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Magnetic refrigeration technology is a new, green, high-efficiency approach. It has
attracted increasing attention from researchers and has a strong competitiveness over
traditional refrigeration methods. With the continuous development of social lives,
magnetic refrigeration technology must have important application prospects. This
article briefly describes the basic principles. The focus is on the introduction and
summary of research on perovskite manganite doping in magnetic refrigeration. Finally,
the outlook and summary of magnetic refrigeration technology are presented.
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INTRODUCTION

Magnetic refrigeration is a green and safe technology (Shen et al., 2021). Compared with gas
compression refrigeration technologies, the gas compression refrigeration cycle can generally
only reach 5–10% of the Carnot cycle, while magnetic refrigeration can reach 30–60% (Liu,
2009). Magnetic refrigeration is a technology that uses the magnetocaloric effect (MCE) of
magnetic materials. MCE is unique as it changes the magnetic entropy of the material through
variations in the external magnetic field. This is accompanied by the process of heat
absorption and release in the material. This principle is illustrated in Figure 1 (Bao and
Zhang, 2004).

There are many kinds of refrigeration materials. In 1976, Brown (1976) was the first to use
Gd for magnetic refrigeration. Gd metals have a giant MCE, but their purity requirements are
high and the price is too high for refrigeration. At the beginning of the 21st century, Wada et al.
(2003) discovered a large MCE in the compound MnAs. Although MnAs as an Mn-based
compound, has a good MCE, As is toxic. The perovskite manganese oxides have a wide range of
Tc adjustments, easy preparation and synthesis, low cost, strong chemical stability, and high
MCE. Therefore, many researchers have a strong interest in perovskite manganite in
refrigeration.

The molecular formula of Perovskite manganite is RE1-xAExMnO3, where RE is a rare earth
element and AE is an alkaline earth element. RE and AE constitute the A position of the Perovskite
manganite structure, andMn constitutes the B position, so the general formula is generally written as
ABO3. The ideal ABO3 has a cubic structure, in which the A-site ion is located at the apex of the cubic
unit cell, the B-site ion is located at the body center of the cubic unit cell, and O2- is located at the face
center of the cubic unit cell. The tolerance factor (t) proposed by Goldsschmidt is usually used to
describe the stability of perovskite manganite structure (Goldschmidt, 1926; Siwach et al., 2008). In
fact, the ABO3 crystal will undergo lattice distortion, forming an orthogonal (t < 0.96) or rhombic
(0.96 < t < 1) structure.
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DIFFERENT WAYS OF DOPING

Ion doping can be divided into three categories: A-site, B-site,
and vacancy doping. Ion doping produces three changes in
perovskite manganite: 1) Change in ion valence, 2) Change in
ion size, and 3) change in its crystal structure. The essential
source of the magnetic properties for perovskite manganite is
the double exchange effect (DE) of Mn3+-O2--Mn4+. It is
believed part of the trivalent RE in perovskite manganite are
replaced by low-valent AE and part of Mn3+ will be changed to
Mn4+. The eg orbit becomes an empty state and uses O2- as a
bridge between the two manganese ions of the two valence
states to form DE (Zener, 1951; Anderson and Hasegawa,
1955). The principle of DE is shown in Figure 1. To better

adjust the MCE and temperature of the magnetic phase
transition, scientists have focused primarily on doping rare
earth elements or AE to replace the A and B sites of perovskite
manganite (CosKun et al., 2016; Ghosh and Ghatak, 2016; Sfifir
et al., 2017).

