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Digital twins are emerging as powerful tools for supporting innovation as well as optimizing
the in-service performance of a broad range of complex physical machines, devices, and
components. A digital twin is generally designed to provide accurate in-silico
representation of the form (i.e., appearance) and the functional response of a specified
(unique) physical twin. This paper offers a new perspective on how the emerging concept
of digital twins could be applied to accelerate materials innovation efforts. Specifically, it is
argued that the material itself can be considered as a highly complex multiscale physical
system whose form (i.e., details of the material structure over a hierarchy of material length)
and function (i.e., response to external stimuli typically characterized through suitably
defined material properties) can be captured suitably in a digital twin. Accordingly, the
digital twin can represent the evolution of structure, process, and performance of the
material over time, with regard to both process history and in-service environment. This
paper establishes the foundational concepts and frameworks needed to formulate and
continuously update both the form and function of the digital twin of a selected material
physical twin. The form of the proposed material digital twin can be captured effectively
using the broadly applicable framework of n-point spatial correlations, while its function at
the different length scales can be captured using homogenization and localization
process-structure-property surrogate models calibrated to collections of available
experimental and physics-based simulation data.
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1 INTRODUCTION

Recent forward-looking roadmaps (Gil and Selman, 2019; Jenks et al., 2020) have identified the
development of a fully digital framework that fuses human-subject matter expertise, process and
performance modeling, experimental in-situ diagnostics, and data science algorithms as one of the
most important areas to transform manufacturing and surveillance of components throughput their
life cycle. Indeed, the digitization of product lifecycle management (PLM) has led to the emergence
and deployment of digital threads (Kapteyn et al., 2021; Niederer et al., 2021; Zeb et al., 2021) in a
broad spectrum of manufacturing industries. These digital threads collect, curate, and archive all of
the data/information generated from all stages of the product life cycle: conceptualization, design,
prototype, manufacturing, operation, and retirement (Singh and Willcox, 2018; Margaria and
Schieweck, 2019). Digital threads open multiple new avenues for fostering innovation and
improving the in-service performance of a wide range of products. A necessary feature of the
digital threads is that they encompass both the in-silico activities (e.g., model-based or virtual
engineering) and the physical activities (e.g., measurements made during the different stages of
manufacturing, testing, and operation of the product) conducted in the PLM. An important outcome
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from the deployment of digital threads is that they have opened
new opportunities for the creation and use of in-silico analogues
to the physical product. The recent advances in digital and sensor
technologies (Mei et al., 2019; Ullo and Sinha, 2020) enable the
in-silico objects to co-exist along with their physical counterparts.
In addition to mimicking the physical products, the in-silico
analogues offer unprecedented potential for consistent change
management, allowing the optimization of intentional or
unintentional product evolution over time. Therefore, within
this context, a digital twin can be defined as a high-fidelity in-
silico representation closely mirroring the form (i.e., appearance)
and the functional response of a specified (unique) physical twin.
Digital twins have thus far been used in the manufacturing and
performance evaluation of complex engineered physical systems
(e.g., turbine engines) (Tao et al., 2018; Zaccaria et al., 2018; Raj
and Surianarayanan, 2020; Lim et al., 2021; Xie et al., 2021) and/
or their components, where the focus has been largely on
capturing accurately the macroscale geometry and the
component-level performance metrics. Current digital twins do
not address adequately the capture and archival of the materials
data, which typically deals with physical phenomena occurring at
the lower material length scales (typically ranging from the
atomic to the macroscale). This disconnect is not surprising
given the siloed nature of current materials research and
product design/manufacturing communities. However, it is
abundantly clear that a successful extension of digital twins to
include the materials data/information in a comprehensive
manner can allow for a holistic co-design of material,

manufacturing process, and product in fully integrated
innovation cycles, possibly resulting in dramatic improvements
in the overall part performance.

Materials, in their own right, represent highly complex
multiscale and multi-physics systems. Their production and
in-service responses are controlled by a wide range of
phenomena occurring at length scales ranging from the atomic
to the macroscale and an equally broad range of associated time
scales. Figure 1 depicts schematically the hierarchical nature of
materials systems with examples of a wide variety of physical
phenomena that occur at the nano- and micro-scales. Clearly, the
materials phenomena occurring at the lower material length
scales play important roles in controlling the macro- and
component-scale performances of the part. In the current
research paradigm, the considerations at the component/part
scale and the material scale are studied in a mostly de-coupled
manner by different groups of researchers. The former are the
domain of mechanical designers and manufacturing specialists,
while the latter are addressed by materials science and
engineering specialists. More specifically, the field of materials
science and engineering focuses on understanding how the
different processing histories (e.g., thermo-mechanical
processing) influence the material structure (includes
information on the many aspects of order and disorder seen at
different length scales cf. Figure 1) and their associated
properties. However, understanding and quantifying accurately
the underlying process-structure-property (PSP) relationships
(Kalidindi, 2015; McDowell and LeSar, 2016) at the different

FIGURE 1 | A schematic depiction of the multiscale and multi-physics nature of material systems and their relationship with the component performance. A
comprehensive understanding of material performance requires a complete hierarchical representation of structural/chemical features, the relationship between those
features and material properties, and the mechanisms that drive their evolution either through processing or service history. All arrows represent scale bridging,
i.e., upscaling via homogenization and downscaling via localization.
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material length and time scales is quite arduous. This is mainly
because the diverse physical phenomena occurring at these scales
are necessarily related and co-dependent with one another.
Therefore, adopting a systems approach that manages the
complex trade-offs between potentially conflicting
multifunctional requirements at the different length scales
spanning across the complete range of material and product
scales would yield significant benefits.

