0633 1.1464 1.1064

0.7 1.1082 1.1269 1.2164 1.1742

0.8 1.1118 1.1319 1.2245 1.1822

0.9 1.0445 1.0657 1.1569 1.1172
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FIGURE 2
N(y,t) due to variation in fractional parameters with φ � 0.02and t � 0.8.

FIGURE 3
T(y,t) due to variation in fractional parameters with φ � 0.02 and t � 0.8.

FIGURE 4
W(y,t) due to variation in α, β with φ � 0.02,M � 1.65,Ra � 1.2,Keff � 0.7,Gr � 8.0,Gm � 6.3, β1 � 1.5, θ � π/4, and t � 0.8.
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FIGURE 5
W(y,t) due to variation in φ with α, β � 0.5,M � 1.65,Ra � 1.2,Keff � 0.7,Gr � 8.0,Gm � 6.3, β1 � 1.5, θ � π/4, and t � 0.8.

FIGURE 6
W(y,t) due to variation in Keff with α, β � 0.5,φ � 0.02,M � 1.65,Ra � 1.2,Gr � 8.0,Gm � 6.3, β1 � 1.5, θ � π/4, and t � 0.8.

FIGURE 7
W(y,t) due to variation in Gr with α, β � 0.5,φ � 0.02,M � 1.65,Ra � 1.2,Keff � 0.7,Gm � 6.3, β1 � 1.5, θ � π/4, and t � 0.8.
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FIGURE 8
W(y,t) due to variation in Gm with α, β � 0.5,φ � 0.02,M � 1.65,Ra � 1.2,Keff � 0.7,Gr � 8.0, β1 � 1.5, θ � π/4, and t � 0.8.

FIGURE 9
W(y,t) due to variation in M with α, β � 0.5,φ � 0.02,Ra � 1.2,Keff � 0.7,Gr � 8.0,Gm � 6.3, β1 � 1.5, θ � π/4, and t � 0.8.

FIGURE 10
W(y,t) due to variation in θ with α, β � 0.5,φ � 0.02,M � 1.65,Ra � 1.2,Keff � 0.7,Gr � 8.0,Gm � 6.3, β1 � 1.5, and t � 0.8.
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The Laplace inverse of the aforementioned Eq. 17 will
be analyzed numerically in Tables 3–5 with numerical
algorithms.

4.3 Solution of the velocity profile

For the solution of the velocity profile by employing the LT on
the non-dimensional governed equation of the velocity field in
Eq. 7,

z2 �w y,q( )
zy2

− 1
ϕ1

ϕ2Msin θ( ) + Keff + β1 + ϕoq( ) �w y,q( )

� −Gr
ϕ1

ϕ3
�T y,q( ) − Ra �N y,q( )( ), (18)

with
�w(d,q) � q

q2+ω2 and �w(0,q) � 0.With the help of the
aforementioned conditions, the solution of the momentum
profile is as follows:

�w y,q( ) �
Sinh y

����������������������������
1
ϕ1

ϕ2Msin θ( ) +Keff + β1 + ϕoq( )√⎛⎝ ⎞⎠
Sinh

����������������������������
1
ϕ1

ϕ2Msin θ( ) +Keff + β1 + ϕoq( )√⎛⎝ ⎞⎠
⎛⎝ ϕ3Gr

qϕ1

�����
Λo q

β
√

−
�����������
1 − β( )qβ + β

√( )�����������
1 − β( )qβ + β

√
Λo q

β

1 − β( )qβ + β
− 1
ϕ1

ϕ2Msin θ( ) +Keff + β1 + ϕoq( )
+Gm
q ϕ1

1

Λ1 q
β

1 − β( )qβ + β
− 1
ϕ1

ϕ2Msin θ( ) +Keff + β1 + ϕoq( )
+ q

q2 + ω2) −
ϕ3Gr

qϕ1

�����
Λo q

β
√

−
�����������
1 − β( )qβ + β

√( )�����������
1 − β( )qβ + β

√
Λo q

β

1 − β( )qβ + β
− 1
ϕ1

ϕ2Msin θ( ) +Keff + β1 + ϕoq( )
Sinh y

�����������
Λo q

β

1 − β( )qβ + β

√⎛⎝ ⎞⎠
Sinh

�����������
Λo q

β

1 − β( )qβ + β

√⎛⎝ ⎞⎠ + Gm

q ϕ1

1

Λ1 q
β

1 − β( )qβ + β
− 1
ϕ1

ϕ2Msin θ( ) +Keff + β1 + ϕoq( )
Sinh y

�����������
Λ1 q

β

1 − β( )qβ + β

√⎛⎝ ⎞⎠
Sinh

�����������
Λ1 q

β

1 − β( )qβ + β

√⎛⎝ ⎞⎠ . (19)