A-Site Doping
At the A site, the wide variety of doped elements give differing
magnetic moments, valence states, and ionic radii. This generates
a mixed valence state of Mn3+ and Mn4+, which makes it possible
to pass the DE at low temperatures and produce ferromagnetism.
At the same time, the average ionic radius of the A-site ions,
crystal structure, and magnetic moment of the molecules change.
This affects the DE and MCE of the material while producing a

FIGURE 1 | Schematic diagram of magnetic refrigeration, schematic diagram of double exchange mechanism and crystal structure of perovskites (ABO3).
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wealth of magnetic order phenomena, such as the charge order,
orbit order, and mutual coupling. After A-site doping, the
internal DE and molecular magnetic moment of the material
strongly influence the Curie temperature (Tc) and maximum
magnetic entropy (ΔSmax

M ).
Based on the selected substrate RaMnO3 (Ra�La, Nd, Pr, Sm,

such as LaMnO3), has been found to have better magnetocaloric
properties in the room temperature range (Phan and Yu, 2007;
Sun et al., 2017), especially in low and medium magnetic fields,
which has a larger magnetic entropy change than that of Gd and
GdSiGe alloy phases.

The types of ion doping can be divided into single-, multi-
ion doping. Single-ion doping generally uses Na, Sr, Ag, Ca,
Cd, Ba, and K plasmas at the A site, as shown in Table 1. The
study found that under the same valence state, different

doping ion radii have different effects on the structure and
magneto-caloric properties of LaMnO3. Zhong et al. (1998),
Zhong et al. (1999), Das and Dey (2007) studied La1-
xNaxMnO3 (0 < x < 0.15) and La1-xKxMnO3 (0 < x < 0.2)
materials, they found that under the conditions of the same
magnetic field changes, ΔSM of the material increases with the
increase of Na+, K+ doping amount. It’s Tc also rises, when
the K doping amount x � 0.2, its ΔSM becomes 2.2 J/(kg K),
and its Tc also rises to 350 K.While Li+ doping will decrease
Magnetic change and Tc of perovskite manganite (Ghosh and
Ghatak, 2016). It can be concluded that the A-site doping of
low-valence ions significantly affects the magnetic entropy
change and Tc, and there is often an extreme value, which
should be related to the effect of doping on Mn3+/Mn4+ in the
material system.

At the same time, the study found that the addition of alkaline
earth metal or alkali metal ions that are lower in value than La in
the A site has a significant change in the performance of LaMnO3.
Mcbride et al. (2016), Demin and Koroleva (2004) and others
have carried out research on the A-site Sr2+ doping of LaMnO3.
They believe that the A-site doping of Sr2+ with a slightly larger
radius than La3+ will cause the lattice structure to deviate from the
ideal cubic structure, thereby producing Mn-O The bond length
and Mn3+-O2--Mn4+ bond angle changes, the overlap of electron
orbits increases the DE and the MCE. With the increase of
Sr2+content, the magnetic entropy change of La1-xSrxMnO3

(0.1 < x < 0.3) increases, and Tc also increases, ΔSmax
M � 1.7 J/

(kg K), and Tc is about 350–360 K. Bohigas et al. (2000), Sun et al.
(2000) studied the change of the MCE of La0.6Ca0.4MnO3. Under
the same magnetic field change condition, with the increase of
Ca2+ doping, the material ΔSM first increased and then decreased.
Hussain et al. (2016) studied the MCE of La0.6Ba0.4MnO3 and
revealed that the MCE first increased and then decreased with the
increase of Ba2+ doping. When the doping amount exceeds 0.3,
both the ΔSM and the Tc are reduced. The performance of the
material is also related to the influence of the size of the doped
ions on the symmetry of the crystal structure of the material,
which is related to the effect of the Jahn-Teller effect on the
performance of the material. When the size of the doped ions is
too large or too small, the lattice distortion is intense, the Mn3+/
Mn4+ distribution period is affected and the DE is weakened.

