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Whispering gallery mode (WGM) cavities provide resonance configurations for light
propagation through internal reflection, achieving high Q factors, low thresholds, and
small mode volumes. GaN-based materials exhibit high freedom in band engineering and
are highly compatible with contemporary semiconductor processing technology.
Recently, lasers from artificial GaN microdisks, obtained by combining the excellent
material properties of GaN with the advantages of WGM, have attracted considerable
research attention. These have awide application scope in optical communication, display,
and optoelectronic integration. In this review, we summarize the recent advances in GaN-
based WGM microlasers, including the fabrication methods for GaN microcavities,
observations of optical pumped GaN microdisk lasing, lasing mechanisms, comparison
of Q factors, lasing modes, and threshold properties, commonly used light field control
techniques, and mode clipping methods. Furthermore, we introduce the recent advances
in electrically driven GaN-based laser diodes, followed by research challenges and
strategies for promising applications, such as electrically pumped lasers and
optoelectronic chip integration.
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INTRODUCTION

An optical microcavity confines light propagation through resonant recirculation. In the past few
decades, there has been extensive research on the applications and challenges of this technology
(Chen Y et al., 2021; Rupprecht et al., 2021; Tian et al., 2021). Based on the structure of a microcavity,
lasing can be classified into three categories: The first is random lasing that is typically observed in
semiconductor nanopowders or -films, where light is amplified along closed loop feedback paths
resulting from recurrent scattering at crystal boundaries. The second is F-P lasing observed in
nanorods, where light is amplified along the two end planes of the nanorod perpendicular to the
nanorod axis. For random lasing observed in semiconductor nanopowders or -films, the scattering
loss of crystal particles is large, and the lasing mode is difficult to control. For F-P lasing observed in
nanorods, the transmission losses of the end planes are very large, and it is not easy to obtain high-
quality low-threshold lasing. Compared to this, whispering gallery mode (WGM) lasing exhibits a
significantly higher quality factor (Q), smaller mode volume, and lower lasing threshold because of
the extremely weak optical loss of the total internal reflection (TIR) at the cavity boundary. The
research onWGM lasing started in the 1970s, and earlyWGM lasing was realized on GaInP/InP (λ =
650 nm), ZnSe/CdS (λ = 510 nm), ZnO/SiO2 (λ = 390 nm), and InGaN/GaN (λ = 370 nm) substrates.
In recent years, WGM lasing has promoted the development of several applications, such as thermal
sensing and aerial mapping (Xu et al., 2018), photonic gyroscope (Xia et al., 2019), and biological
imaging (Knapper et al., 2016).
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With advances in materials science, there has been considerable
research interest in nitrides. GaN, a representative third-generation
semiconductor material, has a high refractive index and a direct band
gap of 3.4 eV, and it is compatible with existing semiconductor
processing technologies (Chung et al., 2010; Hill and Gather, 2014).
There has been extensive research on the laser characteristics of GaN
microcavities with different structures, such as hexagonal prisms,
spheres, and strips (Feng et al., 2018; Shi et al., 2021). Prof. K.W.
Choi of the University of Hong Kong’s research group (Li K. H et al.,
2015; To et al., 2020) fabricated suspended circular and hemispherical
microcavities supported by silicon columns using silica spheres as
masks and obtained blue light lasers. Prof. Feng Yun’s research group
of Xi’an Jiaotong University (Li et al., 2017; Li et al., 2018) prepared 3D
microdisk cavities by material crimping and obtained low-threshold
ultraviolet (UV) lasers. Prof. Sun Qian’s research group at the Institute
of Semiconductors, Chinese Academy of Sciences (Wang et al., 2019),
fabricated GaN microdisks using standard semiconductor processes,
such as photolithography and reactive ion etching, and achieved
electrically driven UV lasers. The above GaN microcavity lasers are
based on WGM lasing and are widely used in quantum technology,
UV spectrum manipulation, microdisplay, and visible light
communication (Miao et al., 2016; Yang et al., 2019).