However, this task faces many hurdles. The most significant of
these hurdles comes from the fact that the relevant data, even for a
selected single material system, is necessarily generated by
distributed teams of researchers with the requisite expertise.
For example, on the experimental front, materials data comes
from a wide range of imaging modalities (e.g., optical microscopy,
scanning and transmission electron microscopy, various
diffraction and spectroscopic techniques, X-ray tomography,
atomic force microscopy) (Belianinov et al., 2018; Polonsky
and Pandey, 2021) and property evaluations (e.g., mechanical
testing in different modes and at different spatial resolutions,
thermal conductivity, diffusivities) (Khosravani et al., 2020:;
Khosravani et al., 2021). On the modelling front, the data
comes from an equally disparate set of sources that aim to
faithfully simulate specific selected sub-phenomena at different
material length scales (e.g., density functional theory
computations, molecular dynamics, discrete dislocation

dynamics, kinetic Monte-Carlo simulations, cellular automata,
phase-field simulations, finite element models) (Horstemeyer,
2009; Panchal et al., 2013; Matouš et al., 2017). Although each
individual dataset often provides a partial insight, only a systems
approach can provide the comprehensive holistic view needed to
objectively drive materials innovation in an accelerated manner;
this is indeed the goal of many national and international
materials research initiatives [e.g., ICME (Allison et al., 2006),
MGI (National Science and Technology Council, 2011; de Pablo
et al., 2019)].

Figure 2 illustrates the large variety of data sources involved in
formulating a systems approach to understanding and optimizing
materials for desired combinations of macroscale (effective)
properties. As already noted, the datasets collected from any
one data source (refers to either a single experimental protocol or
a single physics-based simulation tool) often provides incomplete
and uncertain insights into the physics controlling the materials
phenomena of interest. At a high level, it should be recognized
that physics-based simulations are designed to provide
predictions of the material response to imposed (thermo-
mechanical) environments for user-specified physics. On the
other hand, experiments are generally designed to provide
observations of material response to specific imposed
environments, for as yet unknown (or uncertain) materials
physics. Clearly, all individual datasets (from any individual

FIGURE 2 | Modeling and experimental tools typically used to obtain relevant materials data at different length and time scales. Example of modeling tools used
include Density Functional Theory (DFT), Molecular Dynamics (MD), Accelerated MD (AMD), Dislocation Dynamics (DD), kinetic Monte Carlo (kMC), Crystal Plasticity
Finite Element Modeling (CPFEM), FEM, and extended FEM (xFEM). Examples of experimental tools used include Atomic Force Microscopy (AFM), High Resolution
Transmission Microscopy (HRTEM), in situ TEM, tomography, Scanning Electron Microscopy (SEM), Electron Backscattered Diffraction (EBSD), and mechanical
testing.
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data source) should be treated as being incomplete and/or
uncertain. However, if the insights from the datasets collected
from the different data sources can be effectively fused in a
consistent framework, it is likely to produce much more
comprehensive and valuable insights. Currently, there does not
yet exist an overarching mathematical framework for such data
fusion. The development and utilization of such a framework is
likely to open new avenues for major time and effort savings in
materials-product co-design and innovation efforts by optimally
guiding the effort investment (i.e., objectively identifying the next
best steps based on a rigorous statistical analyses of all previously
aggregated data).

As already noted, the perspectives presented above build on
multiple national and international initiatives. Specifically, ICME
(Allison et al., 2006), and MGI (de Pablo et al., 2019) have
articulated the need for increased use of computational tools
and data sciences [including artificial intelligence/machine
learning toolsets (AI/ML)] to accelerate the rate of materials
discovery, development, and deployment in advanced
technologies. Indeed, much progress has been made in
organizing and disseminating materials data (The Minerals,
Metals & Materials Society TMS, 2017), and physics-based
simulation toolsets (The Minerals, Metals & Materials Society
TMS, 2015). There has also been a strong injection of data
sciences and AI/ML into materials research, especially in
aspects related to data ingestion (e.g., experimental laboratory
automation) (Kalidindi et al., 2019), curation (e.g., ontologies)
(Morgado et al., 2020; Voigt and Kalidindi, 2021), feature
engineering (Kalidindi, 2020; Xiang et al., 2021), and
automated generation of surrogate models (Generale and

Kalidindi, 2021; Marshall and Kalidindi, 2021). These recent
advances in materials research have set the stage for the
extension and application of the emerging concept of digital
twins described earlier to include the multiscale details of the
material. This paper establishes a roadmap for the pursuit of this
goal, i.e., the extension of digital twins to include materials data
over a hierarchy of length scales. Specifically, we identify the key
foundational elements that currently exist and outline the gaps
that need to be overcome for success in this endeavor (Figure 3).

2MAIN ELEMENTSOFDIGITAL TWINS FOR
MATERIALS SYSTEMS

2.1 Physical Twin of a Material System
Digital twins of macroscale engineered components and
machines typically aim to represent a uniquely identified
single physical twin. For example, a digital twin might target a
specific turbine engine in service on an airplane. However, in
building digital twins for a material system, it becomes intractable
to consider each individual material sample as the physical twin.
This is not only because of the large number of distinct material
samples that can be produced for a nominally specified chemical
composition and processing history, but also due to the fact that
non-destructive characterization techniques are not yet mature
for evaluating both the three-dimensional structure of the
material as well as its properties of interest. Furthermore, even
with the use of destructive techniques for materials
characterization, one can only hope to establish distributions
that adequately quantify the material structure and properties in a

FIGURE 3 | The main components of the proposed roadmap for building digital twins for material systems.
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stochastic framework (i.e., accounting for the significant
uncertainty associated with these quantities for any given
material sample). Given these considerations, it is readily
apparent that the digital twins for materials systems can only
be established in a stochastic framework at the present time. In
other words, we propose here that digital twins of materials
systems should aim to produce multiple instantiations (as
many as needed) sampled from the distributions of the
possible material structure and their associated properties
(with both structure and properties defined over a hierarchy of
material length scales). Therefore, in our proposed framework, we
will associate the digital twins of the material system to the
nominal chemical composition and processing/service history
that created the material samples. In doing so, we will implicitly
define the material by the controllable details (each of which is
identified with aleatoric uncertainty) of the generative process
used to create the material samples (i.e., instantiations of the
physical twin). This, we believe, will result in a much more
pragmatic approach to building digital twins for material
systems that will have high value for the design and in-service
prognosis of engineered components and devices.