FIGURE 11
W(y,t) due to variation in β1 with α, β � 0.5,φ � 0.02,M � 1.65,Ra � 1.2,Keff � 0.7,Gr � 8.0,Gm � 6.3, θ � π/4, and t � 0.8.

FIGURE 12
Comparison of W(y,t) for AB- and CF-fractional derivatives at (A) t � 0.5 and (B) t � 1.0.
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5 Solution with the CF-fractional
derivative

5.1 Solution of the temperature field

The following representation shows the evaluation of the non-
dimensional temperature field solution using the CF-time fractional
derivative

ΛoCFD
α
t T y,t( ) �

z2T y,t( )
zy2

with

zT

zy

∣∣∣∣∣∣∣∣y�d � − 1 + T 1,t( )( ), T 0,t( ) � 0.

The solution of the temperature field will be obtained by
applying Laplace to the preceding equation and employing the
appropriate conditions as follows:

�T y,s( ) �
����������
1 − α( ) s + α

√
s
����
Λo s

√ − ����������
1 − α( )s + α

√( ) Sinh y
������
Λo b1 s

1+ b1−1( )s
√[ ]

Sinh
������
Λo b1 s

1+ b1−1( )s
√[ ] . (20)

Using Stehfest and Tzou’s techniques in Tables 3–5, the Laplace
inverse of the aforementioned solution will be numerically examined.

5.2 Solution of the bioconvection field

By using the Laplace transformation on the guided equations
in terms of the CF-time fractional derivative, we gain the solution
of a non-dimensional equation of the bioconvection profile as
follows:

Λ1
s

1 − α( )s + α
( ) �N y,s( ) �

z2 �N y,s( )
zy2

,

with the following conditions

�N 1,s( ) � 1
s
, �N 0,s( ) � 0.

By using the aforementioned conditions, the solution of the
bioconvection profile in terms of the CF-fractional derivative can be
derived as follows:

FIGURE 13
Comparison of governed equations for different numerical schemes.
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�N y,s( ) �
1
s

Sinhy
������
Λ1 b1 s

1+ b1−1( )s
√[ ]

Sinh
������
Λ1 b1 s

1+ b1−1( )s
√[ ] . (21)

The Laplace inverse of Eq. 21 will be numerically analyzed using
the techniques in Tables 3–5.

5.3 Solution of the velocity profile

The solution of the velocity profile is obtained by employing the
LT on the non-dimensional governed equation of the velocity field
(Eq. 7):

ϕ1

z2 �w y,s( )
zy2

− β1 + ϕos( ) �w y,s( ) − ϕ2Msin θ( ) +Keff( ) �w y,s( )
+ Gr ϕ3

�T y,s( ) − Ra �N y,s( )( ) � 0,

(22)

with

�w(d,s) � s
s2+ω2 and �w(0,s) � 0

�w y,s( ) �
Sinh y

������������������������
1
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√
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sϕ1

1
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1 − α( )s + α −
1
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ϕ2Msin θ( ) + Keff + Θ1s( )
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√⎛⎝ ⎞⎠ . (23)

Analyzing the results of the momentum, concentration, and
temperature profiles is difficult. We also employed numerical
approaches for the Laplace inverse, specifically Stehfest and Tzou’s
numerical schemes, as numerous authors have previously performed.
The mathematical formulations of these algorithms (Raza et al.,
2021a; Raza et al., 2021b; Guo et al., 2021) can be characterized as

FIGURE 14
Comparison of the validity of governed equations with the attained results of Asjad et al. (2022).
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U y, t( ) � ln 2( )
t
∑N
n�1

vn �U y, n
ln 2( )
t

( ),
vn � −1( )n+N

2 ∑min q,N2( )

r� q+1
2[ ]

r
N
2 2r( )!

