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Geopolymer concrete is a sustainable substitute for traditional Portland cement
concrete. In addition, rising carbon taxes on carbon emissions and energy-
intensive materials like cement and lime, impacts the cost of industrial by-
products due to their pozzolanic nature. This research evaluates the
compressive strength and flexural strength of geopolymer concrete, and the
compressive strength of geopolymer mortar. Geopolymer mortar data were used
for the strength assessment employing an analytical approach, and geopolymer
concrete datawere utilized for the strength and sustainability performances. Using
artificial neural networks (ANNs), multi-linear regression (MPR) analysis, and
swarm-assisted linear regression, compressive strength models were created
based on experimental datasets of geopolymer mortar mixes with variable
precursors, alkali-activator percentages, Si/Al, and Na/Al ratios. The strength
and sustainability performances of geopolymer concrete blends with various
precursors were assessed by considering cost-efficiency, energy efficiency,
and eco-efficiency. The work’s originality comes from enhancing sustainable
high-performance concrete without overestimating or underestimating
precursors. Extensive experimental work was done in the current study to
determine the best mix of geopolymer concrete by varying silica fume, ground
granulated blast furnace slag (GGBS), and rice husk ash (RHA). A scanning electron
microscopic study was conducted to understand the geopolymer matrix’s
microstructure further. A comprehensive discussion section is presented to
explain the potential role of RHA. The replacement of conventional concrete in
all its current uses may be made possible by this sustainable high-performance
concrete utilizing RHA.
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1 Introduction

Ordinary Portland cement (OPC) with the standard grade was
the starting point for the evolution of concrete. OPCwas widely used
in the 1900s for buildings, offers sufficient strength for widespread
use, and is the most acceptable substitute for lime mortars (Hall,
1976). The amount of OPC in concrete is crucial for achieving
strength, and in most cases, less than 350 kg/m3 of OPC is used
(Nazari et al., 2019). Eventually, due to the necessity for increased
strength in buildings, pozzolanic additives have been utilized since
1960 in the mix percentage to sustain load capacities ranging from
50 to 90 MPa (Dinakar et al., 2008). Pozzolanic additives, which
have been used for high-rise buildings, bridges, and heavy-duty
structures, are nothing more than industrial by-products that are
finer and richer in silica and alumina elements (Dembovska et al.,
2017; Bumanis et al., 2020). On the other hand, manufacturing
process of OPC involves higher energy consumption and CO2

emission. So, green materials without carbon footprint are much
needed in the current construction industry (Mohanty et al., 2002;
Liew et al., 2017).

Geopolymers have drawn interest from the civil engineering
community since the 1990s because of their potential and minimal
carbon footprint. Thanks to their strength and temperature
resistance qualities, geopolymers formed of such alkaline
activated forms have been shown to be ideal building materials
(Singh et al., 2015). Numerous researchers have used pozzolanic
precursors and potassium hydroxide activating liquids to produce
alkaline systems. In reaction, they produced phases of hydrated
calcium silicate (C-S-H) (Bondar et al., 2011; Azad and Samarakoon,
2021). Using silicon and aluminum-rich minerals, such as clay with
kaolinite mineral, activated by alkaline aqueous systems, Davidovits,
a French scientist, produced an alkali-activated material
(Davidovits, 1994). Similar to how polymeric materials are made,
geopolymers are substances made by condensation polymerization.
Amran et al. (2020) assessed the environmental effects of the
manufacture of geopolymer concrete in 2011 by contrasting its
life cycle with that of OPC. Alkali-activated concrete was
demonstrated to be more environmentally friendly than regular
OPC (McLellan et al., 2011; Amran et al., 2020).

Alkali-activated substances are even less aggressive than OPC
because there is less CO2 released into the environment. According
to an investigation, cement made using geopolymers performs better
than conventional OPC in reducing CO2 by 26%–45% (Turner and
Collins, 2013). Additionally, a solution containing a mixture of
sodium silicates (Na2SiO3) gel and sodium hydroxide (NaOH)
pallets was utilized to prepare the activator solution employed in
the geopolymerization process (Rajamma et al., 2012). The materials
rich in chemical constituents such as Si, Al, and Ca, are desirable for
preparing alkali-activated materials. Fly ash, rice husk ash (RHA),
and ground granulated blast furnace slag (GGBS) are a few of the
pozzolanic materials that are frequently used (Bernal et al., 2012;
Wang et al., 2020; Singh, 2021). According to the most recent
research, employing just one kind of activating binders, like
sodium silicate, in concrete is thought to be the most extravagant
element. Therefore, it was advised to establish a unique approach,
and the activators should be prepared from carefully chosen less
aggressive ingredients (Chen et al., 2021). Geopolymerization is
strongly influenced by chemical components like Si and Al in the