2.2 Mathematical Framework for Digital
Twins of Material Systems
The mathematical framework underpinning the digital twins for
material systems should address two main needs: (i) the statistical
quantification of the material structure over a hierarchy of
material length scales1 and its suitable representation in
practically useful low-dimensional forms, and (ii) the reliable
prediction of the material properties of interest given information
about the material structure and the processing/service history.
These tasks indeed correspond to defining the form and the
function of the digital twins for material systems. As already
noted, both these tasks need to be addressed in a stochastic
framework that rigorously tracks the uncertainty associated with
all of the available data and propagates it into the predictions of
the material properties.

2.2.1 Material Structure Representation and
Quantification
The term material structure is used here to describe the spatial
arrangement of structural and chemical heterogeneities, which
constitute a material at a specified instant of time and govern its
properties at that instant of time. For a given chemical
composition, thermodynamics predicts an equilibrium
crystallographic phase (or a multiphase mixture), and at finite
temperature, an equilibrium vacancy concentration. Yet materials
are rarely in their thermodynamic ground state. Essentially, an
overwhelming subset of the material structural features represent

metastable or unstable defects created throughout the process
history. Conventionally, material structure defects have been
classified based on their dimensionality as planar grain
boundaries, linear dislocations, and point-wise atomic
impurities; these are but the simplest examples of a myriad of
complex microstructural features (see Figure 1). The material
structure is not usually static but evolves when stimulated by
exposure to energy (thermal, mechanical, chemical, etc.).
Through state-of-the-art processing, the most perfect undoped,
isotopically pure silicon single crystals have been produced to
purity levels of >99.9999%. On the other hand, the most
sophisticated structural alloys benefit from their complex,
multiscale arrangement of the lower length scale structural
features, reminiscent of the hierarchical nature of biological
systems. Hence, the challenge for a digital twin of a material
system is to represent the necessary complexity of the inherently
high-dimensional material structure features with sufficient
fidelity to capture the relevant subset that controls the
material response of interest. Complicating matters, no single
experimental technique is capable of comprehensively digitizing
the material’s complete internal structure.

A digital twin of a material system should be able to instantiate
a representative volume of the material with sufficient statistical
sampling of all the relevant lower length-scale structural features
and their spatial arrangements. Given the roughly eight orders of
magnitude in length scales (from ~�A to ~ cms) involved, it should
become clear that such instantiations cannot be deterministic or
unique. Therefore, what is required here is the ability to produce
multiple instantiations that reflect as accurately as possible the
inherent stochasticity of the material structure for a given
nominal composition and process history. Laplace conjectured
that by knowing every atom, its position and momentum, we
could anticipate the behavior of the material (marquis de Laplace,
1814).While this statement reflects accurately the expected causal
relationship between the material structure and its associated
properties, it reflects a practically impossible pursuit. Therefore,
we take the viewpoint that the digital twin of a material system is
intended to be a minimally sufficient reduced-order
representation of Laplace’s “demon.” A tractable digital twin
of a material system should therefore utilize a versatile
(broadly applicable to all material classes and length scales)
low-dimensional representation of the material structure that
would allow efficient learning of the functional response of the
material system. Based on the earlier discussion, it is also clear
that the low-dimensional representation of the material structure
can only reflect suitably defined statistical measures at different
material length scales; henceforth, such salient statistical
measures of the material structure will be referred as features.
Because of our interest in instantiating the material structure in
our digital twins, it is important that the selected feature set
should produce realistic, sufficiently accurate, instantiations of
the material structure that can be subsequently correlated with its
functional response. This is not a trivial requirement. For
example, most of the conventionally used statistical measures
of the material structure, such as the overall alloy composition,
phase volume fractions, and the averaged grain sizes are woefully
inadequate for producing the required instantiations of the

1In PSP linkages, one associates a material structure to an instant of time. The
structure is then assumed to be responsible completely for the properties exhibited
by the sample. In any imposed process, the structure is assumed to evolve with
time. When the structure evolves, its associated properties are also expected to
evolve.
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multiscale material structure for our digital twins. More advanced
approaches involving a richer set of microstructure statistics (e.g.,
orientation and mis-orientation distributions, grain aspect ratio
distributions) have led to concepts such as statistically equivalent
representative volume elements (McDowell and LeSar, 2016;
Ghosh and Groeber, 2020). Some of these concepts have also
been implemented in open-source codes such as DREAM.3D
(Groeber and Jackson, 2014; Ghosh and Groeber, 2020).

A comprehensive and systematic framework available today
that is capable of providing the requisite feature engineering
capabilities for the material structure is the framework of n-point
spatial correlations (Torquato and Stell, 1982; Torquato and
Haslach, 2002; Fullwood et al., 2010; Niezgoda et al., 2011;
Adams et al., 2012; Niezgoda et al., 2013). In recent work,
Kalidindi and co-workers (e.g., Kalidindi, 2015) have
developed and demonstrated an efficient and broadly
applicable computational framework and toolsets for
addressing this task. Broadly referred as Materials Knowledge
Systems (MKS), this framework takes advantage of the
computational efficiency of voxelated representations and Fast
Fourier Transform (FFT) algorithms to implement the theoretical
framework of n-point spatial correlations. The feasibility and
benefits of this approach have been demonstrated on a wide
variety of material classes and material structures at different
length scales [from the atomic (Gomberg et al., 2017; Kaundinya
et al., 2021) to dislocation length scales (Robertson and Kalidindi,
2021a) to microscale (Generale and Kalidindi, 2021)].

