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In recent years, as a renewable clean energy with many excellent characteristics, solar
energy has been widely concerned. In this paper, we propose an ultra-broadband solar
absorber based on metal tungsten and semiconductor GaAs structure. A multilayer metal
semiconductor composite structure composed of W-Ti-GaAs three-layer films and GaAs
gratings is proposed. The finite difference time domain method is used to simulate the
performance of the proposed model. High efficiency surface plasmon resonance is excited
by adjusting the geometric parameters, and the broadband absorption of up to 2,350 nm
in 500–2850 nm is realized. The spectrum of the structure can be changed by adjusting the
geometric parameters to meet different needs. The proposed absorber has good oblique
incidence characteristics (0–60°) and high short-circuit current characteristics. The
geometry of the absorber is clear, easy to manufacture, and has good photoelectric
performance. It can realize solar energy collection, light heat conversion, high sensitive
sensing and other functions.

Keywords: solar absorber, finite difference time domain method, broadband absorption, GaAs gratings,
photoelectric characteristics

INTRODUCTION

From the beginning of the 21st century, with the improvement of people’s living standards, there are
more and more kinds of household appliances, and the demand for traditional fossil energy is also
increasing, which is in contradiction with the characteristics of non-renewable resources. According
to the existing data, if energy consumption can not be controlled before the end of this century, oil
and natural gas energy will be exhausted, and coal reserves will be exhausted. With the decrease of
these conventional non-renewable resources, how to effectively and reasonably use conventional
energy, and develop and utilize new energy, especially renewable energy, is a major event in front of
all mankind (Xiao et al., 2017; Tang et al., 2018; Cai et al., 2019; Sivák et al., 2020; Xie et al., 2020;
Zhao et al., 2021).

Among all kinds of energy, as a renewable energy, solar energy is considered to be the most
potential energy, because it is inexhaustible, reliable, less pollution and so on. As an important energy
collection device, solar absorber has attracted more andmore attention in recent years (Li et al., 2016;
Chen et al., 2019a; Xiao et al., 2019; Li et al., 2020a; Roostaei et al., 2021). For an ideal absorber, it
must have high efficiency light absorption and many other excellent physical properties, such as
polarization stability and tunability (Li et al., 2020b;Wu et al., 2020; Yi et al., 2020; Chen et al., 2021a;
Jiang et al., 2021a; Li et al., 2021a; Li et al., 2021b; Li-Ying et al., 2021; Zhou et al., 2021). However, the
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existing absorbers are generally limited by low temperature
tolerance, low light absorption efficiency and materials (Chen
et al., 2020; Chen et al., 2021b; Jiang et al., 2021b; Wang et al.,
2021; Zhang et al., 2021). Therefore, a new type of broadband
solar energy which can solve the above problems needs to be
proposed. According to the actual situation of solar radiation in
the range of 295–2,500 nm, the key to realize the efficient
utilization of solar energy is to design a solar device which can
match the band perfectly.

The research on broadband absorber has been carried out for
many years in the world, and it has been used in solar cells, solar
heating devices and photothermal converters (Liu et al., 2017;
Keshavarz and Vafapour, 2019; Yu et al., 2020; Chen et al., 2021c;
Su et al., 2021). For the design and improvement of broadband
absorber, we should pay attention to the following aspects: the
first is to select the appropriate material. Traditional precious
metal materials such as gold and silver were used in the original
broadband absorbers. However, due to its high cost and poor high
temperature resistance, people began to pay attention to high
melting point materials such as titanium nitride. They not only
have high melting point, but also can excite effective plasmon.
Secondly, the nanostructure design of broadband absorber is also
very important. The multi-layer metal-insulator structure was

first used, and then turned to simpler MIM or IMI
nanostructures. Finally, the working area of broadband
absorber, especially from ultraviolet to near-infrared, has been
studied and improved. Efforts in these directions are to obtain
ideal broadband absorbers for practical applications. For
instance, Lei proposed an ultra-broadband absorber based on
a thin metamaterial nanostructure composed of Ti-SiO2 cubes
and Al bottom film. The proposed structure can achieve nearly
perfect absorption with an average absorbance of 97% from 354
to 1,066 nm (Lei et al., 2018). Huang proposed a broadband
absorber with near-unity absorption in the terahertz regime based
on a target-patterned graphene sheet, the absorption bandwidth
(more than 90%) is 1.57 THz with a central frequency of 1.83 THz
under normal incidence (Huang et al., 2018). Although the
characteristics of these absorbers are superior enough, their
complex nanostructures and a variety of complex materials
make the proposed absorbers difficult to apply. Therefore, an
absorber with simple structure and excellent high absorptivity
should be proposed.

