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Electrochemical conversions of carbon dioxide, water, oxygen, and nitrogen

have offered effective ways to relieve the problems of carbon dioxide over-

emission and fluctuated energy (such as solar, wind, tide, etc.) storage. The key

factor that impacts the electrochemical system’s performance is the catalysts

employed. Among all thematerials, carbon nanomaterials generally exhibit high

catalytic activity which is attributed to the high conductivity, large specific

surface area, and exposed active sites. Recently, more andmore researchers set

their sights on applying the carbon nanomaterials in large-scale projects.

Herein, it is of great importance to review the most recent studies on

carbon nanomaterials in electrochemical applications. This paper

summarizes the applications of carbon nanomaterials in electrochemical

processes, and the structure impact on the performance. Further, challenges

in this field are discussed, which can guide the innovative synthesis of efficient

nanostructured carbon electrocatalysts for practical, large-scale energy

conversion applications.
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Introduction

Reducing greenhouse gas emissions from energy sources is a reliable way to achieve

carbon neutrality (Chen L. et al., 2022). Among all the technologies, using renewable

energy to generate electricity is one of the most effective methods to reduce CO2 emissions

on a large scale. However, the intermittent, seasonal, and regional characteristics greatly

hinder its applications. Recently, researchers have set their eyes on incorporating

electrochemical conversion and storage devices into the grid to solve the problem

(Yang et al., 2022). Electrocatalytic carbon dioxide reduction reaction (CO2RR),

hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen
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reduction reaction (ORR), and electrocatalytic nitrogen

reduction reaction (NRR) are the most commonly used

technologies. And the key factor which impacts the

electrochemical performance and economic efficiency most is

the catalyst employed (Liu et al., 2021a; Deng et al., 2022b).

Carbon nanomaterials with high conductivity, stability,

specific surface area, and low cost have drawn great interests

in recent years (Khan et al., 2022; Zhang et al., 2022a). These

carbon nanomaterials can be divided into zero (0D), also called

carbon dots (CDs), one (1D), two (2D), and three (3D)

dimensional materials according to their structures (Figure 1).

Typical CDs, consisting of an sp2/sp3 hybrid carbon core and an

outer layer rich in hydroxyl (−OH), carboxyl (−COOH), and

amine (−NH2) functional groups, can be divided into graphene

quantum dots (GQDs), carbon nanodots (CNDs), carbon

quantum dots (CQDs), and polymer dots (PDs) according to

structure (Xia et al., 2019; Wu H. et al., 2022). 1D carbon

nanomaterials include carbon nanofibers, nanoneedles, and

nanotubes, which are quite malleable; 2D carbon

nanomaterials mainly consist of carbon nanosheets graphene,

graphene oxide, and other transition metal carbides such as

MXene, with ultra-thin layered structures, offering the

potential for more active sites and intermediate adsorption

(Jin et al., 2021, 2022); 3D carbon nanomaterials primarily

include various porous materials and nanoarrays formed by

1D materials like carbon nanotubes or nanosheets (Joo et al.,

2001; Asefa et al., 2021). Actually, the pure carbon material does

not possess good catalytic activity. In an electrocatalytic process,

the activity of the catalyst mainly depends on its adsorption/

desorption ability to the key reaction intermediates involved in

the reaction, which is related to the active sites’ electronic

structure. Therefore, the electronic structure has been

optimized, mainly through doping, defect construction, and

the formation of heterojunctions, to obtain a more suitable

adsorption capacity (Jin et al., 2018b; Wang et al., 2019a).

However, the high catalytic activity cannot be obtained with

solely well-designed active sites. The number of active sites, the

contact between sites and reaction medium, the transport

capacity and electron transport capacity of substances in the

process, and the durability and adaptability of materials, which

are mainly related to the structural properties of the material, are

far more important (Wang et al., 2019b; Asefa et al., 2021).

This review mainly introduces the applications of carbon

nanomaterials in CO2RR, HER, OER, ORR, and NRR

technologies, and the structural optimization methods to

obtain good catalytic performance in terms of the improving

of active sites number, electron transport capacity, mass

transport capacity, and catalysts’ stability. The challenges in

this field are also discussed, and suggestions are given for the

future development.

Electrocatalytic water splitting

Electrocatalytic water splitting comprises an anodic OER and

a cathodic HER in one system. HER is a two-electron transfer

process whose energy barrier is relatively low, but the overall

kinetics are slow due to the complex four-electron transfer and

multi-step reaction behavior of OER.