N
2 − r( )!r! r − 1( )! q − r( )! 2r − q( )!,

and

U y, t( ) � e4.7

t

1
2
�U r,

4.7
t

( ) + Re ∑N
j�1

−1( )k �U r,
4.7 + kπi

t
( )⎧⎨⎩ ⎫⎬⎭⎡⎢⎢⎣ ⎤⎥⎥⎦.

6 Discussion of the results

Bioconvection is investigated by employing the combined
effects of porosity and the applied magnetic field on a naturally
occurring Brinkman-type flow of a viscous and incompressible
HNF (Ag-TiO2-H2O and Ag-TiO2-C6H9NaO7) over two parallel
plates. The thermal transmission and fluid flow model is
fractionalized with two fractional techniques (AB- and CF-
fractional derivatives). The Laplace transformation approach is
utilized to solve the governing equations. The impact of different
constraints has been analyzed graphically with their ranges as
follows: 0.1< α, β< 0.9; 0.01<φ< 0.04; 0.1<Keff < 2.0;
4.0<Gr< 12.0; 2.0<Gm< 10; 0.5<M< 2.0; 0< θ < π

2;

and 0.5< β1 < 2.5. Finally, graphical representations are applied to
clarify the physical impacts of flow parameters in Figures 2–14.

Figure 2A illustrates the influence of the fractional parameter
β on bioconvection. The growing value of β causes a decline in
bioconvection. This results in a decrease in bioconvection as the
boundary layer enlarges. Figure 2B shows the effects of α, β and
both AB and CF-fractional operators on bioconvection, and we
noted that bioconvection is also reduced by increasing the
fractional parameters α and β. Moreover, the effect of the AB
derivative approach is higher than the CF derivative approach,
which is due to the different kernels (Mittage–Leffler and
exponential-based kernels) of both fractional operators. In
fluid mechanics, we usually see that a fractional method is
better for controlling the boundary layer viscosity of fluid
characteristics. In addition, we found that compared to a
silver–titanium dioxide sodium alginate HNF, the
bioconvection profile for HNF based on water and silver
titanium dioxide has a comparatively larger impact.

Figure 3A shows that the temperature field declined by
increasing β. As the boundary layer becomes extensive, the
temperature reduces, which is expected. Figure 3B shows the
effects of α, β and both AB and CF-fractional operators on the
temperature field and notes that the thermal profile is also reduced
by increasing fractional parameters α and β. Furthermore, the AB
derivative approach has a more substantial impact than the CF
approach, which is also a result of the different kernels used by the
relevant fractional operators (Mittage–Leffler and exponential-
based kernels). Additionally, we discovered that the heat profile
for silver–titanium dioxide sodium alginate HNF has a
substantially less significant impact than the temperature profile
for water–silver–titanium dioxide-based HNF.

Figure 4A shows that the velocity profile is reduced by increasing β,
which is due to the effect of theMittage–Leffler kernel. Figure 4B shows

the effects of α, β and both AB and CF-fractional operators on the
velocity profile, and the velocity profile is also reduced by increasing the
fractional parameters α and β. This is because as the boundary layer
widens, bioconvection and thermal and momentum fields decrease.
Typically, a fractional method is preferable in fluid dynamics for
adjusting the boundary layer thickness of the fluid characteristics.
Furthermore, the effect of the AB approach is higher than the CF
approach, which is also due to the different kernels of involved
fractional operators. Additionally, we detected that the velocity
profile for water–silver–titanium dioxide-based HNF has a relatively
more substantial effect than silver–titanium dioxide sodium alginate
HNF. The consequence of HNF is represented in Figures 5A, B. The
velocity is reduced for a more considerable value of φ. Actually, for
greater φ, the velocity is lessened due to the dominance of viscous
effects. It was found that the temperature might rise with larger φ

values and velocity-indicated drops. In the velocity field, the nanofluid
density is significant. When the base fluid and nanoparticles are
combined, the resulting hybrid nanofluids become thicker, which
reduces the velocity and increases the temperature.