In this review, we summarize the recent advances in GaN
microlasers. In Introduction, the classification of microcavites,
advantage and typical reported of GaN microdisk laser was
presented. The fabrication methods of GaN microdisk was
then introduced in Design and Fabrication of III-N Micro- and
Nanoresonantors. In Optically Pumped GaN Microcavity Lasing,
the lasing mechanisms, including the mode evolution, Q factor,
and threshold characteristics, are reviewed. The commonly used
light field control techniques and mode clipping methods are
introduced in Tailoring the Lasing Mode of GaN Microcavities.
Then, recent advances in GaN-based microlasers, such as vertical
laser diodes and microdisk laser diodes, are introduced in
Electrically Driven GaN Laser Diodes. Finally, Optoelectronic
Chip Integration presents further research challenges of the
potential applications of large-scale on-chip integration.

DESIGN AND FABRICATION OF III-N
MICRO- AND NANORESONATORS

The idea of WGMs was presented several hundred years ago when
the phenomenon of acoustic propagation was observed in the
dome of St Paul’s Cathedral in 1912 (Yang et al., 2015). Winters
et al. observed that if they were all standing near a wall (Winters
and Coburn, 1979; Figure 1A), people could hear murmurs from
anywhere in the gallery. This phenomenon also applies to light;
that is, light can be reflected and confined to an infinite number of
microsphere or microdisk cavities to enhance light–matter
interactions (Kang et al., 1998; Rahmani and Jagadish, 2018).
Since the 20th century, this phenomenon has been widely
implemented in applications such as biosensors, optical
communications, displays, and light sources (Skromme et al.,
1999; Ferreira et al., 2016; Irmer et al., 2016; Zhang et al., 2016;
Guo et al., 2019; Jiang et al., 2019; Toropov et al., 2021). To adapt to
different applications and obtain high-quality and low-threshold
lasers, microcavities of various shapes have been designed and
fabricated (Figures 1B–G). The device architectures have smooth
faces that ensure excellent optical properties.

Some typical methods used to achieve GaN microstructures
are molecular beam epitaxy (MBE) (Li and Waag, 2012;
Higashiwaki et al., 2014), hydride vapor phase epitaxy (HVPE)
(Lai et al., 2021; Seredin et al., 2021), and metal-organic chemical
vapor deposition (MOCVD) (Peng et al., 2021;Wang et al., 2021).
The resulting GaN structures have atomic-level smooth surfaces
and low density of dislocations; moreover, the lasing thresholds
are typically low, and the Q factors are high. However, these
cavities have several obvious limitations. For example, the cavity
structures are relatively fixed, such as hexagonal disks, microrods,
or pyramidal cavities. With the development of top-down micro-
and nanofabrication technologies, microcavities with controllable
structures can be fabricated, resulting in chip-integrated
semiconductor devices (Borselli et al., 2005; Xiao et al., 2008;
Tamboli et al., 2009; Jiang et al., 2016; Sellés et al., 2016; Yonkee
et al., 2016; Tabataba-Vakili et al., 2018; Yao and Yang, 2020).

FIGURE 1 | Schematic of various WGM resonators with different structures: (A) dome of St Paul’s Cathedral in London (Yang et al., 2015), reprinted with
permission© WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (Yang et al., 2015); (B) microsphere; (C) microdisk; (D) microring; (E) microdisk with chamfering; (F)
microdisk with slit; (G) hybrid microcavities.
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Our group introduced an experimental etching process to develop
GaN-based microdisks (Zhu et al., 2018) (schematic illustration
in Figure 2A). GaNmicrodisks in a grid pattern can be fabricated
with Ni hard masks on a commercial GaN-on-silicon substrate
with photolithography followed by dry and isotropic wet etching
of silicon. As opposed to GaN microdisks manufactured using
photoresist masks, this process can also be conducted using SiO2

and Al microsphere masks (Figure 2C). Zhang Y et al. (2014)
fabricated GaN microdisks using microsphere lithography
followed by dry and wet etching (Figure 2B). In this design,
Al microspheres (diameter = ~2 μm) were used as hard masks,
and thus, the fabricated microdisks had diameters <2 μm. As
illustrated in Figure 2D, the microdisk is much smaller than
those reported in studies of Vicknesh et al. (2007) or Woolf et al.
(2014).