Although the cathode and anode generate different

intermediates, the adsorption of all the intermediates can be

effectively enhanced with more exposed active sites (Figure 2)

through structural optimization (Sultan et al., 2019; Cheng et al.,

2022). In HER, nanoparticle aggregation is a serious problem, Liu

and co-workers coated the Ni particles with a carbon layer, this

effectively inhibited aggregation and increased the exposure of

active centers (Liu F. et al., 2022). The modification of carbon

nanotubes grown on carbon fiber paper (CFP) effectively

promoted the dispersion of the active phase and obtained a

larger active surface area, thus enhancing the performance of

OER (Qiao et al., 2022). Graphene and g-C3N4-based nanosheets

are also well dispersed with active sites due to their ultra-thin

layered structure, e.g., graphene oxide (Rh-GO) modified with

Rh nanospheres, with HER performance comparable to that of Pt

electrodes (Jin et al., 2018a; 2018c; Narwade et al., 2020). Due to

special electronic properties and space limitations, the metal

inside the core-shell structure has more catalytic activity than

the metal deposited on the surface. For example, the core-shell

structure prepared by Weber et al. has a graphite-like shell with

abundant defect sites, which showed high catalytic performance

in HER (Weber et al., 2022).

The performances of electrocatalysts depend large on their

ability to transfer and exchange electrons in the electrolyte (Qiao

FIGURE 1
Carbon nanomaterials classified by structure (Zhao et al.,
2018; Cai et al., 2019; Shah et al., 2019; Kagkoura et al., 2020; Liu F.
et al., 2022; Wu Y. et al., 2022; Domingo-Tafalla et al., 2022; Xiao
et al., 2022; Zhong et al., 2022).
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FIGURE 2
(A) Layered nanosheets uniformly loaded with active particles; (B) porous nanofibers; (C) the core-shell structure with rich active sites (Wang
et al., 2021; Liu F. et al., 2022; He M. et al., 2022).

FIGURE 3
(A) Self-supporting carbon nanofibers; (B) Graphitized carbon nanofibers; (C) Nanorod arrays; (D) Surface functionalized carbon nanotubes
(Zhao et al., 2018; Wu Y. et al., 2022; Yu et al., 2022; Zhong et al., 2022).
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et al., 2022). High graphitization can increase catalyts’ inherent

electrical conductivity (Yu et al., 2022). Conventional powdered

catalysts require polymer binding, which often covers the active

center. The 3D self-supporting nanostructures prepared by Song

et al. (2022) can effectively reduce the interfacial resistance

(Figure 3). The heterojunctions between metals and carbon-

based nanostructured materials also promote electron

migration (Louis et al., 2022; Yu et al., 2022). Surface

functionalization for material can increase the surface-active

sites but reduce the conductivity. Li’s team constructed

coaxially structured double-walled carbon nanotubes

(DWNTs), functionalizing the outer wall while providing a

conductive pathway on the inner wall (Li Y. et al., 2022).

The ability to transport substances directly affects the

reactants’ and intermediates’ adsorption and the diffusion of

products. For HER, the reactants are H+ under acidic conditions

and water under alkaline conditions (Zheng et al., 2021; Cheng

et al., 2022). In contrast, the reactants are water under acidic

conditions and OH− under alkaline conditions for OER (Sultan

et al., 2019). Therefore, the hydrophilic or hydrophobic nature of

the catalyst influences the efficiency of the reaction (Li et al.,

2020). The transfer of intermediates is noticeable, and the hollow

or porous structure provides short cuts for fast transportation of

mass during the reaction (Liu et al., 2022; Wang et al., 2022).

Since both HER and OER products are gaseous, it is essential to

avoid bubble accumulation (Chen X. et al., 2022). Wu and co-

workers fabricated interlaced carbon nanofibers with large pores,

facilitating mass transport and desorption of H2 (Wu Y. et al.,

2022). Xiao’s team prepared nanoarrays with good electrolyte

penetration and weak bubble adsorption (Xiao et al., 2022).