When multi-ion doping, the effect of doping behavior on the
magnetocaloric properties and Tc of perovskite manganite is
more complicated. One study found that La0.65Sr0.35MnO3 (Phan
et al., 2003) with an applied magnetic field of 1 T has Tc � 305 K,
which is close to room temperature. The ΔSM becomes 2.12 J/(kg
K) and RCP � 106 J/kg, therefore researchers usually utilize
La0.65Sr0.35MnO3 for further ion doping research. For example,
Kong (Kong and Zou, 2018) doped Gd and Na at the A site. It is
found that the Tc of multi-ion doping gradually decreases to
around room temperature with the increase of the doping
amount of Gd and Na ions. The DE has a close relationship
with the doping content. On the basis of LaMnO3, the Mn4+will
substitute the Mn3+, when the Alkaline earth metal ions access to
this system. Moreover, the ratio of Mn3+/Mn4+ is considered
changed along with the content of doping ions. Linh et al. (2017)
studied the ΔSM change and the Tc of La0.7Ca0.3-xAxMnO3 and

TABLE 1 | Curie temperature and magnetic entropy change of perovskite
materials substituted with different elements.

Perovskite manganite H (T) ΔSM [J (kg·K)] T (°C)

La0.9Na0.1MnO3 (Wei et al., 1998) 1.00 1.53 218
La0.925Na0.075MnO3 (Wei et al., 1998) 1.00 1.32 195
La0.835Na0.165MnO3 (Wei et al., 1998) 1.00 2.11 342
La0.80Na0.20MnO3 (Wei et al., 1998) 1.00 1.96 334
La0.65Sr0.35MnO3 (Phan et al., 2003) 1.00 2.12 305
La0.67Sr0.33MnO3 (Morelli et al., 1996) 5.00 1.69 348
La0.75Sr0.25MnO3 (Guo et al., 1998) 1.50 1.50 340
La0.80Sr0.20MnO3 (Szewczyk et al., 2005) 7.00 7.90 305
La0.815Sr0.185MnO3 (Szewczyk et al., 2005) 7.00 7.10 280
La0.865Sr0.135MnO3(Szewczyk et al., 2005) 7.00 4.40 200
La0.88Sr0.120MnO3 (Szewczyk et al., 2005) 7.00 6.00 152
La0.84Sr0.16MnO3 (Szewczyk et al., 2000) 5.00 5.85 244
La0.845Sr0.155MnO3(Phan et al., 2004) 1.35 1.72 310
La0.845Sr0.155MnO3(Szewczyk et al., 2003) 7.00 6.60 234
La0.87Sr0.13MnO3 (Szewczyk et al., 2003) 5.00 5.80 197
La2/3Sr1/3MnO3 (Mira et al., 2002) 1.00 1.50 370
La0.80Ag0.20MnO3 (Hien and Thuy, 2002) 1.00 2.40 300
La0.78Ag0.22MnO3 (Szewczyk et al., 2003) 1.00 2.90 306
La0.75Ag0.25MnO3 (Hien and Thuy, 2002) 1.00 1.52 306
La0.70Ag0.30MnO3 (Hien and Thuy, 2002) 1.00 1.35 306
La0.95Ag0.05MnO3 (Hien and Thuy, 2002) 1.00 1.10 214
La0.80Ca0.20MnO3 (Phan and Yu, 2007) 1.50 5.50 230
La0.75Ca0.25MnO3(Phan and Yu, 2007) 1.50 4.70 224
La0.70Ca0.30MnO3 (Phan and Yu, 2007) 1.00 1.38 256
La0.54Ca0.32MnO3 (Phan and Yu, 2007) 0.90 2.90 272
La0.55Ca0.45MnO3 (Phan and Yu, 2007) 1.50 1.90 238
La2/3Ca1/3MnO3 (Phan and Yu, 2007) 3.00 6.40 267
La0.67Ca0.33MnO3 (Phan and Yu, 2007) 1.50 4.30 260
La0.60Ca0.40MnO3 (Phan and Yu, 2007) 3.00 5.00 263
La0.5Cd0.5MnO3 (Dhahri et al., 2009) 1.00 2.33 268
La0.7Ba0.30MnO3 (Phan and Yu, 2007) 1.00 1.60 336
La0.67Ba0.33MnO3 (Phan and Yu, 2007) 5.00 1.48 292
La2/3Ba1/3MnO3 (Phan and Yu, 2007) 1.00 2.70 337
La0.9K0.1MnO3(Yu, 2003) 1.50 1.50 283
NdSrMnO3 (Al-Yahmadi et al., 2002) 5.00 1.61 81.5
NdSrMnO3 (Chandra et al., 2015) 5.00 2.60 75
Nd0.8Sr0.2MnO3 (Al-Yahmadi et al., 2002) 9.00 4.73 127
Nd0.8Sr0.2MnO3 (Al-Yahmadi et al., 2002) 5.00 2.78 127
Nd0.6Sr0.4MnO3 (Al-Yahmadi et al., 2002) 3.00 4.87 256
Nd0.4Sr0.6MnO3 (Al-Yahmadi et al., 2002) 9.00 1.80 220.5
Nd0.67Sr0.33MnO3 (Fkhar et al., 2020) 1.00 3.12 257.5
Nd0.55Sr0.45MnO3 (Xu et al., 2016) 3.00 3.12 274
Nd0.55Sr0.45MnO3 (Xu et al., 2016) 1.00 1.42 -
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found that the Tc of the material gradually rises with the increase
of Sr and Ba ion doping during multi-ion doping, but it will
reduce the ΔSM of the material. Duc, Nguyen Thi My (Duc et al.,
2019) studied the (La0.5Pr0.5)0.6Ba0.4MnO3 material and found
that with the doping of Pr, the ΔSM of the material will increase to
a certain extent, but the Tc will be reduced Temperature. The ions
doped at the A site changed the ratio ofMn3+/Mn4+ for the matrix
material and the average ion radius of the A site, which led to
change in the mismatch factor. The DE was reduced, and the Tc
will dropped to a certain extent.