OPTICALLY PUMPED GAN MICROCAVITY
LASING
Resonant Mode Calculation and Main
Parameters
Compared with other types of lasing cavities such as F-P, WGM
lasing has a higher quality factor (Q) and lower laser threshold
owing to the small optical loss on cavity boundaries (Khurgin and

Noginov, 2021). However, the nature of resonance is the same for
all these laser structures. In theory, the resonance mode of a cavity
depends on its optical length (L), and the mode is fitted using the
following equation:

mλ � L (1)
For F-P mode cavities, L � 2neffl. For WGM cavities,

L � πneffD. Here, m is the number of angular momentum
modes, λ is the central wavelength, neff is the effective
refractive index, l is the length of the F-P cavity, and D is the
diameter of the microdisk (Zhu G. Y. et al., 2020; Qin et al.,
2021a). As seen in the above equation, for the same lasing mode,
the WGM cavities are smaller than the F-P ones.

The typical parameters used to characterize the lasing
properties of microdisks are as follows: quality factor (Q),
mode volume (V), free spectral range (FSR), and threshold
value (Pth). Q � λ/Δλ represents the light confinement ability
of the microcavity, where λ is the peak wavelength and Δλ is the
full width at half maximum (FWHM) (Matsko and Ilchenko,
2006). Q can also be expressed as a product of angular frequency,
ω, and decay time, τ, that is, Q = ωτ. Mode volume is a parameter
that describes the ability to confine the trapped light within a
certain volume in the spatial domain of an optical cavity (Luo
et al., 2021). It is given as the ratio of the stored energy of light and
the maximum energy density (Srinivasan et al., 2006):

FIGURE 2 | Schematic of fabrication of GaN microdisks with (A) an Ni hard mask and (C) a sphere metal mask. SEM images of the (B) floated GaN microdisk
fabricated by the Ni hard mask (Zhu et al., 2018), reprinted with permission© Optical Society of America (Zhu et al., 2018), and (D) GaN microdisk fabricated with the
sphere mask (Zhang Y. et al., 2014), reprinted with permission© AIP Publishing LLC (Zhang Y. et al., 2014).
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Vm � ∫ε(r)∣∣∣∣E(r)∣∣∣∣2
(ε(r)E2(r))max

d3r (2)

where ε(r) is the optical permittivity and E(r) is the electric field
density. A smaller mode volume of a microcavity implies that
higher optical field confinement can be achieved (Robinson et al.,
2005; Jiang et al., 2020).

FSR is the resonant wavelength or frequency interval of two
adjacent modes (ChenH et al., 2021). If we ignore refractive index
dispersion, FSR is calculated using the following equation:

FSR � λ2

2πnR
(3)

Threshold value (Pth) is another important parameter of lasing
properties. Exploring the limits of low-threshold lasing is one of
the key goals in the development of nanocavity lasers (Streiff
et al., 2003). Most GaNmicrodisk lasers are fabricated using GaN
quantum well (QW) materials. For GaN microdisks, Q is in the
range 650–5,500 and Pth is < 270 kW/cm2. Microdisk cavities
based on GaN materials have the advantages of high Q factors,

small mode volumes, and low thresholds (Michler et al., 2000;
Simeonov et al., 2008; Aharonovich et al., 2013; Wang et al.,
2018).

WGM Lasing in GaN Microdisk Cavities
WGM lasing has a higher Q, lower lasing threshold, and smaller
mode volume than other types of lasers. This is because the TIR
on cavity boundaries can ensure weak optical loss. Owing to its
excellent performance, WGM microcavity lasing has attracted
considerable attention for several applications such as single-
particle label-free sensing, microdisplays, imaging, and scanning
(Vahala, 2003; Miller, 2009; Stock et al., 2013); GaNUV lasing has
attracted considerable attention in optics research (Choi et al.,
2011; Tabataba-Vakili et al., 2020). Typical results are presented
in Figure 3, and several resonator structures (Figures 3A–D),
such as spherical, disk, toroidal, and microbubble, have been
demonstrated in recent years (Seo et al., 2003; Kwon et al., 2008;
Sumetsky, 2010; Ward et al., 2014; Dong et al., 2017; Wang et al.,
2017). As seen in Figure 3E, light is well confined in the x–y plane
of GaN microdisks. The low- and high-order modes are confined