geopolymers. Studies linking these elements to strength attributes
are insufficient due to the challenges in determining them (Ryu et al.,
2013; Divvala, 2021). On the other hand, other factors, including the
amount of the precursor, its kind, its structural shape, its surface
area, the gradation of the fine aggregates, the presence of alkali-
activators, and the temperature, all affect the strength characteristics
(Vora and Dave, 2013; Luan et al., 2021). Numerous studies have
constructed appropriate interrelations and projected strength
behavior based on these qualities (Joseph and Mathew, 2012;
Luan et al., 2021). Ma et al. (2018) and Kashani et al. (2019)
examined the impact of precursor type on the strength behavior
of geopolymer concrete. At the same time, Kong and Sanjayan
(2010) have reported a link between temperature and alkali-
activators characteristics. According to previous literature, the
ratio of Na2SiO3 to NaOH, and the alkali-activators molarity
contribute the geopolymer concrete’s strength (Madheswaran
et al., 2013). In general, concrete cured at increased temperatures
exhibits stronger behavior than ambient concrete, which is
principally attributable to the alkali-activators effective dilution of
the Si and Al ions. Therefore, when a precursor is added to the
geopolymer blends, numerous chemical reactions known as
geopolymerization occur, which adds to the blends’ increased
strength. Undeniably, the chemical reaction that results from the
interaction of alkali-activators and precursors is greatly influenced
by variables like curing time, humidity, and a few other elements (Al
Bakria et al., 2011; Oderji et al., 2017). Due to the lack of adequate,
pertinent data, it has also been discovered from previous studies that
few researchers have documented meaningful information on the
impact of these characteristics on strength fluctuations. It makes
sense to say that choosing precursors based on Si/Al and Na/Al,
which are connected to chemical reactions, is advantageous (Liu
et al., 2020; Wang et al., 2021; Liu et al., 2022). However, not many
studies look at the underlying connections between these parts.

Understanding the function of precursors in geopolymerization
is the aim of the current article. This study investigates the use of
artificial neural network (ANN) principles for predicting the
compressive strength of geopolymer mortars based on
experimental data with different precursor dosages. By
anticipating the most suitable mixture and preventing over/
under-dose of precursors, the study’s findings will significantly
aid in reducing project costs. The sustainability performance of
the geopolymer mixes is also highlighted in this research, which is
vital for the efficient and sustainable design of geopolymer-based
civil engineering infrastructures.

2 Research significance

Using locally accessible materials instead of expensive ones, the
potential replacement of RHA in geopolymer concrete could lower
the cost of geopolymer concrete production. As a result, the primary
goal of the current study is to investigate if it is possible to produce
sustainable geopolymer concrete using locally accessible RHA
obtained from the brick kiln, which will be utilized as a partial
substitute for traditional precursors. This research evaluates the
strength properties and microstructural growth of geopolymer
concrete made of GGBS, RHA, and silica fume. This study’s
initial phase examined the impact of substituting GGBS and
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silica fume for a portion of RHA on the compressive strength of
geopolymer concrete. The compressive strength of geopolymer
mortars was evaluated in the second step utilizing soft computing
methods. To identify the geopolymer concrete mix with the highest
sustainable performance, cost-efficiency, energy-efficiency, and eco-
efficiency were also calculated for all the mixes.

Managing agricultural by-products has become necessary in
recent years to prevent accumulation and maintain a clean, safe
environment. Unfortunately, RHA is one of these by-products that
is harmful to both the environment and human health. Today, there
is a severe issue with agricultural waste because of the rapid rise of
urbanization and industrialization. Due to these constraints,
cutting-edge and unconventional research on waste reuse in the
building sector is becoming increasingly important.

3Potential roleofRHAasbuildingmaterial

India has a wide variety of cultural traditions with 1.4 billion
people (Kaygusuz, 2012). India’s economy relies heavily on
agriculture, with a contribution of greater than 15% gross
domestic product. The main food supply for the Indian
subcontinent is the rice farming system, which is practiced over
roughly 44 million hectares of land in India. According to the
average harvest index of 0.45, India produces 127 MT of leftovers
annually (Dutta et al., 2022). Figure 1 shows the agricultural biomass
share from various crops (Jain et al., 2018). Farmers are forced to
dispose of the leftovers because of various socioeconomic,
organizational, technical, and commercial issues, which trigger
various ecological problems. Each year, India produces
683 million tons of residue, with around 2/3 of that amount
coming from cereal crop residues and the remaining from other
crops that yield surplus residue (Jain et al., 2018; Srivastav et al.,
2021; Dutta et al., 2022). An excess of 178 million tons remains after
recycling over 500 million tons in various sectors, including
industrial, residential, and livestock feed (Sangeet and Kumar,
2020). The preference for paddy in Asia is a major factor in the
continent’s greater residue-burning rates than other continents.
India’s residue-burning rates are 93% and 30% higher than those

of Pakistan and China (mainland), respectively (Dutta et al., 2022).
Figure 2 illustrates the top five nations CO2eq emissions burning
crop residues.

In addition to having a high content of amorphous silica, the rice
husk has a considerable calorific value. The use of rice husk residue to
generate electricity and high-value manufacturing has recently
increased among numerous Asian rice millers and companies. An
estimated 800 kWh of electricity can be produced from one ton of rice
husk. The power conversion advancements include flash thermal
decomposition, enzymatic hydrolysis, ethanol digestion, co-firing,
gasifier, hydrocarbon production, burning fuel, and direct
combustion electricity production (gas turbine, steam generator, and
energy storage). In the modern day, only two of these technology
solutions as burning fuel and electricity production are commonly used.
Burning fuel heating can use traditional boilers and hot water turbines.
Both boilers that generate steam for energy and brick kilns that self-
burn clay bricks to consolidate them, utilize rice husks as a fuel. Over
10% of the world’s burnt clay brick production is produced in India, the
second-largest producer in the world.More than 0.1million brick kilns,
which generate around 150–200 billion bricks annually, are said to exist
in India (Guttikunda et al., 2014). Industrial brick kilns that burn waste
rice husk from agriculture produce much leftover rice when they use
the fuel between the columns of the kilns to fire shroud RHA (Jittin
et al., 2020). Figure 3 displays RHA from field collection to laboratory
preparation.