In the study of magnetic refrigeration, Dagotto divided
perovskite manganite into wide-, medium- and small-
bandwidth types based on the bandwidth of the DE (Dagotto
et al., 2001). La0.65Sr0.35MnO3 material belongs to the wide-
bandwidth type, and another important perovskite manganite
of Pr1-xSrxMnO3 belongs to the small-bandwidth type. The
ferromagnetic-antiferromagnetic and paramagnetic-
ferromagnetic transitions appear in the magnetic phase
diagram simultaneously for x between 0.5 and 0.55 (Pollert
et al., 2002). In this T range, as the Sr content at the A site
increases, Tc gradually decreases, and the Neel temperature
(critical temperature of antiferromagnetic-paramagnetic
transition) increases with the two transitions when reaching a
certain value (Martin et al., 1999). This shows that Sr2+ doping at
the A site causes changes in the ratio of Mn ions, which affects the
DE and phase change of the material. Since the 21st century,
researchers have performed increasing studies on Pr1-xSrxMnO3.
Bingham (Caballeroflores et al., 2014) found that Pr0.5Sr0.5MnO3

has a significant anomalous MCE. When the external magnetic
field is 5 T, ΔSM � 6.8 J/(kg K). Biswas et al. (2014) found that the
charge ordering degree of Pr0.5Sr0.5MnO3 is very closely related to
the size of the particles and has no effect on the Tc and DE.

B-Site Doping
To maintain the balance of the valence state after doping, A-site
doping indirectly changes the ratio and content of Mn3+/Mn4+,
changes the structure of the perovskite manganite, and affects its
DE and rich physical properties (magnetic, electrical, etc.). As
Mn3+-O2--Mn4+ is the basis of DE, the magnetic properties of
ABO3 perovskite structures are usually produced based on B-site
ions; thus, B-site doping directly affects the ratio of Mn3+/Mn4+.
At the same time, other magnetic ions introduced by doping
increase the abundance and complexity of the DE between B-site
ions. Therefore, a small amount of doping is performed at the
B-site to change the Tc and increase the magnetic moment of the
site to increase the ΔSM.