FIGURE 3 | (A–D) GaN microdisk cavity lasers with various morphologies (Yan et al., 2009; Zhang X et al., 2014; Bogusławski et al., 2018; Liu et al., 2019); (E)
WGM lasing simulation results of microdisk cavities; (F) lasing spectra of the GaN microdisk in the UV region; (G) lasing spectra of the GaN microdisk in the blue region
(Zhang X et al., 2014; Zhu et al., 2017). Reprinted with permission© AIP Publishing (Yan et al., 2009; Zhu et al., 2018).
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in the thickness of the microcavity along the z-axis. Typical GaN
lasing has a symmetric resonance spectrum, such as lasing spectra
in Figure 3F reported by Zhu et al. (2017). Optically pumped
lasing at room temperature has excitation energy densities in the
range 188–298 kW/cm2. Optical resonances in multiple modes
were observed in the gain range of 376–380 nm. Similar results
are presented in Figure 3G, obtained by Zhang X et al. (2014).
Optically pumped lasing was achieved at excitation energy
densities of 9.06 mJ/cm2, and the obtained values of Q were
approximately 770 at a lasing peak value of ~430.2 nm. Although
GaN microdisk lasers have been widely studied, owing to the
rotational symmetry of these WGM cavity structures, they
typically generate planar isotropic laser emission, resulting in
extremely low collection efficiency in free space. Future studies
should attempt to address this drawback (Yan et al., 2009;
Bogusławski et al., 2018; Liu et al., 2019).

First, the smoothness of the optical cavities should be
improved, as roughness and thickness of the cavity
considerably influence its lasing properties. According to
Alexander’s results, finite-thickness microdisks cannot address
the degeneracy of the WGM doublets; however, these can limit
their accessible Q factors to some extent (still very high) (Nosich
et al., 2007). Based on this idea, Simeonov et al. (2008)
demonstrated selective wet chemical etching for an AlInN
sacrificial layer lattice-matched to GaN for the fabrication of

air-gap photonic structures (Figures 4A–G). Optically pumped
lasing at a wavelength of 408.8 and 471.1 nm was achieved under
continuous wave (CW) laser pumping. Woolf et al. (2014)
fabricated low-threshold lasers with high-quality optical
cavities and gain materials of InGaN quantum dots or QWs.
GaN microdisks with diameter = 1.2 μm and thickness = 200 nm
were set as the resonant cavities (Figures 4H,I). Lasing oscillation
with a main wavelength of approximately 450 nm and Q value of
approximately 5,500 was realized with a threshold value of
184 μW (Figure 4J). Tamboli et al. (2007) realized lasing in
microdisk arrays with diameter = 1.2 μm under continuous
lasing operation at room temperature; the threshold was
approximately 270W/cm2, and Q was approximately 3,700.
This research aimed to reduce the thickness of microdisks to
the thickness of the quantum well layer.

Second, the cavity shape should be designed appropriately.
Typically, the μ-PL system, which can provide uniform pump-
laser beams with diameter = 20–50 μm, is used to measure the PL
properties of GaN microcavities. Light in WGMs is usually
limited to the periphery of the microdisks; therefore, the
internal volume of the microdisk structure only slightly affects
the laser properties. However, it also leads to energy loss due to
light absorption in the cavity. For cavities with gain properties,
gain, γ, should be introduced in the active region and a
continuous condition should be added for the tangential

FIGURE 4 | Lasing properties of GaN microcavities (Simeonov et al., 2008), reprinted with permission© AIP Publishing (Simeonov et al., 2008). Lasing spectra of
GaN microcavities with (A) low and (B) high In content. (C) Threshold curves of GaN microcavities. Optical microscopy images with false color (D,E). SEM images of
AlGaN (F) before and (G) after removal of the oxidation sacrificial layer. Lasing properties of floating GaN microstructures with a quantum well layer (Woolf et al., 2014):
(H,I) SEM images; (J) lasing spectra with the threshold curve as an inset image, reprinted with permission© PNAS Publishing (Woolf et al., 2014).
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component of the field on the boundary of this region (Smotrova
et al., 2005). Reducing the disk size and thickness of the cavity is a
useful strategy for achieving high-quality lasing. A ring-shaped
active region can be as narrow as 0.2 μm and still provide the
same value of the material gain threshold with the same mode as
that in the uniformly active disk (Rex et al., 2001). In 1999, Zeng
et al. (1999) studied the optical resonance modes in InGaN/GaN
multiple-quantum-well microring cavities. Zhu et al. (2020a)
obtained floating GaN microring lasing using the
Burstein–Moss effect at room temperature. Zhang et al. (2020)
designed and fabricated an asymmetric microring cavity by
introducing a GaN-based eccentric microring with an inner
hole located off the center; they achieved low threshold values
and unidirectional lasing emission.