One of the waste-to-energy methods is the use of rice husks from
agricultural waste. However, issues must be addressed before RHA is
also disposed of in landfills and aquatic bodies, which pollutes the
environment because it is not properly treated. Therefore, using rice
husk as fuel cannot be referred to as “green material” if RHA from
diverse sectors is not utilized well. Pre-processed RHA has
demonstrated potential in recent years as an additional binding
component for concrete slabs, modified concrete, and geopolymer
concrete (Sarkar et al., 2021; Mahdi et al., 2022). Pre-practical
processing’s applicability is nevertheless limited by how time and
energy-intensive it has become. Utilizing waste RHA without pre-
processing will help promote cost-effective and environmentally
responsible waste management. Furthermore, RHA, which was
employed in earlier experiments, contains crystalline silica, which
is less reactive. Due to the extended burning in the brick kilns, RHA
from burned brick kilns has a significant amorphous silica
concentration of 90%–97%, which is a necessary component for

FIGURE 1
Agricultural biomass residues share in India.

FIGURE 2
CO2 emissions burning crop residues.
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the manufacture of geopolymer concrete (Almalkawi et al., 2019).
Therefore, it would be ideal to research using RHA from a brick kiln
in the manufacture of geopolymer concrete for a variety of civil
engineering applications in order to attain sustainability in
infrastructure development. Figure 4 depicts the schematic view
of the role of RHA in sustainable construction.

4 Materials and methods

Geopolymer mortar specimens were prepared for undertaking
compressive strength tests and micro-structural analysis. Further,
the compressive strength of geopolymer mortars prediction models
was developed using ANN concepts and experimental datasets.
Another series, geopolymer concrete specimens were prepared to
evaluate the compressive strength behavior with varying precursor
proportions. Further, sustainability evaluation was performed for
1 m3 geopolymer concrete.

In order to create the geopolymer mortar specimens, the
aluminosilicate source materials, such as RHA, silica fume, and
GGBS, were used. Both silica fume and GGBS, with surface areas of
16.5 and 0.52 kg/m2, were purchased from the neighborhood
market. GGBS and silica fume have specific gravity of 2.85 and
2.4, respectively. Rice husk was utilized as a fuel in the brick factory,
where RHA was gathered. It has a specific gravity and surface area of
0.99 and 0.036 kg/m2, respectively. RHAwas amore readily available
material at a lower cost than GGBS and silica fume. Figure 5 shows
the raw materials’ microstructural graphs. The procedures applied
for burning, processing, and grinding affect the microstructure of
RHA (Endale et al., 2022). As a result, RHA particles are often
amorphous, have micro-fragments with porous structures, and are
extensively distributed (Figure 5A) (Endale et al., 2022). Table 1 lists
the chemical composition of the binding materials.

The sodium hydroxide (NaOH) and sodium silicate (Na2SiO3)
gel were utilized for alkali-activation. Commercial-grade NaOH
came in pellet form, was 99% pure and Na2SiO3 gel has a
specific gravity of 1.53 gm/cc and 42% solid content.

FIGURE 3
Rice husk and RHA at brick kiln.

FIGURE 4
Schematic view of role of RHA in sustainable construction.
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4.1 Sample preparation and testing

Geopolymer mortar specimens were prepared based on the ratio of
Na2SiO3/NaOH as 2.5 when three distinct molar concentrations of
NaOH, including 8 (M), 11 (M), and 14 (M), were combined with the
solution of Na2SiO3. Due to the lack of codal regulations governing the
geopolymer mortar mixes, several trial mixes were made and tested
before selecting the best geopolymer mortar mix (Yeddula and
Karthiyaini, 2020). The precursor to sand ratio was kept as 1:3 (by
weight). Additionally, the alkali-activator was varied as 16%, 18%, and
20% (by weight) to understand the effect of alkali-activator content on
strength characteristics. Before adding the predetermined amount of
alkali-activator and properly mixing it, sand and precursor were dried
and mixed homogeneously. The blended mix was cast in the cube with
each dimension 70.6 mm. After 1 day of casting, themixed geopolymer
mortar specimenswere taken out of themold and left to ambient curing
until testing. A conventional Vicat equipment was employed to test the
setting of geopolymer mortar specimens according to IS: 4031 (part 5).

To measure the compressive strength at 28 days, an average of three
specimens for every mix were tested under a compression testing
apparatus, in accordance with IS 516:1959 (Sathawane et al., 2013).
Cubes with each side 150 mm were used to obtain the compressive
strength values after 28 days of curing at room temperature. The
specimens were put under a 200-ton capacity compression testing
apparatus.

Another series of geopolymer concrete specimens were prepared
based on the 10 M of NaOH solution and Na2SiO3/NaOH as 2.5.
During the current experiment, M40-grade geopolymer concrete was
used. The mix proportions for M40 geopolymer concrete employing
GGBS and silica fume were previously suggested (Das et al., 2020). In
addition to the RHA concentration, silica fume and GGBS were
changed in the binder. Table 2 summarizes the precise intended
material quantities in accordance with replacement levels. The
prepared concrete was immediately assessed for workability using
the compression factor test in accordance with IS 1199–1959
(Laskar and Talukdar, 2017). For the compressive strength test,

FIGURE 5
SEM micrographs; (A) RHA, (B) silica fume, and (C) GGBS.

TABLE 1 Chemical composition of binders.