Enhancing the mechanical strength of the structures is key to

obtaining good stability for long-term electrolysis. The bubbles

from hydrolysis may damage the nanostructure, herein, many

researchers have devoted large efforts to strengthen the

mechanical structure through etching and annealing

(Wehrhold et al., 2022). Wu Y. et al. (2022) synthesized a

robust carbon nanocatalyst with array structures which could

maintain stable electrocatalysis for up to 100 h, as well as

providing a high current density of 1000 mA cm−2. The self-

supported carbon nanofibers also have a stable structure and

show long-term performance for tens of hours in both HER and

OER (Yu et al., 2022; Zhong et al., 2022). Long reaction times

tend to cause aggregation of active particles. Liu F. et al. (2022)

prepared graphitic carbon-coated active particles that remain

FIGURE 4
(A) Tip-opened carbon nanohorn; (B) dendritic structures consist of carbon sphere cores and graphene sheets (Feng et al., 2018; Kagkoura
et al., 2020).
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dispersed for up to 60 h in electrolysis reaction. The excellent

core-shell structure can also tolerate harsh catalytic

environments.

For the water-splitting catalysts, nanostructures such as

porous, layered, or arrays not only effectively provide a larger

specific surface area to increase intermediate adsorption but also

facilitate the diffusive transfer of products, intermediates, or

other substances. The construction of heterojunction or self-

supporting structures can sufficiently reduce the electron transfer

resistance and improve the overall reaction kinetics (Chaitoglou

et al., 2022).

Oxygen reduction reaction

ORR is a core reaction of fuel cells. In aqueous solutions, O2

can be reduced to water by a four-electron transfer pathway or to

hydrogen peroxide by a two-electron transfer pathway (Luis-

Sunga et al., 2020). The complex mechanisms, weak O2

adsorption, and O-O bond activation/cleavage greatly hinder

the developments of ORR-based technologies (Xu et al., 2020).

To expose more active sites, obtaining a high specific surface

area, improving the catalyst structure, loading active particles on

carbon-based substrates, or introducing functional groups are

effective strategies. For example, the as-prepared, metal-free

mesoporous carbons possessed a high density of N-containing

active sites and a high specific surface area (Ilnicka et al., 2021).

Zan et al. (2021) prepared an ultrathin carbon nanosheet with a

thickness of 1–2 nm, which can incredibly increase the specific

surface area and obtain a larger current density. Liu’s team

embedded Pt3Co into the unclosed mesopores, which enabled

it evenly disperses on the surface and sufficiently in contact with

the reaction medium (Liu J. et al., 2022).

ORR is a multi-electron transfer process, in which the timely

availability of electrons facilitates the reaction, and highly

conductive catalytic materials also increase O2 adsorption

(Luis-Sunga et al., 2020). A series of nanoporous carbon were

synthesized and compared with Pt/C electrodes, confirming the

more excellent electrical conductivity (Fernandes et al., 2020). In

the case of utilizing transition metals coupled with carbon-based

materials, the synergistic effect between the components enables

the catalyst to produce a wealthy heterogeneous interface, which

also facilitates electron transfer and enhances the selectivity of

four-electron transfer (Zhou et al., 2020; Wu S. et al., 2022). The

dendritic carbon structure composed of a carbon sphere core and

graphene flap has excellent electrical conductivity, for the carbon

sphere skeleton keeping the graphene layer from being squeezed

to aggregate in the liquid phase (Feng et al., 2018).

A good structure increases the adsorption of O2 and

facilitates the transfer of intermediates. Feng et al. (2018)

synthesized catalysts that have more than twice the current

density of Pt/C electrodes at the same catalyst loading due to

the super absorption properties of graphene layers and oxygen

bubbles stabilizing ability of dendritic interstices. The porous

structure provides similar properties, with strong interaction

with O2 bubbles (Lu et al., 2016; Ilnicka et al., 2021). In the

porous nanosheet catalyst synthesized by Li et al. (2021) 17.4% of

the macropores were for substance transport, and 82.6% of the

mesopores were for the diffusion of reactants and products.

Carbon nanohorns have conical tips where most of the defects

are located and need to open the tips with modification to

facilitate material transfer (Kagkoura et al., 2020) (Figure 4).

Stability is an important property for industrial applications,

and the encapsulation of metal particles with excellent ORR

catalytic activity can effectively avoid recrystallization (He M.

et al., 2022). Guo’s team prepared the leaf-like porous nanosheet

with a core-shell structure that has more remarkable stability

than the Pt/C electrode, for its potential decreases almost

negligible after reacting at the constant current of 5 mA cm−2

exceeds 110 h, the Pt/C electrode exhibited a significant potential

drop within 70 h (Guo et al., 2022). Anchoring small-sized CoN

nanoparticles between ultra-thin nanosheets provide both active

sites and less nanosheet aggregation, which remains stable after

350 h (Wu S. et al., 2022).