Third, realization of multi-functional microcavities such as
single-mode or directional radiation is a popular research topic. A
serious drawback of microdisk lasers is the low directionality of
light emission inherent circular cavities. The isotropic lasing
emission of WGM lasing typically limits their applications in
several fields. To overcome this drawback, rotational symmetry of
the microcavity should be broken by introducing defects in the
mode field region or by forming an asymmetric/deformed cavity
structure (Wang et al., 2010; Liu et al., 2012; Zhan et al., 2015). To
control the emission direction of GaN microdisks, Zhang et al.
(2021) fabricated a microring with diameter = 40 μm (Figure 5A)
and an off-centered embedded hole and warped structure of

strained III-nitride quantum well multilayers. In a similar
previous study (Zhang et al., 2020) (Figure 5I), unidirectional
and single-mode lasing was achieved. Compared with other
studies, this study could more conveniently realize mode
control of lasing properties (Zhizhchenko et al., 2019). Zhu
et al. designed microdisks with corners (Figure 5H) (Zhu
et al., 2017) and self-focusing structures (Figure 5D) (Zhu
et al., 2019) to engineer the mode number and emission
direction of the cavity. Li et al. (2018) presented a three-
dimensional (3D) WGM with a self-bending microdisk, which
comprised strain-released AlGaN/GaN bilayer films (Figure 5B);
it provided more WGM photon degrees-of-freedom in the
vertical direction compared to the two-dimensional WGM
distributed in the horizontal direction. Xiao et al. (2017)
demonstrated circular-side hexagonal resonator (CSHR)
microstructures (Figure 5G) to realize unidirectional emission
single-mode microlasers. Spiral microcolumns, slits, gratings, and
notched elliptical structures were also introduced to the
microcavities (Figures 5C,E,F) (Ben-Messaoud and Zyss, 2005;
Wang et al., 2010; Cai et al., 2012), realizing lasing resonant. All
these structures ensure that light radiates at a specific angle.

FDTD simulation (Chen and Wang, 2007; Jiang et al., 2012) is
a conventional method to characterize the direction and mode
characteristics of GaN lasing. Due to the isotropy of a cavity with
a circular structure, the light field is uniformly circular, and it has
an obvious standing wave shape. As shown in Figure 6A,

FIGURE 5 | (A,B) Microring with an off-centered embedded hole and warped structure (Li et al., 2018; Zhang et al., 2021). (C) Notched elliptical microcavity
quantum cascade lasers (Wang et al., 2010). (D) Microdisk with a self-focusing structure (Zhu et al., 2019). (E) Microdisk with grating structures (Cai et al., 2012). (F)
Spiral microcolumn cavity (Ben-Messaoud and Zyss, 2005). (G) Circular-side hexagonal resonator (CSHR) microlasers (Xiao et al., 2017). (H) Microdisk with a corner
(Zhu et al., 2017). (I) Microdisk with a hole (Zhang et al., 2020). Reprinted with permission© PNAS Publishing (Wang et al., 2010),© IOP Publishing (Zhu et al.,
2019),© American Association for the Advancement of Science (Cai et al., 2012),© AIP Publishing (Ben-Messaoud and Zyss, 2005; Zhu et al., 2018),© OSA Publishing
(Xiao et al., 2017; Zhang et al., 2020).

Frontiers in Materials | www.frontiersin.org April 2022 | Volume 9 | Article 8458856

Zhu et al. GaN Microdisk Laser

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Tamboli’s work indicated a first-order mode visible at wavelength
= 418 nm with a distinct number of standing wave modes
(Tamboli et al., 2007). Puchtler et al. (2015) presented high-
quality factor devices comprising nitrides and simulated the
optical field distribution. Wiersig and Hentschel (2006)
demonstrated a microdisk with a hole, shown in Figures
6B,C; it showed a faint resemblance to a WGM, but it
implied a clear directed emission due to refractive escape.
The directional emission is clearer in Zhu et al.’s work (Zhu
et al., 2017); it had a chamfer in the disk (SEM image in
Figure 5H). Figure 6D shows light emitted from the corner
of the disk. It is more interesting in their other work, in which
GaN microdisks with focus effect were designed (SEM image in
Figure 5D) (Zhu et al., 2019). The simulation results of two
lasing peaks at wavelengths of 375.3 and 377.3 nm were
consistent with the experimental lasing spectra
(Figures 6E,F). These modes are focused on the two sides of
the cavity. Lasing of warped microring in Zhang’s work (Zhang
et al., 2021) presented clear anisotropic characteristics
(Figures 6G,I). Light is efficiently collected and plotted in
Figure 6H. The far-field of the warped microring illustrated

in Figure 6J had the same anisotropic characteristics (0–30°).
This indicates that the warped microring has a small far-
field angle.