Description
Chemical composition (%)

SiO2 Al2O3 Fe2O3 CaO MgO SO3 Na2O LOI

GGBS 40 13.5 1.8 39.2 3.6 0.2 --- ---

Silica Fume 96 0.8 1.3 0.4 0.3 --- 1.0 ---

RHA 95.7 0.5 0.9 0.8 0.6 0.1 0.1 1.2
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150 mm-square cubes were cast. The mold was filled with three
concrete layers, each measuring around 5 cm thick. Each mold was
fully compacted using a vibrating table without dispersion or extreme
laitance. Concrete in the mold was next troweled to an equal finish. For
the flexural strength test, 500 × 100 × 100 mm prisms were cast (Das
et al., 2020). Figure 6 indicates the geopolymer concrete sample
preparation and testing for the compressive and flexural strengths.

4.2 Dataset preparation

Based on the geopolymer mortar testing results, data were
created to forecast the geopolymer mortars’ 28-day compressive
strength. A dataset with 81 test samples is created (Table 3). The
output variable in the dataset is the compressive strength of
geopolymer mortar (O1). The input variables are RHA content
(I1), GGBS content (I2), silica fume content (I3), the molarity of
NaOH (I4), alkali activator content (I5), Na/Al (I6), and Si/Al (I7).

The histogram plots of the input and output variables, as seen in
Figure 7, also illustrate this change. The experimental dataset was
trained to create multiple regression for the estimation method. The
model’s generalizability was then tested using the randomized 30%
of the data. The original data must be standardized before being
entered into the regression model. The normalization process
converts all the variables to the same scale, simplifying and
strengthening the regression model. Figure 8 shows the
normalized importance of the input variables.

4.3 Principles of ANN

Because ANN models can frequently describe complicated
systems with illogical or challenging behavioral principles or
underlying processes, they are increasingly applied for
predicting or simulating highly complex engineering variables.
ANN is a non-linear modeling technique that can process many

TABLE 2 Material proportions per 1 m3 geopolymer concrete.

Mix symbol Coarse Fine RHA GGBS Silica fume NaOH Na2SiO3

M1 1,150 200 0 416 0 57 143

M2 1,150 200 0 374.4 41.6 57 143

M3 1,150 200 0 332.8 83.2 57 143

M4 1,150 200 0 291.2 124.8 57 143

M5 1,150 200 0 249.6 166.4 57 143

M6 1,150 200 20.8 374.4 20.8 57 143

M7 1,150 200 41.6 332.8 41.6 57 143

M8 1,150 200 62.4 219.2 62.4 57 143

M9 1,150 200 83.2 249.6 83.2 57 143

FIGURE 6
Geopolymer concrete samples and testing.
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inputs (independent variables) to produce dependent output
variables. For a variety of purposes, there are numerous
varieties of neural networks in practice (Montavon et al.,
2018). A popular ANN configuration that has been extensively
employed in the discipline of civil engineering is linear
regressions (Nagaraju et al., 2021a; Manzoor et al., 2021). This
study assesses the effectiveness of ANNs for calculating the
compressive strength of geopolymer mortars. The input,
output, and middle (hidden) layers are the three primary levels
of neurons that make up a neural network. Each neuron can have
a different number of inputs and outputs (leading to the
subsequent overlay or out of the network). A neuron computes

its result using the weighted sum of its inputs based on a kernel
function (Kohlbrenner et al., 2020).

In this investigation, a network with seven input variables (RHA
content, GGBS content, silica fume content, the molarity of NaOH,
alkali solution, Na/Al, and Si/Al), one output, and hidden layer with
three processing neurons was used. For straightforward regression
analysis, each input variable’s normalized or filtered values are
introduced into the network by the modules in the input
neurons. Then, these values are distributed to every unit in the
hidden layer and compounded by a “weight” factor, usually unique
for each network and whose size denotes the importance of specific
connections.

TABLE 3 Variation range of input and output variables.

Statistics
Input variables Output variable

I1 I2 I3 I4 I5 I6 I7 O1

Grand mean 6 78 17 11 18 2.25 32.52 44.1

Minimum 0 60 0 8 16 0.71 14.68 22.35

Maximum 20 100 40 14 20 7.59 60.38 63.5

Standard Deviation 7 13 12 2 2 1.44 13.52 8.1

Variance 53 175 141 6 3 2.08 182.9 65.54

FIGURE 7
Histograms of input and output variables.

Frontiers in Materials frontiersin.org07

Nagaraju et al. 10.3389/fmats.2023.1128095

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2023.1128095


4.4 Multiple polynomial regression analysis

A technique for examining linear correlations between predictor
variables and multiple independent variables is multiple regression
analysis. Since the independent variables influence the predictor
variables in a regression analysis, data points can be established once
the dependent variable’s validity is confirmed. Each parameter’s
constant and extrapolation parameters are computed to explain how
the variables relate to one another. Eq. 1 represents the standard
multiple regression equation:

M � x + y1n1 + y2n2 + y3n3 + . . . + ynnn + e (1)
where n1, n2, ..., nn are the input variables, M is the predicted
variable, and x and y are constant and coefficients, respectively.
Moreover, e represents error. Using the correlation factor, R2, the
method measures the reliability of the link between the predicted
and input variables.

A predicted variable, intersection, and square terms make up the
polynomial regression equation. This research makes an effort to
evaluate the precision of the compressive strength of geopolymer
mortars when applied to a response surface approach.

4.5 Swarm-assisted regression analysis

To predict the compressive strength of geopolymer mortars,
nature-inspired particle swarm optimization (PSO) algorithm
was utilized. The developed PSO model predicts the compressive
strength by considering input variables. The developed model
uses the PSO algorithm to optimize the output variable by
considering weight factors and damping coefficients. To get a
global solution, the novel PSO model’s performance is examined
by varying inertia weight and damping factors. In general,
executing PSO involves initializing the swarm particles with
random location and zero velocity. Further, swarm particles
search for the global best solution based on the objective
function.