At its core, MKS defines and utilizes a material structure
function (Kalidindi, 2015) that maps a selected combination of
spatial position x ∈ Ω (the physical volume of the material
domain) and a local material state h ∈ H (includes
information such as phase identifiers, chemical compositions,
lattice orientations, defect densities) to suitable measures (e.g.,
density) that reflect the intensity of h at x. Mathematically, one
can express this function as m(h, x). Implicit in this definition is
the expectation that H needs to be identified suitably to capture
the complete set of material states of interest at the different
material structure length scales. Features of the material structure
can then be defined as expectations of suitably scaled moments of
m(h, x). For example, the expected value of m(h, x) over Ω can
provide a set of 1-point features that can be interpreted as the
volume fractions of h in Ω (Kalidindi, 2015). Similarly, the
expected value of m(h, x)m(h′, x + r) over Ω can produce a
set of 2-point features that can be interpreted as the joint
probability of realizing h at x and h′ at x + r, where r denotes
a specified vector separating the two spatial points randomly
selected from Ω. Although, one can define higher-order features
(e.g., 3-point features), one often finds a sufficiently large number
of features in the 2-point feature set, as it includes all
permutations of (h, h′) over a very large domain of r (this
domain includes all distinct set of all vectors of interest that
can be placed inΩ). The adequacy of the set of 2-point features in
capturing the salient features of the material structure (including
the set of features identified in conventional practices in materials
science and engineering) has been established for a broad range of
material classes (Latypov et al., 2019; Generale and Kalidindi,
2021) as well as the different structure length scales (Fullwood

et al., 2010; Robertson and Kalidindi, 2021a; Kaundinya et al.,
2021) encountered in them.

The MKS framework described in Figure 4 produces a very
large number of features, even when using only the 2-point
feature set. For extracting a low-dimensional feature set, one
needs to use a suitable dimensionality reduction technique. Of the
various options for this task, principal component analysis (PCA)
has been found to be particularly attractive. First, it allows for an
unsupervised learning of the salient low-dimensional features
based on maximization of captured variance. Therefore, it
identifies a consistent set of features that can be used across
multiple PSP surrogate models, allowing for full interoperability
among collections of such models. In other words, since the
salient features are identified without the knowledge of the
specific targets (i.e., outputs) of the surrogate model, they can
be used for different targets (for example, in the predictions of
very different properties of a given material system). Second, the
PCA basis can be inspected and interpreted to a limited extent,
allowing for the low-dimensional features to be associated with
some (limited) physical meaning. Third, since PCA essentially
involves a rotational transform of the original space, it preserves
distances between datapoints in the original space. Finally, the
orthogonal decomposition involved in the PCA allows for
practically useful reconstructions of the full feature list, i.e., a
reconstruction of the high-dimensional feature list from the low-
dimensional feature list. Of course, these reconstructions are
approximate because of PC truncation. However, since the PC
representations are maximized to capture variance, it is possible
to make sure that the approximation introduced by the
truncation is within acceptable tolerance. The PC scores
obtained from the application of PCA on an ensemble of 2-
point feature sets (one set corresponds to one material structure)
serve as a highly effective low-dimensional feature set for the
material structure in our digital twins. There exist a multitude of
other options for dimensionality reduction of the feature space,
such as isomap or kernel PCA. However, the nonlinear
embeddings employed in these techniques can introduce
distortions into the latent space that negate the benefits of
PCA identified above (Hu et al., 2022).

As stated earlier in Section 2.1, the physical twin is not defined
as a single instantiation of a material structure, but rather as the
outcome of a stochastic generative process that yields
instantiations that we then observe. The MKS framework
described above provides a mathematically compact
representation using computationally efficient tools. However,
many tools (e.g., phase-field simulations, micromechanical finite
element models) only take specific instantiations of the material
structure as inputs. Therefore, successful creation of digital twins
for materials requires the ability to move between statistical
representations of material structure and their three-
dimensional physical instantiations at low computational cost.
While the computation of 2-point spatial correlations from
instantiations is relatively easy (Cecen et al., 2016), the inverse
computation is not trivial. Very recently, it has been shown that
the three-dimensional material structures can be instantiated
from their 2-point feature sets with minimal computational
cost (Robertson and Kalidindi, 2021b). As a result of the
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many advantages described above, the MKS framework along
with its open-source code repository PyMKS (Brough et al., 2017)
offers a powerful, currently available, toolset for addressing the
challenges of building digital twins of materials systems.

It is also noted that there are a number of other options based
on neural networks that allow one to combine feature engineering
and property prediction into a single-step framework. These
approaches offer attractive avenues when one is interested in a
limited number of properties as targets. If one insists on de-
coupling the form and function of the digital twins (as we have
argued here), then it is imperative to pursue feature engineering
of the material structure independently from establishing
property predictors (discussed in the next section). In this
context, it should be recognized that the autoencoder-decoder
networks (Herr et al., 2019) offer an interesting option. These
networks do address the unsupervised feature engineering of the
material structure. Therefore, the features identified from such
networks can then be input into other neural networks for
property predictions. This idea represents an open research
avenue that merits further exploration.

2.2.2 Predictions of Material Properties
Reliable prediction of the effective properties of a given material
sample is a challenging task. At a high level, the main options are
to either measure experimentally the properties of interest or to
leverage known physics (often delivered in physics-based
simulation packages) to estimate their values. Both approaches
face hurdles when one desires to produce amultiscale, digital twin
for materials. On the experimental front, the effort and cost
involved in measuring all of the properties of interest along with
the related information (e.g., anisotropy, variances) over the

multiple material length scales of interest are often prohibitive.
On the modelling front, there is substantial uncertainty in the
model forms and/or parameter values used in the physics-based
models. It is therefore clear that neither approach by itself is
optimal in getting us the requisite information. In this regard, the
recent emergence and successful application of materials data
analytics tools has opened up new avenues for addressing
these gaps.