TAILORING THE LASING MODE OF GAN
MICROCAVITIES

Compared with multi-mode lasers, output lasing with short
modes, even a single mode, is valuable for practical
applications (Xu et al., 2012; Feng et al., 2014; Nakajima et al.,
2019). Conventional experimental schemes, such as reducing the
cavity size and introducing structures such as gratings, slots, or
nano-antennas, have been widely utilized to achieve single-mode
lasers. Fujita and Baba (2002) introduced saw tooth structures for
GaInAsP–InP microcavities (Figure 7A). Moiseev et al. (2017)
introduced antenna structures on the side of InAs microdisks
(Figure 7E). Bogdanov et al. (2015) etched slits on the surface of
InAs microdisk cavities using focused ion beam technology
(Figure 7D). All above research has observed laser mode
regulation in microdisk cavities. Our group (Zhu G. Y. et al.,

FIGURE 6 | FDTD simulation results of a (A)microdisk (Tamboli et al., 2007), (B,C)microdisk with a hole (Wiersig and Hentschel, 2006), (D) GaN microdisk with a
corner (Zhu et al., 2017), and (E,F)GaN Penrose microcavity (Zhu et al., 2019). (G) PL intensity of the laser mode at 441.3 nm in various detection angles. (I) Illustration of
warpedmicrodisks in a 3D spherical coordinate system. (H)CCD image of the warpedmicroring. (J) Far-field pattern of the warpedmicroring calculated by FDTD (Zhang
et al., 2021). Reprinted with permission© Nature Publishing Group (Tamboli et al., 2007),© American Physical Society (Wiersig and Hentschel, 2006),© AIP
Publishing (Zhu et al., 2018),© IOP Publishing (Zhu et al., 2019),© 2021 Chinese Laser Press (Zhang et al., 2021).
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2020) realized quasi-single-mode ultraviolet WGM lasing from
microchimney cavities under optical pumping (Figure 7F).
Lasing spectra in Figure 7G imply single-mode resonance of
approximately 372 nm. Compared to other works, the lasing of
microchimney cavities directs light along the cavity and obtains a
spiral path of light (Figures 7H–J). In our other works (Zhu et al.,
2018), a grating structure was introduced to floating GaN
microdisks. Single-mode lasing (Figures 7B,C,K) was realized
in this structure. With increasing pumping power, lasing
resonance appeared at approximately 379.25 nm. Based on
electrical field distribution, WGM lasing was confirmed; this
study is similar to Wang’s work (Wang et al., 2018). Although
laser mode regulation can be achieved, the above methods may
introduce damage to the microcavity. It may reduce the quality of
the microcavity laser and increase the laser threshold. The effect of
large-scale changes in alignment indexing caused by small changes
in the measurement value is defined as the Vernier effect (Wang Y.
Y et al., 2016; Liu et al., 2021). It is also applied in optical systems.

The FSR can be controlled by adjusting the size of microcavity. A
common mode can be selected by using two devices with similar
spectra. With the Vernier effect, the lasing can maintain low laser
threshold and high Q value. By designing the coupling cavity and
using the Vernier effect, mode selection can be realized while
improving laser quality. Xu et al. (2012) achieved a single-mode
laser by coupling two GaN microrods near each other. A single
microcavity produced a multi-mode laser, while the coupling of
two cavities produced a single-mode laser. This lasing mode
engineering can even be generalized to dynamic mode
regulation (Yang et al., 2018; Peng et al., 2019; Qin et al., 2021b).