The PSO algorithm is effective, especially for predicting
variables in the engineering domain (Xue, 2018; Nagaraju and
Prasad, 2020; Nagaraju et al., 2021b). The algorithm works based
on the principle of random food (particle) search by the fishes
(iterations) in the pond (source). There are two sets to be considered
for evaluating the model using PSO. These are input variables (set of

experimental test data) and output variables. The chosen variables
should be dependent and proportional for effective results. The
input variables in the research were precursors contents (RHA,
GGBS, and silica fume), molarity, alkali solution, Na/Al, and Si/Al.
These input variables have been chosen in the previous studies to
estimate soils (Dao et al., 2019; Nagaraju et al., 2020). In PSO,
varying inertia weights can achieve the best convergent predictions.
Further, to enhance the estimation models, damping factors play a
vital role (Zaji and Bonakdari, 2014).

5 Results and discussion

5.1 Compressive and flexural strengths of
geopolymer concrete

Depending on the precursors contents, data were gathered after
all the cube tests were done and the compressive strengths of
geopolymer concrete were compared. The information matched
the three tested cubes’ average compressive strengths. Table 4
provides the 7-day and 28-day compressive strengths of
geopolymer concrete with various concentrations of precursors
(GGBS, silica fume, and RHA). M5, M6, M7, and M8 mixes had
the highest compressive strengths, measuring 51.4, 50.8, 52.4, and
54.7 MPa, respectively at 28-day curing period. The mixes M1, M2,
M3, and M9 had the lowest strengths, measuring 41.4, 44.5, 47.3,
and 47.5 MPa, respectively at 28-day curing period. From Figure 9, it
can be seen that early strengths were observed in the geopolymer
concrete mixes blended with silica fume and GGBS than the mixes
consisting of RHA. This could be due to the larger surface area of
silica fume and GGBS contributing to effective earlier reactions than
the blends having RHA.

Despite its polymerization reaction, which used amorphous
silicon to produce strong Na-Al-Si and abundant alumina in
GGBS, geopolymer concrete mixtures generally had a higher
compressive strength. Nevertheless, the polymerization stopped
after the 15% RHA content (i.e., M9). The compressive strength
increased with the addition of RHA because of the relatively higher
Si/Al ratio and better fineness of RHA compared to GGBS, which
increased the high surface area and enhanced reactions (Venkatesan
and Pazhani, 2016).While the difference in solubility between GGBS
and RHA was primarily responsible for the lower strength values
exceeding 15% RHA, other factors also played a role (Mehta and
Siddique, 2018). Additionally, more unreactive particles may serve
as rigid fillers that cause microcracks in the matrix, leading to lower
compressive strength results (Wang et al., 2022).

Figure 10 illustrates the variation of the flexural strength with the
precursors contents. After 28 days, GGBS-based geopolymer
concrete (M1) showed the flexural strengths of 4.85 MPa. The
flexural strength increases as silica fume content in the GGBS-
based geopolymer concrete mixture rises. The specimens blended
with RHA had lower flexural strengths at the specified curing time.
However, the silica fume and GGBS blended geopolymer concrete
mixes had significantly increased strengths with adding silica fume
and GGBS. This might result from the RHAmix’s low density owing
to lower specific gravity of RHA, which leads to a weak link and
failure between the mortar paste and aggregates (Abu Bakar et al.,
2011; Hakeem et al., 2022).

FIGURE 8
Normalized importance of input variables.
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5.2 Micro-structural analysis

Figures 11A–H depict the findings of the microstructures of
geopolymer concrete mixes with varied precursors contents. As
displayed in Figure 11A, the SEM micrographs taken in
geopolymer concrete with GGBS alone revealed the uneven
shape with traces of sharp needles. A geopolymer matrix was
developed because the alkali-activator and Al in GGBS reacted
chemically. Moreover, adding silica fume (rich in Si) to the
geopolymer blend creates a dense network responsible for the
higher strengths of geopolymer concrete (Figures 11B, C).

Additionally, the morphological study of this sample
revealed adequate cohesion and a solid interface. The
M7 SEM micrograph in Figure 11F is amorphously organized

TABLE 4 Compressive strength of geopolymer concrete with varying precursors.

Mix designation Na/Al Si/Al
Compressive strength (MPa) at different curing periods

7 days Standard deviation of 7-day mixes 28 days Standard deviation of 28-day mixes

M1 1.34 2.59 27.9 0.4 41.4 0.3

M2 1.35 2.91 32.9 1.5 44.5 1

M3 1.36 3.23 35.6 1.3 47.3 0.6

M4 1.66 3.77 37.9 1.5 49.5 0.4

M5 1.38 3.90 38.5 1.1 51.4 1.1

M6 1.41 3.08 37.6 1.2 50.8 1.1

M7 1.49 3.63 38.2 0.6 52.4 0.8

M8 1.99 4.68 41.6 0.5 54.7 1.3

M9 1.69 4.95 34.2 0.2 47.5 0.7

FIGURE 9
Compressive strength of geopolymer concrete mixes.

FIGURE 10
Flexural strength of geopolymer concrete mixes at 28 days.
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in spherical flakes with sharp RHA needles. The enhanced
mechanical strength of M7 may be attributable to the
leaching of Al and Si in the mixture caused by the reaction
of the amorphous SiO2 in RHA and Al2O3 in GGBS with an

alkaline activator. C-S-H and A-S-H gels can be seen in M8,
primarily produced by activating the 15% RHA and its
subsequent interaction with the 15% GGBS. Calcium
alumina-silicate hydrate gel was created due to the mixture’s

FIGURE 11
SEM micrographs; (A) M1, (B) M3, (C) M4, (D) M5, (E) M6, (F) M7, (G) M8, and (H) M9.
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high calcium and alumina-silicate content (C-A-S-H). In order
to modify the setting behavior of geopolymer gel, GGBS
obtained more magnesium and contributed to a specific
binding product.