B-site can be doped with transition metals (Ni, V, Fe, Co, Cr,
Cu). Kong (2018) doped Ni and V at the B site for
La0.65Sr0.35MnO3. When doped with Ni, the Tc decreased
significantly with the doping content, which moved below
room temperature. When the B site was doped with V, Tc
showed an increasing trend, but the ΔSM was relatively low
(Kong, 2018). The La0.67Pb0.33Mn1−xCoxO3 (0.15 ≤ x ≤ 0.3)
material studied by N. Dhahri (Abdouli et al., 2019), with the
increase of Co ion content, the ΔSM of the material has been
increased to 3.1 J/(kg K), but it caused the Tc to drop drastically to
about 250 K. Phan (Phan and Yu, 2007) found that when the

external magnetic field of La0.67Sr0.33Mn0.9Cr0.1O3 is 5T, its Tc �
328 K is higher than room temperature, and ΔSM � 5 J/(kg K). Lu
(Lu et al., 2006) found that when Mo trace elements are doped in
LaMnO3, they replace the Mn sites to produce Mn2+, which result
in the DE of Mn2+-O2--Mn3+and exhibits ferromagnetism.

Studies have found that after perovskite manganese oxide is
doped at the B site and is placed under an external magnetic field,
the Tc and ΔSM changes are much lower than those after A-site
doping. This is because the magnetic nature of perovskite
manganese oxides and the MCE are primarily by DE, which
are based on the movement of external electrons outside inMn3+-
O2--Mn4+.

The main reasons why the doping effect of the B site is lower
than that of the A site are as follows. 1) Changes in Tc depend
directly on the DE, and mixed interactions occur after the B site is
doped with ions. At greater doping contents and, after the doping
ions replace the Mn sites, the DE between Mn3+-O2--Mn4+

decreases due to the increased super-exchange between doping
and the surrounding ions, which causes the Tc to decrease. 2)
After the B -sites are doped, the doping ions replace one of the
Mn3+-O2--Mn4+ ions in the double exchange, such as Co ions.
The diverse spin electronic states and complex valence states of
Co ions produce complex DE. Thus, Co doping is considered to as
a partial replacement of Mn ions for DE. When Co ions replace
Mn, antiferromagnetic super exchange channels (Co3+-O2--
Mn4+, Co2+-O2--Co4+) and ferromagnetic double exchange
channels (Mn3+-O2--Mn4+, Co3+-O2-Co4+) form in the system
(Ghosh et al., 1999). Thus, antiferromagnetic double exchange
interactions and ferromagnetic double exchange interactions
coexist. As antiferromagnetic and ferromagnetic exchanges
coexist, as the doped Co ions content increases and the long-
range ferromagnetic order of the sample is replaced with
ferromagnetic cluster behaviors (Chainani et al., 1992). This
result in spin magnetic moment direction. The deviation and
chaotic magnetic moment of the spin result in an overall
decreased magnetic moment and ΔSM.

During ion doping modification, more consideration should
be given to doping at the A site of the perovskite manganese oxide
to indirectly change the proportion of manganese ions to affect
the crystal structure and physical properties of the perovskite
manganese oxide.

Vacancy Doping
The crystal structure of perovskite manganese oxides can be
changed through doping. Thus, research has been conducted
to determine the impact of vacancy doping. Holes are divided into
two categories: oxygen and elements. However, the generation of
oxygen holes reduces DE of the material, while the Tc and ΔSM of
the material decrease (Xu). In element holes, researchers have
discovered the giant magnetoresistance effect and giant MCE in
La0.9MnO3 (Patra et al., 2009).