ELECTRICALLY DRIVEN GAN LASER
DIODES

Owing to their advantages in wide-emission ranging from UV to
near-infrared (IR) and direct band gap, GaN materials have been

FIGURE 7 | (A)Microdisk with a saw tooth structure for a GaInAsP–InP microdisk (Fujita and Baba, 2002). SEM images of the GaN microdisk with a (B,C) grating
along the side (Zhu et al., 2018), (D) slit (Bogdanov et al., 2015), and (E) Pt antenna structure (Moiseev et al., 2017). (F) SEM images, (G) lasing spectra, and (H–J) optical
field distribution of the microchimney cavity (Zhu G. Y. et al., 2020). (K) Power-dependent lasing spectra of the GaN microdisk (Zhu et al., 2018). Reprinted with
permission© AIP Publishing (Fujita and Baba, 2002),© Optical Society of America (Bogdanov et al., 2015; Zhu et al., 2018),© ACS Publishing (Moiseev al., 2017),©

Elsevier Publishing (Zhu G. Y. et al., 2020).
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widely used for high-efficiency light-emitting diodes (LEDs) and
LDs (Strawbridge et al., 2011; Lu et al., 2014; Ding et al., 2021;
Jmerik et al., 2021; Yulianto et al., 2021). III-Nitride LDs have
been widely used in displays, lighting, and optical storage and
have shown considerable potential for applications in monolithic
integration, visible light communication, optical clocks, material
processing, quantum technology, and medical instruments. GaN
lasers can be fabricated on GaN, sapphire, SiC, or Si substrates
(Lee et al., 2017; Sun et al., 2018). Most contemporary GaN-based
LDs are produced on two-inch free-standing (FS) GaN substrates
(~$4,000/pc), because of which the LD chip costs 2–3 orders of
magnitude higher than LEDs grown on Si or sapphire substrates.
The most recent research results indicate that the III-nitride
semiconductor laser directly grown on Si is a potential on-
chip light source for Si photonics. Moreover, it may greatly
lower the manufacture cost of laser diodes and further expand
their applications. Due to its low cost, large volume, low
resistivity, and high thermal conductivity, the GaN-on-Si
substrate has become a popular research topic in recent years
(Bao, 2017; Jiang et al., 2017).

A typical layer structure of GaN-based LDs on Si substrates is
seen in Figure 8A (Feng et al., 2021). It presents InGaN/GaN
MQWs and optical cladding layers. For poor cavity quality, it
presented normal spontaneous radiation (Figure 8D) (Mei et al.,
2021). Violet, blue, and near-UV LDs were realized in structures
with better-quality cavities (Zhang et al., 2003; Christ et al., 2004;
Roehrens et al., 2010). Popular research groups in this field are
Sun Qian’s research group of the Semiconductor Institute of

Chinese Academy of Sciences and the SINANO research group.
Feng et al. (2021) used a “sandwich-like” architecture with upper
and lower AlGaN cladding layers to design lasing structures
(Figure 8B). They demonstrated confinement of the optical
field in InGaN-based microdisk lasers grown on Si substrates.
Lasing resonance was observed under a 250 mA-driven current
threshold (Figures 9C,D). To further reduce the optical loss, Zhu
et al. (2020b) designed and fabricated a perovskite-coated GaN
microwheel structure (Figure 8C). This device exhibited two
emission peaks near 438 and 512 nm (Figures 9A,B). However,
only spontaneous radiation in the blue range was observed.
Recently, Wang et al. (2020) fabricated GaN microdisks with
diameter = 10 μm. Lasing resonance with a high Q factor was
realized under current driven <18 mA (Figures 8E,F).

OPTOELECTRONIC CHIP INTEGRATION

Optoelectronic integration technologies compatible with large-scale
low-cost silicon electronics are considered promising approaches to
overcome the speed and bandwidth limitations of communication
and computing technologies (Moerman et al., 1997; Hao et al., 2021).
However, the drawbacks of Si-based materials, such as narrow and
indirect band gaps, are not conducive to optoelectronic devices with
gain. To overcome this, silicon-based GaN has been used to fabricate
integrated devices (Shih et al., 2005; Ogihara et al., 2008; Pham et al.,
2013). Compared with Si, nitride compound semiconductors
(AlGaN or InGaN) have tunable and direct optical band gaps,