For ORR, the utilization of carbon nanomaterials not only

enables fully exposure of active sites, but also increases O2

adsorption. These characteristics are benefit to the opening of

O-O bond. And the high electron transfer rate on the surface of

the carbon-based catalysts can largely improve the reaction

efficiency. The carbon-based catalysts’ stability can be easily

achieved by coating or loading various particles.

Electrocatalytic reduction OF CO2

In CO2RR, CO2 is converted into fuels or other value added

products such as methanol, formic acid, methane (Deng et al.,

2022a; Xuan et al., 2022). CO2RR typically involves three steps.

First, the adsorption and activation of CO2 to form intermediates.

Second, proton coupling and electron transferring, Third,

desorption of the resulting products (Tan et al., 2022).

CO2 molecule has a stable linear structure which requires

large energy input to evoke and low solubility in commonly used

electrolytes. Therefore, the highly active CO2RR catalysts should

possess the characteristics of suitable CO2 thermodynamic

adsorption strength and sufficient exposed active sites

(Melchionna et al., 2021; Li L. et al., 2022). Liang et al. (2022)

found that the sample with the largest micropore-specific surface

area has a larger current density. Zhu’s team prepared arrays to

prevent the aggregation of nanorods and nanosheets, and the

optimal specific surface area result in greater current density

under the same voltage and the best CO selectivity (Zhu et al.,

2019). In addition, supporting the active particles or single atoms

on carbon material can expose the active site to the reaction

medium sufficiently and obtain better catalytic efficiency. For

example, Wu’s team embedded the nickel (Ni) monatomic site in
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carbon nanotubes which the FE of CO can be as high as 98% at a

low potential of −0.65 V. Since the abundant mesopores fix the

metal nanoparticles in the pores evenly, effectively preventing

migration and aggregation (Wu Y. et al., 2022).

For CO2RR, a multi-electron transfer process, improving the

conductivity of the catalyst material can accelerate the reaction

and ensure the ability to provide enough protons and electrons

consistently, which is relevant to the product (Askins et al., 2021).

The rich porous structure is beneficial for electron transport, and

the layered and array structure can also improve the electron

transport capacity (Tuo et al., 2019; Zhu et al., 2019; He C. et al.,

2022). Compared with adsorption or drop coating, the structure

loaded with active particles has lower interface resistance and

better electron transport ability (Liu et al., 2020). The GQDs

consist of single or few graphene sheets with a considerable

number of edge sites that make them conductive (Hoang et al.,

2019). Therefore, the graphitization of materials can also

effectively accelerate electron transmission (He C. et al., 2022).

CO2RR is usually performed in an aqueous electrolyte,

forming a gas-liquid-solid three-phase interface with low CO2

solubility, which requires consideration of mass transfer, which is

also key to the proton coupling step (Tan et al., 2022). MXene has

a stable layering which, in addition to exposing the active site,

facilitates the diffusion of the substance (VahidMohammadi

et al., 2021). Sun et al. (2022) found that materials with rich

micropores have a higher specific surface area for absorbing CO2,

and bigger diameter pores are conducive to accelerating the

diffusion of electrolytes and increasing the wet electrode area.

The hydrophobic structure creates a microenvironment that

facilitates the diffusion of CO2 (Xing et al., 2021). For

example, the rich mesoporous nanotubes prepared by Du’s

team have good catalytic properties due to the

hydrophobicity, which also inhibits HER (Du et al., 2022).

The collapse of the catalyst structure will result in the active

site’s absence (Xuan et al., 2020). The active particles fixed by

pores are stable for their uniform dispersion, and both CO FEs

and partial current density retain about 90% of the original value

during a 60 h electrolysis (He C. et al., 2022). The arrays reacted

for 30 h, showing an almost negligible reduction in current

density attenuation, indicating excellent durability (Zhu et al.,

2019). Graphene sheets provide a significant specific surface with

abundant active sites but are destroyed easily during the reaction.

Etching not only accelerates electron transfer but also further

increases strength (Shao et al., 2022).

Micropores are the best for CO2 adsorption and facilitate

CO2 activation, while macropores allow for better mass transfer.

The increased electron transfer capacity of the graphitized and

active particle-loaded structures also increases the selectivity of

CO2RR, determined by the multiple electron transfer and

product diversity. At the same time, these structures also

effectively improve stability and are a guideline for designing

catalysts for industrial applications where long catalytic times are

required.