Recently (Kalidindi, 2015; Kalidindi, 2020), it has been argued
that process-structure-property (PSP) linkages can be defined
over different material-structure length scales to capture the core
knowledge needed to study multiscale material responses. It is
argued here that the same PSP linkages can be utilized to predict
the functional response of the material digital twin. This is
because the PSP linkages can be used to update both the
changes in the multiscale material structure due to the
imposed service conditions (using suitably defined process-
structure evolution linkages) but also their associated
properties (using structure-property linkages). The required
PSP linkages need to be formulated using available data that
might often be disparate, incomplete and/or uncertain. Most
importantly, the framework for predicting the function of the
material digital twin should allow easy (and possibly frequent)
updates as new data becomes available. It is also likely that one
needs to chain together multiple PSP models in order to make the
predictions of the function of the material digital twin.

A Bayesian framework has the potential to address scale-
bridging with uncertain physics. The proposed Bayesian
framework will be described next using the structure-property
(SP) linkages as an example. However, they will be formulated
such that they can also be easily applied to capturing process-

FIGURE 4 | The MKS workflow for feature engineering of material structure. In this example, we start with microstructures belonging to three distinct classes
(corresponding to vertical, horizontal, or random ellipses), with one example of each class shown on the left. Their corresponding 2-point features are shown in themiddle
and reflect a large number of statistics (including volume fractions, size and shape distributions) for each microstructure. The low-dimensional representations of the
microstructure statistics are shown on the right, in the subspace of the first two PC scores. The clusters in the PC plots successfully classify the microstructures in
the three classes. The intra-class variance between microstructures within each class can also be quantified from the PC representations.
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structure linkages (PS). Typically, SP linkages are formulated to
take structure variables as inputs and predict property values as
output. The mapping implied in these linkages can be expressed
as P � F(μ), where P is a property variable and μ denotes a
vector of structure features (e.g., the PC scores of the 2-point
feature set described in Section 2.2.1). Both P and μ should be
treated as stochastic variables. This naïve definition makes the
governing physics implicit in the formulation of F . It would be
much more desirable for SP linkages to explicitly treat the
governing physics as additional input variables to the
mapping, i.e., to refine the desired mapping as P � F(μ,φ),
where φ denotes the governing physics. In practice, φ would
represent a vector of parameters defining the physical
mechanisms controlling the response of the material physical
twin (e.g., parameters used in constitutive modeling of the
material response). This refinement is advantageous in two
ways. Firstly, it allows one to treat φ as a stochastic vector
variable, which often exhibits a significant amount of
uncertainty for a selected material physical twin. Secondly, it
allows for the uncertain physics to be passed between linkages.
This is particularly useful for the multiscale phenomenon that
occur in material systems, as the uncertain physics learned in one
length scale can still be utilized at another length scale. An
example of this scale-bridging is depicted schematically in
Figure 5. The first linkage estimates the indentation yield
strength (effective property) of a single grain given the grain’s
orientation (structure variable) and critically resolved shear
strengths (physics variables). The second linkage estimates
the bulk yield strength (property) given the two-point
statistics of the grain orientations (structure variables) and
the same critically resolved shear strengths (physics
variables). Since the physics variables in these two linkages
are the same, the uncertain knowledge of the physics variables
extracted in the grain-scale data (could come from
experiments and/or simulations) can be upscaled and
utilized in making predictions of the effective properties at
the polycrystal scale.

In establishing the material physics parameters, one has to
exploit all of the available data, collected from disparate
sources (e.g., experiments and physics-based simulations).
Machine learning of φ for a selected material physical twin
can be accomplished using a Bayesian update strategy
expressed as:

p(φ|E)∝p(E|φ) p(φ) (1)
where E denotes the set of available experimental observations,
p(φ) is the prior (reflecting our best initial guess), p(E|φ) is the
likelihood of realizing the observations in E, and p(φ|E) denotes
the updated posterior on φ. Although Eq. 1 looks very simple, its
practical usage for learning the controlling physics in multiscale
material phenomena has been hindered by several factors. First,
only the physics-based simulation tools that faithfully mimic the
experiments performed to obtain E can allow for the computation
of the likelihood term in Eq. 1. This is because only these tools
allow arbitrary specification of the governing physics φ. However,
a brute-force application of physics-based tools for computing the
likelihood is prohibitively expensive because of the extremely
large number of simulations one needs to perform to accomplish
this task since it entails performing simulations covering a large
domain of likely governing physics for all of the experimental
observations in E. Second, the proportionality in Eq. 1 implies
that one needs to develop and implement a suitable strategy for
establishing the proportionality factor. Recent work (Castillo
et al., 2021) has demonstrated that it is possible to train AI/
ML models on simulation results produced by physics-based
models, which can then be used to compute the likelihood term in
Eq. 1. Furthermore, they would also allow for the implementation
of Markov-Chain Metropolis-Hastings (MCMH) approaches for
sampling the posterior in Eq. 1 without explicitly computing the
proportionality factor. It is important to note that the posterior
estimate of φ is not restricted to come from any single source of
data. As an example, let us consider the situation where the data
becomes available from different test modes (these could be
indentation tests and micro-pillar tests for grain-scale