FIGURE 8 | (A) Typical layer structure of the GaN-based laser diode (LD) on an Si substrate. (B,E) SEM images of the GaN microdisk for electrically driven lasing
(Wang et al., 2020; Feng et al., 2021) and (C) GaN microwheel for LED (Zhu et al., 2020b). EL spectra of the (D) GaN microdisk (Mei et al., 2021) and (F)microdisk laser
(Wang et al., 2020). Reprinted with permission© Elsevier Publishing (Feng et al., 2021),© IOP Publishing (Zhu et al., 2019).
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and these are compatible with traditionalmicromachining processes.
Hence, couplingWGMmicrodisk lasers with waveguides can enable
the monolithic integration of GaN microdisks or microrings with
other structures (Koseki et al., 2009). Witzens et al. (2005) realized
the monolithic integration of vertical-cavity surface-emitting lasers
with in-plane waveguides. Tabataba-Vakili et al. (2019)

demonstrated a critical coupling structure on an active GaN
microdisk laser with bus waveguide on an Si substrate (Figures
10A,B). Lasing parameters, such as thresholds and Q factor, can be
controlled by varying the coupling distance. As shown in
Figure 10B, the resonance mode in the range of 410–450 nm
was obtained. The evanescent tail of resonance in GaN

FIGURE 9 | EL spectra of a GaN microwheel (A) without and (B) with CH3NH3PbBr3 at varying currents (Zhu et al., 2020b). (C) EL spectra of an as-fabricated
InGaN-based microring laser grown on an Si substrate (Feng et al., 2021). (D) Relationship between the FWHM of EL spectra and the pulsed injection current in
Figure 9C. Reprinted with permission© Elsevier Publishing (Feng et al., 2021),© IOP Publishing (Zhu et al., 2019).

FIGURE 10 | (A)Coupling structure in an active GaNmicrodisk laser with bus waveguide on an Si substrate. (B) Lasing spectra of coupled structures with different
coupling distances (Tabataba-Vakili et al., 2019). (C) Schematic diagram of the waveguide coupled with a microcavity. (D) Relationship between the coupling distance
and the coupling coefficient (Spillane et al., 2003). Reprinted with permission© APS Physic Publishing (Spillane et al., 2003).
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microdisks is coupled by the bus waveguide on the side, and
transmission through the waveguide can be detected in the back
of the waveguide. According to Rasoloniaina’s reports (Rasoloniaina
et al., 2014) and (Spillane et al., 2003) shown in Figures 10C,D, the
resonancemode is coupled with different coupling distances and can
be quantized. The transmission through the waveguide can be
explained based on the gap between the microdisk and the
waveguide.

By combining optically pumped GaN laser structures and chip-
integrated LED or LD structures, waveguide and photoelectric
detectors on the Si substrate have been studied and used in high-
speed communication (Schinkel et al., 2009; Li X et al., 2015;WangY
et al., 2016; Tanaka et al., 2017). As shown in Figure 11, Feng et al.
(2018) fabricated on-chip-integrated GaN-based lasers, modulators,
and photodetectors grown on Si substrates (Figures 11A,B). A
multi-quantum well structure with 290 μm (LD region), 190 μm
(modulation region), and 790 μm (PD region) was designed and
fabricated. EL with an FWHM of 1 nm and peak position of
412.8 nm was realized in this study. The photocurrent in the PD
is presented in Figure 11C and modulated basis the bias voltage.

SUMMARY AND PROSPECT

In this study, we review recent advances in the realization of GaN
microstructures, observations of WGM lasing, and the
corresponding lasing mode engineering. The WGM lasing
mechanism is summarized as the total reflection of the inner
wall. The Q factor, mode volume, FSR, and threshold value are
important parameters to evaluate the quality of microcavity. GaN
microdisks are prepared using two types of methods, namely, direct
growth using CVD or MBE and fabrication using photolithography
followed by wet and dry etching. Optically pumped lasing has been
obtained in GaN microstructures such as microdisks or microrings.
Engineering of lasing properties such as mode number tailoring or
emission direction controlling is well studied. Methods such as
introduction of holes, corners, metal antennas, and slits are used
to control the emission direction, and special structures such as

grating or saw tooth are introduced to tailor the lasing mode.
Decreasing the thickness of the cavity and improving the sidewall
roughness are key issues to optimize the Q factor or threshold value
of the cavity. The aim of studying optically pumped WGM lasing is
to obtain electrically injected lasing. By decreasing the gain region,
floating the cavity, or improving the surface condition, an electrically
injected WGM laser can be realized for a cavity with diameter
≤10 μm. Further research challenges in GaNmicrodisk lasing are the
fabrication of microstructures with smooth surfaces and steep side
walls. In addition, the design and preparation of special
microstructures for achieving high-performance electrically
pumped lasers and integrated device design are also popular
topics for future research.
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