Based on this sample’s morphological appearance, a
superior interface was observed in the blends of M8 and M9.
However, SEM micrograph in Figure 11H show the partially
reacted and unreacted RHA particles. Instead of serving as a
filler in the mixture, the unreacted particles cause the matrix’s
strength to get stronger over time. Increased amounts of
unreacted particles, especially light-weight RHA particles,
have a detrimental effect on the strength development.

5.3 Geopolymers strength assessment using
machine learning approaches

5.3.1 ANN analysis
This study presents neural forecasting models with one

hidden layer, one output layer, and seven input layers. In
general, connection weight adjustment is the process of the
model’s training. The output weights were initially randomly
selected and changed during the training phase. The mean square
error (MSE) between the ANN output and the actual results was
used to calculate the overall training outputs. The number of
epochs is crucial for finding an ideal ANN structure with the
highest accuracy. Ten thousand epochs are employed in this
study’s training method; this amount was decided upon after
doing trial-and-error experiments and striking a balance between

the pace of error elimination and computation time.
Consequently, 21,000 simulations were performed, each
equivalent to one hidden layer. Table 5 lists the specific ANN
parameters that were employed in this research.

The coefficient of determination (R2) was applied as the main
determinant of the ANN models’ accuracy. The prediction accuracy
between anticipated and actual values was utilized to evaluate the
ANN outcomes. The fitter the model’s suggested regression models
were, the closer the R2 values were to 1. The fitting models in the
testing portion of the data were chosen as the primary criterion to
assess the ANN model’s effectiveness in making predictions. The R2

inaccuracy for ANN testing is displayed in Table 6.
The model’s performance and forecast outcomes are reported in

Table 6 and Figure 12, respectively. It is generally advised to use both
R2 and RMSE simultaneously when choosing the appropriate
network architectures for the geopolymer mortar compressive
strength network, because the actual and predicted data series
demonstrate a high correlation coefficient (R2 = 0.9328) of
evaluation while there are quite a few prediction errors.

5.3.2 Multiple regression analysis
For the multiple polynomial regression analysis in this study,

StatAdvisor was employed. The influential variables were included
as inputs using a stepwise regression procedure. GGBS content (I2),
silica fume content (I3), the molarity of NaOH (I4), alkali activator
content (I5), Na/Al (I6), and Si/Al (I7) are the input variables. The
validity of the generated model was assessed using R2 and the
Durbin-Watson test. The output shows the outcomes of building
a multivariate regression model to describe the link between the

TABLE 5 Parameters used in ANN model.

ANN model information

Input layer
Covariates

I1 RHA (%)

I2 GGBS (%)

I3 Silica fume (%)

I4 Molarity (M)

I5 Alkali solution (%)

I6 Na/Al

I7 Si/Al

Number of units 7

Rescaling method for covariates Standardized

Hidden layer(s)

Number of hidden layers 1

Number of units in hidden layer 1 2

Activation function Hyperbolic tangent

Output layer

Dependent variables O1 Compressive strength of geopolymer mortars at 28-day curing (N/mm2)

Number of units 1

Rescaling method for scale dependents Standardized

Activation function Identity

Error function Sum of squares
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individual input and output factors. The estimated model’s equation
is given by:

O1 � −41.2336 + 0.282229.I2 − 0.0844276.I3 + 2.57246.I4

+ 1.85992.I5 − 2.99877.I6 + 0.300017.I7 (2)

The p-value in the Anova test is less than 0.05, indicating a
statistically positive relationship between the dependent variables at
the 95.0% level of certainty. Tables 7, 8, regarding regression analysis
information, were interpreted using the F-test and t-test at the 95.0%
level of certainty. According to Table 7, the p-value is extremely low,
suggesting that, at minimum, one of the model’s components is
substantial with a level of certainty of 1P, practically 100%. Table 8
summarizes the T-static and p-values of the model.

According to the R2 statistic, the fitted model accounts for
93.11% of the output variability (O1). The corrected R2 value is
92.55%, making it better suited for comparing models with
various amounts of independent variables. In accordance with
the estimate’s standard error, the residuals’ standard deviation is
2.20. This value can be utilized by choosing the predictions
option from the text menu to create prediction limits for brand-
new observations. The average value of the residuals is the mean
absolute error (MAE), which is 1.77. Based on the order in which
the residuals appear in a data file, the Durbin-Watson statistic
evaluates the residuals to see if there is any meaningful link. At
the 95.0% confidence level, there is a hint of potential serial
correlation, because the p-value is smaller than 0.05. Table 9

indicates the correlation matrix of the input variables. If the
model is simplified, it should be noted that I2’s p-value, which is
the highest among the independent variables, is 0.11. That term
is not statistically significant at the 95.0% or higher confidence
level, because the p-value is greater than or equal to 0.05.

5.3.3 Swarm-assisted regression analysis
An optimization technique was utilized to determine the

strength of geopolymer mortars to understand better the
variables influencing the strength gain in these materials. The
compressive strength of geopolymer mortars is evaluated using
the particle swarm optimization (PSO) algorithm. According to
the objective function considered herein, firstly, test data with seven
variables such as RHA content (I1) GGBS content (I2), silica fume
content (I3), the molarity of NaOH (I4), alkali activator content (I5),
Na/Al (I6), and Si/Al (I7) were selected. They were mutating in the
random iteration process. After ‘n’ number of iterations, the particle
best fits with the global solution. The particle velocity and position
changed with the selection of the objective function. The
compressive strength (N/mm2) prediction of geopolymer mortars
is according to Equation 3.