In this paper, we propose a broadband solar absorber
composed of W-Ti-GaAs three-layer thin film and GaAs
grating, as shown in Figure 1. The proposed structure uses W
metal as the substrate and GaAs semiconductor grating as the
auxiliary structure. There is a layer of metal Ti between the w base
and the GaAs film, and the top layer is a layer of ITO (refractive
index is 2.0) film to reduce the reflection of the whole structure
and improve the overall absorptivity. The electromagnetic field in
different wavebands, the influence of structure parameters on the
overall absorptivity and the distribution of solar absorption
characteristics are simulated. The results show that its high
absorptivity band width (>90%) can reach 2,350 nm, which
matches the solar radiation range on the earth (about
295–2,500 nm), and can perfectly meet the actual work
requirements.

MATERIALS AND METHODS

In the simulation process, we define the grating period as p and its
width as t. The thickness from ITO layer to GaAs layer is defined
as h1-h4. The thickness of W base is much larger than the
penetration depth of light, so that the light transmittance T of
the whole structure is approximately zero. The TM polarized

FIGURE 1 | (A) Schematic diagram of multilayer metal semiconductor structure (B) Side view.

FIGURE 2 | Absorption spectra of multilayer broadband absorber with
different configurations.
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plane wave is used as the light source to project vertically into the
structure. The periodic boundary condition is set in the x
direction and the perfectly matched layer is set in the z
direction. The specific parameters of all materials are from the
material library of FDTD solution software (Cao et al., 2014;
Deng et al., 2015; Deng et al., 2018; Xu et al., 2021). The light
absorption is still calculated by the formula A � 1-T-R, where T
represents transmission rate and R represents reflection (Zhang
et al., 2015; Long et al., 2016; Lv et al., 2018).

The simulation results are shown in Figure 2. In order to
verify the rationality of our proposed five-layer structure, we
also calculate the absorption without top layer ITO (shown by
the red line in the figure) and the absorption with only three
layers of Ti-GaAs-W (shown by the blue line in the figure). It
can be seen from the figure that when there are only three
layers of film structure, the overall absorptivity is very low, and
the highest absorptivity in the whole band is less than 70%. For
the case of adding GaAs grating without ITO film, the
absorption rate has been greatly improved compared with
the three-layer film structure, but the absorptivity is less
than 90% in 1,030–1,410 nm and 2000–2,450 nm, which is
still unsatisfactory. In our final five-layer structure, the
absorption is more than 90% in the wavelength range of
about 500–2,850 nm, which is up to 2,350 nm. Through
calculation, the average absorption is 95% in the bandwidth
of 2,350 nm, which meets the requirements of practical
application perfectly.

RESULTS AND DISCUSSION

First, we explore the influence of the main geometric parameters
of the structure on the overall absorption, and the results are
shown in Figure 3 Figure (a) shows the influence of the thickness
of the top ITO film on the overall absorption. In the short
wavelength range, the absorption changes greatly with the
increase of the thickness, but at the long wavelength, it will
gradually become better with the increase of the thickness and
finally tend to remain unchanged. Considering the absorption of
the whole band, we choose h1 � 80 nm as the optimal parameter.
Figure (c) shows the effect of Ti film thickness on the structural
absorptivity. When the thickness of Ti film is low, the absorptivity
of the whole structure is poor, but with the increase of the
thickness, it has a significant increase, and has a good
absorption effect at h3 � 70–90 nm. The main reason is that
the better impedance matching condition is met at this time.
Figures (b) and (d) show the effects of the thickness of the two
layers on the overall absorption. In figure (b), with the increase of
h2, the long band absorption has been significantly improved.
This is because the guided mode resonance of the grating layer is
mainly related to its effective refractive index (Chen et al., 2013;
Cai et al., 2014; Long et al., 2015), and the change of h2 will
significantly change the effective refractive index of the waveguide
layer. In figure (d), with the increase of the thickness, the
absorption in the long band decreases gradually, while the
absorption in the short band is almost unchanged. This is

FIGURE 3 | (A–D) Absorption spectra corresponding to different geometric parameters.

Frontiers in Materials | www.frontiersin.org October 2021 | Volume 8 | Article 7818033

Huang et al. GaAs Solar Absorber

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


because the change of the film thickness will cause a weak change
in the number of dielectric cavities.