The Tc of the La0.925-xMnO3 prepared by Xu (Xu) decreased
with x. La0.925-xMnO3 was also affected by the decreased Tc due to
the ionic radius of the A site and the increased Mn4+ content,
which led to an increased Tc. the large La0.925-xMnO3 ion vacancy
concentration causes significant lattice distortion, and a smaller
A-site ion radius is the main factor controlling the decrease in Tc.
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La1-xCaxMnO3 has a high magnetic entropy change and a
relatively low Tc, which can be increased by doping. La1-
xCaxMnO3 replaces La3+ with Ca2+. To balance the valence,
Mn4+ needs to be produced, which further modifies the
magnetization and Tc of the material. Changes in the valence
state of Mn ions can alter the magnetic properties of the material
from ferromagnetic to paramagnetic. There are two energy levels
for Mn ions. The principle of the lowest energy, high energies into
two orbitals, which causes crystal lattice distortion. This system
has therefore become a refrigeration material that is widely
studied by scientific researchers. He (He, 2019) used the sol-
gel method to prepare La0.65-xCa0.35MnO3 (0 ≤ x ≤ 0.15). The
experimental results show that as the La3+ vacancy concentration
increases, the ion radius and the mismatch factor change. The Tc
of La0.65-xCa0.35MnO3 also gradually increases. When the external
magnetic field is 0–5 T, ΔSM � 1.17 J/(kg K). This is because there
are four electrons in the outermost layer of Mn3+, of which three
are in the t2g localized state and the other is in the patrol state and
is hybridized with the 2p orbital of the O ion to form a covalent
bond. With the increased vacancy concentration, the number of
Mn3+ ions gradually decreases, the number of Mn4+ gradually
increases, and the concentration of the patrol state into vacancies
increases. Thus, the DE of the material increases, and the Tc
becomes larger.

Brion (Brion et al., 1999) used the solid phase method to
prepare La1-xMnO3. The study found that the Tc of La0.93MnO3

and La0.97MnO3 were 170 and 118 K, respectively, and the Mn4+

content was 21 and 9%. Brion believed that when x mol of La3+ is
replaced with a vacancy, 3x mol of Mn3+ is converted into Mn4+.
Walha et al. (2009) found that Mn4+ increased with the vacancy
concentration. However, Sankar (Joy et al., 2002) prepared La1-
xMnO3 using the solid-phase method, which indicated that Tc
increased with the vacancy concentration but Mn4+ decreased.
There are different experimental results for Mn4+ with changes in
the vacancy concentration, which manifest in the A site of
perovskite manganese oxide. A small amount of AE or RE
with a large ion radius can be added when synthesizing samples.
To generate cation vacancies, it is first ignored that there are
more B-site ions than A-site ions, which can enter A-sites. Tang
et al. (2007) researched and proposed the A1-xBO3-δ model

based on the minimum energy principle and the crystal defects
in thermal equilibrium theory. In the model, the A-site gap is
larger than the B-site gap. Ions on the lattice points are
generated in high-temperature heat-treated samples. The
violent thermal movement results in the migration of
vacancy defects, and large gaps are first occupied by ions.
The lack of A-site ions is compensated by B-site ions (such
as Mn). Therefore, vacancies in the sample appear in the A site
instead of the B site.

SUMMARY AND OUTLOOK

This paper introduces the basic principles of magnetic
refrigeration. In particular, the relationship between the
doping content and properties of perovskite manganese oxide
materials is introduced in detail, provide reference value for the
future study. In the 21st century, important breakthroughs have
been made in the research and development of magnetic
refrigeration materials. However, there are still many problems
that need to be studied and solved. From the current research
results, when Mn3+/Mn4+ is close to 2:1, the double exchange
effect of the materials reaches the strongest, but the internal
mechanism is still unclear. In addition, the performance of the
materials is also related to the size of the doped ions on the
symmetry of the crystal structure, and then the Jahn-Teller effect
affects the performance of the material.

Magnetic refrigeration has a good application market at room
temperature, such as air conditioners. In some research fields,
refrigeration materials need to be light weight and have a wide
range of temperatures for refrigeration, but current magnetic
refrigeration materials cannot meet the requirements. Hence,
research of magnetic refrigeration has good development and
application prospects.
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