Figures 6A, B represent the velocity diagrams to understand
the influence of Keff. The velocity displays a lessening trend for
larger values of Keff. When the holes in a porous media are
incredibly sufficient, the porous medium’s resistance can be
disregarded. Consequently, the velocity increases as the porous
surface develops resistance to the liquid. The impact ofGr is shown
in Figures 7A, B, and it was revealed that growingGr (more bouncy
influence) boots the fluid speed. Since the buoyancy forces increase
as Gr rises, the fluid velocity also rises. The velocity is also
increased with Gm, as observed in 8a and b. A higher Gm
improves the concentration gradient, which raises the buoyant
forces, and therefore, the fluid flow rises. Figures 9A, B indicate
that the velocity is decreased as we increase the values of M.
Physically, it responds to the drag force, which affects the velocity
that faces the fluid speed. This is true for large values ofM because
M strengthens the Lorentz forces, which tend to slow down the
velocity. The Lorentz forces are closest to the channel walls and
weakest in the center. As a result, the velocity is zero at the
channel’s edges and maximal in the middle, and therefore, the
velocity declines. Figures 10A, B show that the momentum profile
is inversely proportional to the inclination angle θ.

The Brinkman parameter β1 impacts the momentum, and the
field is presented in Figures 11A, B. The velocity decreases as the
value of β1 is enlarged. This occurs by growing the estimations of
β1, and the drag forces are stronger so that the velocity decreases.
Figures 12A, B indicate the comparison of the momentum
profiles for diverse HNFs (Ag-TiO2-H2O and Ag-TiO2-
C6H9NaO7) at different times. We see that Ag-TiO2-
H2O-based HNF has a significant effect on the velocity profile
compared to Ag-TiO2-C6H9NaO7-based HNF. By adding
different NPs in the base fluid, the consequent HNF develops
significantly thicker and reduces the velocity. Moreover, it is
prominent that the bioconvection, temperature, and momentum
profiles for water-based HNF have a relatively progressive value
compared to the sodium alginate-based HNF. Furthermore, the
effect of the AB approach is higher than the CF approach on the
bioconvection, temperature, and velocity fields, which is also due
to the different kernels of both fractional operators. To find the
numerical inverse Laplace for the temperature, bioconvection,
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and velocity fields, Figures 13A–C represent a comparison of
Tzou and Stehfest approaches and an overall decent agreement
was initiated. Furthermore, to check the reliability of our results,
Asjad et al. (2022) examined the consequences for the
temperature and bioconvection profiles, as compared in
Figures 14A, B. The diagrams indicate that the consequences
we accomplished overlap with those obtained by Asjad et al.
(2022). Table 3 shows the numerical assessment of the
bioconvection, temperature, and momentum fields using
various computational techniques. Table 4 provides a
numerical analysis of the attained solutions with AB- and CF-
fractional derivatives. The numerical possessions of the Nusselt
number and skin friction coefficient are shown in Table 5. Table 6
shows the numerical analysis of obtained results with ordinary
and published work (Asjad et al., 2022).

7 Conclusion

The free convective flow of an unsteady and incompressible
Brinkman-type flow mixed with (Ag, TiO2) hybrid nanofluid was
studied flowing through two parallel poured plates. A fractional
model was developed with the recent definitions of fractional
derivative, i.e., AB and CF-fractional derivatives, and solved with
the help of the Laplace transformation. The impact of different
constraints on the attained results of temperature, bioconvection,
and the momentum profile was analyzed graphically and
numerically. Some remarkable conclusions of this work can be
summarized as follows:

• This approach may be broadened to include more varied
physical science categories with intricate geometries.

• The enhancing value of Preff decelerates both the momentum
and thermal profiles.

• The bioconvection profile also decelerates by enhancing the
value of fractional constraints.

• The momentum field is enhanced by the parameter Gr, Gm,
while declarations are due to M and β1.

• The fractional parameter can control the momentum and
thermal boundary layer thickness.

• The discovered solutions can aid in accurately interpreting
actual data and serve as a tool for testing potential
approximations of solutions as necessary.

• The results of Asjad et al. (2022) and the overlap of both curves
from the numerical scheme verify the conclusions of this
investigation.

The subsequent recommendations are based on methods,
expansions, geometries, and analyses and are intended to indicate
a future extension of the issue that this study examines. For example,
a horizontal plate of constant length and linear velocity may be used
to assess the current issue. A Keller Box scheme analysis of the same
issue is also possible.
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