Next, in order to more clearly and deeply explore the specific
physical mechanism behind the broadband absorption
phenomenon, we made a detailed analysis of its
electromagnetic field distribution, and the results are shown in
the Figure 4. The distribution of electric field and magnetic field
at the wavelength of 500 nm, 1,500 nm and 2,500 nm of the
incident light are plotted with the interval of 1,000 nm. The
selected plane is xoz plane, and the top layer of ITO antireflection
layer and GaAs grating layer are indicated with black dotted line.

When the incident light wavelength is 500 nm, it can be seen from
figures (a) and (d) that the electric field is mainly concentrated on
both sides of the top structure and the interface with the air, and
the magnetic field is distributed in the top two-layer structure,
which indicates that in this case, the cavity film and GMRs mode
are excited, and the joint effect of the two greatly enhances the
overall absorptivity of the structure (Xu et al., 2020).
Furthermore, it can be seen from figures (c) and (f) that the
light penetrates further to the bottom layer and stronger SPPs are
excited. From the corresponding electromagnetic fields of these
three bands, we can draw the following conclusion: it is the

FIGURE 4 | (A-F) Electromagnetic field distribution of structures at incident wavelengths of 500 nm, 1,500 nm and 2,500 nm (xoz plane).

FIGURE 5 | (A) Absorption spectra at different oblique incidence angle. (B) Absorption spectra at different polarization angles.
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coupling effect of GMRs, cavity film and SPPs that makes the
broadband absorption possible.

After the mechanism of broadband absorption of the proposed
absorber has been proved, we have further analyzed its other
photoelectric characteristics. Similar to the three-layer absorber
mentioned above, we simulate the absorption spectrum when the
incident angle is 0°–60° and the polarization angle changes from0° to
90° as shown in the Figure 5. It can be seen from the figure that the
designed absorbers have high absorptivity in the range of 0–60° and
can withstand large incident angle changes, so the effect is very ideal;
For the polarization angle, because the structure is not highly
geometrically symmetric, the absorptivity inevitably decreases in
the wavelength range of 1,000 nm–1500 nm, but it still maintains a
high absorption in the whole wavelength range, and the effect is
acceptable. In general, the absorption effect of the proposed absorber
is much better than that of the previous absorber, which has better
oblique incidence and polarization insensitive characteristics
(Cheng et al., 2015; Callewaert et al., 2016; Vafapour, 2019).

Subsequently, as a solar absorber, the absorption capacity of the
actual solar radiation is a very important index (Elshorbagy et al.,

2017; Li et al., 2018; Nie et al., 2021; Xie et al., 2021). In order to
explore its solar absorption in real situation, we selected AM1.5
spectrum to test its performance, and the results are shown in the
Figure 6. In Figure 6A, the black line represents the solar spectrum
at AM1.5, and the red line represents the absorption of the proposed
absorber under this solar radiation. It can be clearly seen that the red
line and the black line coincide approximately in the whole
400–3000 nm band, which indicates that the efficiency of the
absorber is very high and the absorption effect is very ideal.
Figure 6B illustrates the previous conclusion more intuitively
from the angle of how much energy is absorbed and lost. In the
figure, the gray part represents the absorbed energy, and the red part
represents the lost part. We can see that there is only a little energy
loss in the short band, and it is insignificant compared with the area
of the absorbed part. From these two aspects, it is easy to see that the
proposed absorber has good practical effect.

We also explore the ideal short-circuit current of the multilayer
structure, and the results are shown in Figure 7. It can be seen that
the short circuit current of the structure is high. When h2 �
200 nm, the short-circuit current is up to 684.851 A/m2. It can
be predicted that the absorber will have a high photoelectric
conversion efficiency, making the solar cell have more excellent
performance (Mason et al., 2011; El-Gohary et al., 2014; Chen et al.,
2019b).

CONCLUSION

In this paper, we propose a solar absorber composed of three-layer
W-Ti-GaAs films and multi-layer metal semiconductor composite
structure of GaAs grating. By adjusting the geometric parameters for
many times, the broadband absorption at 500–2,850 nm, up to
2,350 nm, is realized, which greatly broadens the absorption
bandwidth of the original simple structure. At the same time, the
electromagnetic field distribution of the structure is given, which
explains the reason of broadband absorption in physical essence. The
spectrum, solar absorption and loss spectrum, ideal short circuit
current and other parameters of oblique incidence and polarization
angle change are studied, respectively. The results show that our solar

FIGURE 6 | (A) Solar energy absorption spectrum (B) Comparison of energy absorption and loss.

FIGURE 7 | Influence of different grating layer thickness on short circuit
current.
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absorber can meet the requirements of practical application. The
proposed absorber provides theoretical basis for the design of perfect
broadband solar absorber.
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