Compressive strength est( ) � n1.I1 + n2.I2 + n3.I3 + n4.I4 + n5.I5

+ n6.I6 + n7.I7

(3)
In Equation 3, n1, n2, n3, n4, n5, n6, and n7 are weighted

coefficients for the effective search of particle position and
velocity. Moreover, for the better performance of the particle
search, additional inertia weight is considered as ‘a’. The
functional equation with additional inertial weight is expressed in
Equation 4.

Compressive strength est( ) � a + n1.I1 + n2.I2 + n3.I3 + n4.I4 + n5.I5

+ n6.I6 + n7.I7

(4)
From the prediction results, the following equations were

formulated for the prediction of the compressive strength of
geopolymer mortars with varying inertia weights of 0.3, 0.6, and
0.85, respectively.

Equations 5–7 were the best trails of the respective inertia
weights varying 0.3, 0.6, and 0.85. Among them, the best
estimation was obtained for the 0.3 and 0.6 inertia weights with
an error of 4.43% (Figure 13A). Swarm-assisted particle multi-linear
regression model is a reliable approach for predicting the
compressive strength of geopolymer mortars with efficiency.

CS est( ) � −0.272.I1 + 0.011.I2 − 0.369.I3 + 2.507.I4 + 1.803.I5

− 2.551.I6 + 0.257.I7 − 12.515 (5)
CS est( ) � −0.272.I1 + 0.012.I2 + 0.3699.I3 + 2.506.I4 + 1.802.I5

− 2.545.I6 + 0.256.I7 − 12.489 (6)
CS est( ) � −0.0282.I1 − 0.0271.I2 − 0.340.I3 + 2.536.I4 + 2.516.I5

− 3.3382.I6 + 0.697.I7 − 36.436

(7)

TABLE 6 Testing performance of model.

Summary of model

Training

Sum of squares error 1.518

Relative error 0.048

Stopping rule used 1 consecutive step(s) with no decrease in error

Training time 0:00:00.01

Testing
Sum of squares error 0.803

Relative error 0.184

FIGURE 12
Actual and predicted geopolymer mortar strengths (N/mm2).
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In addition, for enhancing the function of the model, the
addition of the damping factor could be helpful. The worst case
prediction was found with an inertial weight of 0.85 having an
error of 74% (Figure 13B). Keeping in this view, the damping
coefficient is applied to the worst case and improved the
prediction model with 95% convergent results.

Similarly, using damping factors, other inertia weights with
higher error values can also be enhanced. Prediction
models developed using PSO are desirable for estimation of
the compressive strength of geopolymer mortars, also they
are very closer to experimental values (Figure 13C). The
model’s present performance indices are R2 = 0.942, 0.92,
and 0.88, with inertia weights of 0.3, 0.6, and 0.85,
respectively. The inertia weight 0.85 case model
improves with an R2 value of 0.954 when the damping
coefficient is added. The close results of performance
measures in the training and testing phases confirm the
models’ excellent reliability.

6 Sustainability assessment of geopolymer
concrete

In the literature, various mix proportions for geopolymer concrete
have been described (Li et al., 2019). The ratios of the mixture
determine how the finished concrete performs mechanically, is
durable, costs more money, uses energy, and produces emissions.
The mix of proportional variables that can impact sustainability
indices, including cost efficiency, eco-efficiency, and energy
efficiency, are explained in this section. In terms of energy and
emissions, the binder’s type and quantity can considerably
influence it. To evaluate the performance based on sustainability,
the geopolymer concrete’s cost-efficiency is significant. In comparison
to other materials, RHA’s material cost was insignificant. It should be
noted that using RHA at varying percentages in the mixes could
change the compressive strength of geopolymer concrete. Using RHA
in geopolymer concrete would also result in a cost reduction for
geopolymer concrete. Based on the compressive strength-to-cost ratio,
the cost-effectiveness of RHA blended geopolymer concrete was
calculated (Kanagaraj et al., 2022). As previously noted, the
materials utilized in this inquiry were acquired from local vendors.
The cost of each material was computed and expressed in Indian
rupees (INR) in accordance with the most recent delivery record. It
was determined what the material costs would be for producing
different mixtures of geopolymer concrete. Figure 14 provides the
cost-effectiveness of each combination (M1 to M9). Compared to
other mixes combined with silica fume and GGBS, geopolymer
concrete using RHA as a blend is more cost-effective, particularly M8.

Energy efficiency measures how much energy is consumed
while making concrete. It starts with creating the raw materials
for concrete and ends with placing concrete. According to
estimates by Alsalman et al. (2021), the energy needed to

TABLE 7 ANOVA analysis of multi-variable regression model.

Source Sum of squares Df Mean square F-ratio p-value

Model 4882.42 6 813.737 166.78 0.0000

Residual 361.056 74 4.87914

Total (Corr.) 5,243.48 80

TABLE 8 Multi-variable regression model statistics.

Parameter Estimate Standard error T statistic p-value

Constant −41.23 5.38 −7.65 0.00

I2 0.28 0.03 7.34 0.00

I3 −0.08 0.05 −1.58 0.11

I4 2.57 0.11 22.65 0.00

I5 1.85 0.15 11.82 0.00

I6 −2.99 0.36 −8.11 0.00

I7 0.30 0.05 5.76 0.00

TABLE 9 Correlation matrix for coefficient estimates.