Electroreduction of N2

Ammonia synthesis using NRR allows efficient energy

storage and is an alternative to the Haber-Bosch process that

requires high-pressure and high-temperature conditions (Lv

et al., 2018; Wu et al., 2021). The NRR process is similar to

CO2RR while the triple bond structure of N2 is more stable than

the CO2 molecule.

Performing adsorption and dissociation for chemically inert

N2 molecules is still a challenge to overcome (Westhead et al.,

2021). In addition to constructing effective active sites, the key to

increasing contact between active sites and N2 molecules is the

active specific surface area (Lv et al., 2018). Synthesizing a

mesopore-rich structure is a direct way (Hu et al., 2020). 1D

CDs have a high specific surface area due to their size

characteristics. Han et al. (2022) reported the successful CQDs

with only about 2 nm diameter, and the generous oxygen-

containing groups covered the surface, which dispersed them

in aqueous or non-aqueous media uniformly to promote the

contact of active site and reaction medium. The monoatomic

loading of the bimetal on the carbon matrix results in the

abundance and dispersion of active sites (Zhang et al., 2022).

The electron transport capacity is critical after dissociation and

affects the overall rate of the reaction. The B/N codoped porous

carbon nanotubes have a tubular structure that not only allows them

to expose more active sites but also maximizes the use of electrode

materials and shortens the electron diffusion path (Shi et al., 2022).

MXene relies on structurally optimized smaller layer spacing to

support electron transfer (VahidMohammadi et al., 2021). Besides,

the better the graphitization, the higher the FE of NH3, which

correlates with good electron transport ability (Wen et al., 2021).

The accumulation of products on the electrode surface will

increase the resistance, and the stable supply of protons is related to

both N2 adsorption and NH3 formation (Westhead et al., 2021). Ma

et al. (2022) found that Fe and N-doped porous carbon has the

lowest Faraday efficiency and NH3 yield at the highest specific

surface area of themicropores, whichmight be attributed to the too-

small voids hindering the mass transfer. The structures of average

pore diameter concentrate between 1.7 and 5 nm can provide

abundant channels for the transmission of gas molecules and the

diffusion of active ions (Shi et al., 2022).

Catalysts tend to structurally collapse during catalysis, appearing

to undergo a catastrophic loss of efficiency (Westhead et al., 2021).

Liu et al. (2021b) used Co andMo doping to immobilize the active N

atoms, forming a single-atom catalyst, that is, stable and efficient.

Wang’s team prepared the GO nanoflakes covered C=O group on

the surface can effectively adsorb and activate N2 and maintain a

stable current density response without conspicuous fluctuation

within 30 h (Wang et al., 2020). The B-enriched BCN nanomesh

prepared by Chang et al. (2021) retains catalytic activity after a

electrolytic process for 36 h.

NRR, as an emerging electrocatalytic process, has drawn

increasing attention. However, only few researchers have
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employed carbon nanomaterials in NRR. And according to the

reports recently, most of the researchers mainly focused on

increasing the nitrogen molecules adsorption and activation,

which is similar to that of the CO2RR. It is reasonable to

predict that carbon nanomaterials will play an important role

in the future studies on NRR.

Conclusion

In summary, carbon nanomaterials with remarkable

properties such as large specific surface area, good

electrical conductivity, abundant surface functional

groups, high plasticity, and low price have great potential

for application in electrocatalysis. Currently, researchers

mainly prepare graded porous structures to increase the

exposure of active sites and improve mass transfer;

grapheneize the materials or hybridize with graphene

structures and reduce the interfacial resistance to improve

electron transport; use nanocarbon as a substrate to support

the active sites to increase the stability. However, there are

still numerous challenges waiting to be conquered.

1) Different properties are difficult to ensure at the same time.

For example, graphitization facilitates electron transport, but

the original structure is hardly maintained at high

temperatures, resulting in the absence of active sites.

2) It is uncontrollable to prepare needed structure. Some carbon

nanomaterials with high selectivity, such as single atoms and

nanoarrays carbon nanomaterials, are hard to prepare and require

relatively harsh preparation conditions, leading to low economic

efficiency.

3) It is difficult for industrial applications. For industrial applications,

catalysts require higher current density and prolonged stability, as

well as better durability to cope with the possible strong acid and

alkali environment caused by uneven diffusion in industry.
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