FIGURE 5 | Schematic illustration of the scale-bridging between the response of an individual grain and the response of a polycrystalline aggregate. At the grain
scale, the structure-property linkage is formulated to take grain orientation (structure variable) and critical resolved shear strength(s) (CRSS; physics variables) as input
and predict the overall property of interest (e.g., indentation yield strength of grains of different orientations). This linkage is used with both experimental and modeling
datasets to extract a posterior on the CRSS for a given material system (see Panel 6 for more details). At the polycrystal scale, the structure-property linkage is
formulated to take the 2-point spatial correlations of orientation (structure variables) and CRSS (physics variables) to make a prediction of the bulk (effective) yield strength
of the polycrystal (c.f., Paulson et al., 2017).
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mechanical measurements). In such situations, we need to
establish different surrogate models for each test mode. Let P1 �
F(μ,φ) and P2 � F(μ,φ) represent such surrogate models.
Since the underlying microstructure and physics variables have
the exact samemeanings in bothmodels, one can use bothmodels
with their respective experimental datasets for sampling a
consistent posterior for φ. Once the posterior is established,
one can establish the desired SP linkage in a stochastic
framework by marginalizing as:

p(μ∣∣∣∣E) � ∫f(μ,φ)p(φ∣∣∣∣E)dφ (2)

As noted above, the practical implementation of Eqs 1, 2
needs the establishment of suitable AI/ML surrogates. These
usually take the form F(μ,φ), and can be accomplished using
Gaussian Process Regression (GPR). The central advantage of
the proposed strategy here is that the formulation of the needed
AI/ML models is generally a one-time effort. In other words,
when these are properly designed to cover large input domains
in the space of the controlling physical parameters and the space
of relevant material structures, they only need to be performed
once [examples can be seen in prior work (Castillo and
Kalidindi, 2019; Castillo et al., 2021)]. This feature allows for
a relatively low-computational cost update of the surrogate
model as new experimental data becomes available. It is also
possible to suggest new experiments that maximize the potential
for improving the accuracy of the predictions (i.e., reducing the
prediction uncertainty). This is most efficiently accomplished
using established concepts of information gain such as the
posterior predictive variance (Castillo and Kalidindi, 2019;
Castillo et al., 2021; Castillo and Kalidindi, 2021), expected
improvement (Solomou et al., 2018; Takhtaganov and Müller,
2018; Talapatra et al., 2018; Ghoreishi and Allaire, 2019), and
expected information gain (Pandita et al., 2019).

An example application of the proposed Bayesian approach
methodology is depicted in Figure 6, taken from the work of
Castillo et al. (2021). In this example, the information from
spherical indentation measurements on individual grains in a
polycrystalline sample and the corresponding simulations using
crystal plasticity finite element models are combined to establish
distributions on the unknown values of the critical resolved shear
strengths of four different families of potentially active slip
systems in a selected Ti alloy. The approach described in this
study resulted in at least one order of magnitude savings in both
the overall cost and effort expended, when compared to the
conventional approaches that employed small-scale testing to
obtain the same information.

2.3 Cyberinfrastructure for Digital Twins of
Materials
Cyberinfrastructure supports the acquisition, storage,
management, and fusion of data within a collaborative, but
distributed, research environment. The creation of a robust
cyberinfrastructure is critical to the realization of a digital
twin, as digital twins exist at the confluence of multiple
disparate data streams (e.g., simulation data, experimental
data, real time sensor data). These data streams present
challenges in managing both the variety and volume of data
ingested, as well as any associated metadata needed to ensure high
utility of the data for future use. Challenges in the variety of data
come from themultimodal nature of materials data,meaning that
the data in question stems from a variety of data sources (e.g.,
different imaging or analysis modalities). For example, materials
data can take many forms: scalar parameters (e.g., diffraction line
profile), time series (e.g., fatigue response), and spatially resolved
(2-D and 3-D) image data (e.g., SEM image, tomography scan),
and each modality is accompanied by its own unique forms of

FIGURE 6 | An example application of the Bayesian update strategy for the fusion of experimental and simulation datasets from indentation of a-Ti grains in a
polycrystalline sample (Castillo et al., 2021).
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metadata that describe pre-process, in-process, and post-process
information. Challenges in the volume of data stem from
advancements in acquisition resolution and high-throughput
experimental capabilities (hyperspectral imaging, x-ray
computed tomography, etc.). For example, it is now
commonplace to collect a large ensemble of images with high
spatial resolution at a high frame rate using a variety of
microscopes (e.g., optical, scanning electron, transmission
electron), producing gigabytes-to-terabytes of observations of a
single material (Dingreville et al., 2016). Similarly, expanded
computational resources and multiscale modeling capabilities
can also generate large amounts of data related to a material’s
response to variety of environments (de Oca Zapiain et al., 2021).
The main challenge lies in collecting and curating this large
collection of heterogeneous data into the high-value information
needed for the creation of a digital twin.

2.3.1 Data Sources
Material structure measurements capture the state of the material
before, during, and after evolution, and material property
measurements quantify various characteristics of evolution
(e.g., resistance to evolution, evolution rates). The constellation
of methods used to measure material structure and properties is
extensive, and here we only mention two general trends. First, the
digital data stream is becoming more entrenched in the
instruments used to measure material properties. Just a
generation ago, material structures were documented on film
and quantification was performed by manual measurements; lab
instruments utilized strip-chart recorders that created an analog
graphical representation of the data. Now, not only have data
streams become digitized, but increasingly, the data collection
instruments are networked and remotely accessible. Yet
significant concerns remain regarding the cyber vulnerability
of both the data and the instrument, and institutional
regulations regarding interconnectivity are highly disparate.
Second, with the continuing advances in measurement sensors,
data transfer, and data storage, the data streams are becoming
increasingly dense, requiring thoughtful strategies for intelligent
data reduction. Additionally, unconventional datasets, collected
with alternative low-cost methods are proving to have utility.
Previous trends in measurement science have focused on
increases in precision and accuracy of data. Now, the focus is
shifting to affordable high-density data streams that can provide

similar or complementary information content to the existing
suite of ultra-precise measurements.