Constant
Constant I1 I2 I3 I4 I5 I6

1.00 −0.68 −0.65 −0.43 −0.63 0.54 −0.50

I1 −0.68 1.00 0.45 0.18 0.11 −0.39 0.02

I2 −0.65 0.45 1.00 0.10 0.06 −0.21 0.67

I3 −0.43 0.18 0.10 1.00 0.13 −0.47 0.26

I4 −0.63 0.11 0.06 0.13 1.00 −0.29 0.16

I5 0.54 −0.39 −0.21 −0.47 −0.29 1.00 −0.56

I6 −0.50 0.02 0.67 0.26 0.16 −0.56 1.00
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produce components of concrete like coarse aggregate, GGBS,
silica fume, NaOH, and Na2SiO3 is 0.083, 0.857, 0.036, 20.5, and
5.371 GJ/t, respectively.

The energy necessary for producing geopolymer concrete is
determined using the energy index factor. Only the materials
utilized in the current experiment are considered for calculating
energy factor values. Because RHA is one of the waste materials
and fine aggregates are river sand, so, the energy index
component for RHA and fine aggregate is not considered in
the current analysis. 2.318 GJ/m3 and 2.222 GJ/m3 are
estimated to be the total energy needed to produce 1 m3 of
RHA blended geopolymer concrete M7 and M8, compared to
2.251 GJ/m3 for M5 of geopolymer concrete that has been
combined with silica fume and GGBS. In particular,
geopolymer concrete blended with silica fume (M5 - 40% silica
fume) exhibits lower energy efficiency than geopolymer concrete
blended with RHA (M7 and M9). However, considering both cost
efficiency and eco-efficiency, RHA mixes are more sustainable

FIGURE 13
Actual and predicted values of compressive strength of geopolymer mortars with (A) W = 0.6, (B) W = 0.85, and (C) W = 0.85; and wdamp = 0.99.

FIGURE 14
Cost efficiency of geopolymer concrete mixes with varying
precursors.
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than geopolymer concrete blended with silica fume. Figure 15
demonstrates the energy needed to produce different mixtures of
geopolymer concrete.

Because of increased energy use, as was discussed in the
preceding section (such as petroleum goods, coal, explosives,
etc.), more CO2 is emitted into the environment (Shahbaz et al.,
2015). Concrete made of regular Portland cement emits more
carbon dioxide than geopolymer concrete, which is a more
environmentally friendly option (Kanagaraj et al., 2022). In
coarse aggregate manufacturing, CO2 emissions are predicted to
be 0.0048 t-CO2/t, while producing one ton of ordinary Portland
cement concrete generates 0.84 t-CO2/t (Alsalman et al., 2021). A
ton of alkali activators, such as NaOH and Na2SiO3, is projected to
emit 1.915 and 1.222 t-CO2/t, respectively. Following CO2 emissions
are projected as a result of the analysis. According to different
precursor percentage estimates, the total CO2 emissions for
manufacturing 1 m3 of geopolymer concrete are depicted in
Figure 16. Compared to all the mixes in this investigation, 15%
RHA in the geopolymer blend (i.e., M8) emits less CO2. Based on the

overall indices, M8 can be considered a sustainable high-
performance material.

7 Conclusion

This study compared the strength and sustainability
performances of geopolymer mixtures with various dosages of
precursor content. The following conclusions were drawn from
the foregoing research.

• There is a rising need for novel materials with low CO2

emissions associated with their manufacture for various
applications. Therefore, geopolymer concrete might be used
as a replacement for OPC with only proper selection of
potential precursor in geopolymer concrete.

• At 28 days after curing, materials containing 5%, 10%, and
15% RHA added to silica fume and GGBS geopolymer blends
showed enhanced compressive strength. However, when the
RHA content increased more than 15%, the compressive
strength decreased.

• The leaching of Al and Si in the combination generated by the
reaction of the amorphous SiO2 in RHA and Al2O3 in GGBS
with an alkaline activator, was evident in the microstructural
features of the geopolymer blends with RHA.

• In the structure of the binder matrix, C-S-H and A-S-H form
strong adhesion zones between the newly generated phases
and unreacted particles.

• The strength behavior of geopolymer mortars may reliably be
predicted using ANN, MPR, and swarm-assisted regression
models. Compared to the MPR and ANNmodel’s R2 values of
0.925 and 0.9328, the PSO model performs better with a high
R2 value of 0.954.

• According to the sustainability findings, geopolymer concrete
mixes containing 15% and 20% RHA performed better than
those containing GGBS and silica fume. It has been proven
that such mixtures can be recommended for structural
elements, the construction of buildings, or as a sustainable
alternative to materials with a high carbon footprint.

• For setting the precursor content, the study advises relying on
sustainability indicators and strength attributes. This
approach improves the potential selection of geopolymer
concrete mixes, prevents the overdosage of precursor
content, and, in the end, reduces the project’s overall cost.

8 Recommendations

In geopolymer concrete, RHA showed exceptional performance
with improved strength and microstructural and sustainability
performances. Using other agricultural by-products, including
bagasse ash and corncob ash in geopolymer concrete, should be
the subject of future study. Additionally, durability studies are
required to understand how concrete performs in various
environments. Finally, in order to estimate the compressive
strength more accurately, soft computing models with additional
input variables like surface area and specific gravity should be
developed.

FIGURE 15
Energy efficiency with varying precursors.

FIGURE 16
Carbon emissions with varying precursors.
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