The external stimuli (e.g., thermo-chemo-mechanical loading)
driving material structure evolution need to be tracked through
the use of suitable sensors. Sensors generally transduce various
forms of energy (Table 1) into electrical signals that can be
transformed into digital data. The transduction can also involve
intermediate forms of energy, e.g., magnetic or optical. All forms
of sensing have limits in resolution, range, accuracy, and
precision. The fidelity of the digitized resolution of the
external stimulus captured by the sensor is limited by the
accuracy of the correlation of the electrical signal to the
intensity of the imposed stimulus, and the bit-depth of the
stored information. The fidelity of an environmental
measurement can also be limited by the temporal and spatial
resolution of the sensor. Sensor arrays allow for spatial mapping
of a field (e.g., temperature field on a sample surface) of interest,
with the spatial resolution limited by the spacing between
individual sensors in the array. Alternately, one can acquire
such information using a single sensor and rapidly scanning a
region of interest; this strategy will lead to some degree of
temporal disregistry between individual measurements.

2.3.2 Data Management (Ontology, Data Software
Platforms)
The high volume and high variety of materials data quickly
outpaces rudimentary data organization techniques typically
used by humans (project specific folder structures, ad hoc
organization or note taking). We therefore require more
sophisticated data management tools to manage the storage
and organization of the materials data relevant to the digital
twin. In their most basic forms data management tools act as
simple data repositories, centralized locations where data is held
and made accessible to others. However, simple data repositories
do not necessarily provide a systematic scheme for the
organization of the data or metadata therein. Digital twins
require the establishment of standards and protocols to
catalogue, vet, compare, and use data reliably and credibly in
automated (and possibly autonomous) protocols (Kalidindi and
De Graef, 2015; Sorkin et al., 2020). Consequently, data
management solutions for digital twins should aim to at least
meet FAIR data principles: Findability, Accessibility,
Interoperability, and Reusability (Wilkinson et al., 2016). FAIR

TABLE 1 | Example of energy forms that drive changes in material state and the transducers employed to observe the corresponding exposure history.

Stimuli Application examples Sensor examples

Mechanical Vibration, Shock, Sound/Phonon, Stress, Strain Strain gauges, piezoelectric, magnetostrictive, eddy current, accelerometer, capacitive
Electrical Current, magnetic fields Voltage sensors, current sensors, resistance sensors, power sensors hall-effect sensors, giant

magnetoresistance sensors, fluxgate sensor
Radiant
Energy

Gamma, X-ray, UV, Infrared, Visible light, Microwave,
Radio waves

Photoresistors (LDR), photodiodes, phototransistors, charged-coupled devices, gamma ray
detectors, microwave sensors, CMOS detector

Thermal Convective, conductive, latent Thermocouples, RTDs, Thermistors, infrared, semiconductor sensors
Chemical Gases, liquids, solids, ions, isotopesetc. Hygrometer, gas sensor, pH sensor
Nuclear Neutron, Beta, Alpha, Proton Gas-filled proportional detectors, ionization chambers, Geiger-Mueller tubes, scintillators, solid-

state detectors
Gravitational weight See mechanical sensors
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data should have: (1) globally assigned, rich, searchable metadata
with a unique persistent identifier and clear provenance; (2)
standardized communication protocols for data storage and
retrieval; (3) consistent, widely utilized, non-proprietary
standards employed for data formatting. Data repositories
generally only meet the most basic aspects of FAIR—namely
accessibility. Materials databases progress further towards FAIR
principles by providing greater searchability. Databases allow
users to construct and carry out complex queries to search for
information, and therefore improve searchability. However, their
searchability is generally limited to tabular data. Furthermore,
databases are also generally limited in their interoperability and
reusability. In particular, they are not well suited for the materials
data needed for digital twins as there is no natural way to describe
the relational connections between disparate materials data (e.g.,
temporal variations along process paths, nested composition
relationships, multimodal data describing single sample).

In order to truly realize FAIR data principles for materials
data, we need to adopt emerging software tools in ontologies and
linked data. Ontologies for data management are an open-world
framework where we construct a standardized language to
connect and describe objects. There currently exists many

standardized languages used to describe ontologies such as
OWL (McGuinness and Van Harmelen, 2004), RDF (Lassila
and Swick, 1998), or JSONLD (Sporny et al., 2014). These
languages all describe data in subject-predicate-object triples
where we link the subject and the object through some rule
(the predicate). One way to capture this information is through
the formation of knowledge graph consisting of nodes (subjects,
objects) and edges (predicates). Knowledge graphs allow for easily
understood visual depictions of metadata, and for the application
of emergent graph-based AI toolsets for the automated
identification of new connections between aggregated elements
of a complex heterogeneous dataset.

A recently proposed materials ontology (Voigt and Kalidindi,
2021) shown in Figure 7A can prove valuable in our effort to
collect and curate the data needed for a materials digital twin.
This ontology consists of four primary classes of entities (denoted
by circles) that can serve as subjects or objects: Process, Material,
Tool, and Data. A total of nine predicates (denoted by arrows)
have been defined to link these objects. Process nodes hold
information about process parameters, tool nodes describe the
settings and characteristics of machines, and data nodes hold the
payloads of interest (images, tabular data, etc). A material node

FIGURE 7 | (A) The constitutive elements of a recently proposedmaterials ontology (Voigt and Kalidindi, 2021). The four main elements are Material (blue), Process
(yellow), Tool (purple), and Data (orange) are shown in different colors along with the allowed connections between them. (B) An example of a knowledge graph
constructed using the ontology.
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describes the state of the material along a nominal process.
Therefore, every time an action is taken on a material, we
produce a new material node. This allows us to easily
associate data with a point along a process path. As an
example, a given steel (Material) produced after a specified
thermo-mechanical processing route (Process) can be studied
in a microscope (Tool); the results of the study are captured in a
file (Data). Figure 7B depicts an example knowledge graph for a
steel. The process begins with a generic low carbon steel node
(seen at the bottom of the knowledge graph). It then undergoes a
standard annealing step to get a uniform starting material, and
proceeds through a specialized intercritical annealing and quench
steps to its final form (labelled as 750-00-000 in the knowledge
graph). Along the processing route shown, we are able to connect
the various data/metadata collected. For example, it is seen that
both the starting material and the final material have associated
SEM images. The final material also has a datasheet generated
using a known software package (defined by a Tool node) which
took a known load-displacement curve (defined by a Data node)
as input. Ontologies allow us to systematically capture
interconnected materials data and allow for the context of a
dataset to be robustly described and communicated, thus
enhancing the reusability of the data.

2.3.3 AI Tools
There currently exist several software packages than can be used
to support the mathematical framework proposed in Section 2.2.
For structure quantification PyMKS (Brough et al.) offers
computationally efficient tools for the feature engineering of
material internal structures. PyMKS supports various data
transformations needed to capture information on a wide
range of material local states encountered in different material
classes at different material structure length scales. PyMKS
utilizes Dask, a distributed framework for developing python
applications, to facilitate computations involving large datasets
on supercomputers and large clusters (Rocklin, 2015).
Subsequent to feature engineering, surrogate model building
can be accomplished via a wide variety of popular python
packages; examples include Statsmodels (Seabold and Perktold,
2010) for basic statistical models, SKLearn (Pedregosa et al., 2011)
for machine learning tools, PyTorch (Paszke et al., 2019) and
TensorFlow (Abadi et al., 2016) for neural networks/deep
learning tools.

AI tools support digital twins beyond the needs of the
mathematical framework alone. AI based segmentation
strategies have gained traction, and Bayesian CNNs have
recently been used to characterize the segmentation
uncertainty in materials images (LaBonte et al., 2020). AI tools
have also been effective in fusing multimodal materials data.
Multi-input NNs have proven effective in combining data from
multiple sources and different data types. For example, numeric
and categorical data, assessed via multi-layer perceptron
algorithms can be directly combined with image-based
convolutional NNs (Azim and Aggarwal, 2014). While data
streams are typically experimental, it can sometimes be
beneficial to integrate high-fidelity simulation data from
traditional high-performance computing approaches (e.g.,

atomistic modeling, phase-field, finite element) to augment
“missing” experimental data or to represent functional
dependencies/sensitivities that were not exposed in the
experimental datasets. For instance, well-established
experimental methods such as diffraction measurements are
being implemented into computational models as a
complement of the interpretation of experimental results
(Coleman et al., 2014; Kunka et al., 2021). Alternatively,
researchers have recently used generative machine learning
algorithms such as generative adversarial network (GAN) to
generate large materials and process libraries (Banko et al., 2020).

3 APPLICATIONS

The ability to use a digital twin to provide an accurate picture of
the corresponding physical twin at any given point in time is
expected to significantly improve the guidance to subject-matter
experts towards rational (and optimized) material/process
improvements. Additionally, predictions of component
performance can drive upstream changes in design or
manufacturing process. To date, the development of detection
and prognosis-driven planning strategies has largely focused on
tuning individual process parameters such as temperature or
materials composition for example, despite the urge to devise
efficient strategies for the selection of multiple interdependent
variables to substantially accelerate and improve scientific
discovery. Digital twins open up new opportunities to enable
such strategies and accelerate autonomous experimental design
and exploration. Autonomous experiments are emerging in
materials research leading to the acceleration of materials
design and discovery (Nikolaev et al., 2016; Correa-Baena
et al., 2018; Hase et al., 2018; Häse et al., 2019; Pendleton
et al., 2019; Gongora et al., 2020). The idea is to integrate
automation with some form of machine learning or artificial
intelligence framework to accelerate experimentation or to guide
and discover the next set of experiments. Most of the work to date
is dedicated to materials discovery, i.e., autonomously predict and
synthesize materials with targeted properties. For instance,
Nikolaev et al. (2016) presented a closed-loop iterative method
that automatically analyzes experimental results from carbon
nanotubes grown from chemical vapor deposition to design or
alter the next set of growth experiments to best reach a designated
design target growth. Expanding autonomous loops to
encompass more complex workflows will require the
integration of the digital twin elements described in Section 2
with the automation of expert decisions. One interesting direction
is to use the digital twins as a tool to autonomously test hypothesis
during an experimental design. In this case, the practitioner
would simply state the Process, Material, Tool, and Data and
have the automation process decide whether the hypothesis is
supported or refuted in order to decide on the potential next set of
experiments. In this context, each automated trial would be
guided by the knowledge collected and curated by the digital twin.

One particular application domain of interest for digital twins
is the material/process exploration in additive manufacturing,
with origins in rapid prototyping. There are extensive model-
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based simulations of the additive manufacturing process, ranging
from powder packing through the entire laser-matter interaction
and solidification process that can be taken as input into the
Bayesian update strategy described in Section 2.2.2. The range of
physical considerations in this process are daunting. In addition
to these process models, there are complementary and similarly
extensive set of structure-property models. Currently, a
comprehensive digital representation of the entire spectrum of
governing equations is beyond the state-of-the-art. A digital twin
composed of many surrogate models utilizing the Bayesian
update strategy could be formulated to optimize the
parameters of these models for use in material design as well
as process optimization.

4 CONCLUSION

Digital twins of the components in devices have enabled the in-
service monitoring, prognosis, and design of complex systems.
This work proposes both the conceptual framework and the
cyberinfrastructure required to extend the concept of digital
twins to the material level. Digital twins for materials provide
a statistical in-silico materials representation of both structure
and performance. The proposed framework consists of a
materials representation based on n-point spatial correlations
and PCA, a performance prediction framework centered around
a two-step Bayesian framework, and a cyberinfrastructure that
leverages new material ontologies for the management of

multimodal materials data. Together, these foundational
elements offer new opportunities for the extension of current
digital twins to include important details of the material over a
multitude of material structure length scales (from themacroscale
to the atomistic).
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