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Most of the numerical simulations of dry textile reinforcements forming are based on a
macroscopic approach and continuous material models whose behavior is assumed to be
elastic (linear or nonlinear). On the one hand, the experience shows that under loading/
unloading stresses, residual inelastic deformations are observed. On the other hand,
among the deformations that a woven reinforcement undergoes during forming, in most
cases, only bending is subject to loading/unloading stresses. The first objective of this work
is to highlight the inelastic bending behavior of textile reinforcements during a forming
process and to find the possible origins of inelasticity. The second objective is to find the
cases generating bending loading/unloading during forming as well as to study the
influence of the bending inelasticity on forming simulation. For this purpose, the
inelastic bending behavior was characterized by three-point bending tests. Then, the
Dahl friction model was adapted to bending to describe the inelastic behavior. Finally, this
model was implemented in a finite element code based on shell elements allowing the
study of the influence of taking into account the inelastic behavior in bending on the
numerical simulation of forming.
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INTRODUCTION

The use of composite materials is in continuous growth in many industrial sectors such as
aeronautics (Irving and Soutis, 2019; McIlhagger et al., 2020), automotive (Liu et al., 2016; Lee
et al., 2019), sports accessories (Collotta et al., 2018; Fleischmann et al., 2018), etc. The excellent
mechanical characteristics of continuous fiber composite materials offer the opportunity to develop
lighter materials, with high performances.

The properties of composite materials are highly dependent on the orientation of the fibers. This
can be controlled successfully in the case of flat panels, but much more difficult in the case of double
curve complex shapes. The control of the fiber orientations of the final composite part allows to
optimize its mechanical behavior for a given load specification. To help in this task, a considerable
amount of research has been carried out over the last 20 years on the simulation of the forming of
woven reinforcements. These simulations make it possible to determine the orientation of the fibers
after the forming of the woven reinforcement as well as the appearance and development of defects
such as wrinkles (Hancock and Potter, 2006; Ten Thije and Akkerman, 2009; Boisse et al., 2011;
Walther et al., 2012; Gereke et al., 2013; Mitchell et al., 2016; Mallach et al., 2017; Kärger et al., 2018).
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In the LCM processes (Rudd and Long, 1997; Advani and
Hsiao, 2012), the first stage consists of forming a dry woven
reinforcement and the second stage consists of injecting the resin
and solidifying the part. In this context, the present study focuses
on the forming stage of the dry woven reinforcements. Most of
the simulations of forming processes are based on a macroscopic
approach and continuous material models whose behavior is
assumed to be elastic (Peng and Cao, 2005; Allaoui et al., 2011;
Peng and Rehman, 2011; Gereke et al., 2013; Schirmaier et al.,
2017; Bussetta and Correia, 2018), hypoelastic (Yu et al., 2005;
Khan et al., 2010) or hyperelastic (Charmetant et al., 2012;
Belnoue et al., 2016; Gong et al., 2016). However, the
experience shows that the behavior of dry woven
reinforcements is inelastic: for example, a reinforcement based
on glass fibers was formed and then the punch was removed
(Figure 1). If the behavior of the reinforcement was elastic, it
would return to the initial position after the release of the punch.
While the reinforcement did not maintain the geometry imposed
by the punch, it did not return to the initial position. This
experiment highlighted the inelastic behavior of the fibrous
reinforcements. This inelastic behavior can be explained by the
presence of slippage between the fibers and the yarns during
forming. These slips are associated with friction and thus with
inelastic behavior of the material.

Elasto-plastic behavior models have been used to describe the
inelastic behavior of laminated composites (Hochard et al., 2005;
Krasnobrizha et al., 2016) and dry reinforcements (Denis et al.,
2018). In contrast, the inelastic behavior of fibrous
reinforcements is not necessarily associated with plasticity. For
example, it is possible to fold and unfold a piece of woven
reinforcement without damaging the material. Moreover,
woven reinforcements are stored in rolls and often flattened to
be used.

When forming woven reinforcements, tension in the direction
of the fibers, in-plane shear and bending are deformation modes
describing their deformation mechanism. The tensile stiffness is
much greater than the other stiffnesses. In-plane shear is the
principal mode of deformation of woven reinforcements when

the shape to be produced is double-curved. It is thanks to the low
rigidity associated with this mode of deformation that it is
possible to give a woven reinforcement a non-developable
geometry. The in-plane shear behavior of textile composite
reinforcements has been studied extensively (Lebrun et al.,
2003; Harrison et al., 2004; d’Agostino et al., 2015; Boisse
et al., 2017). The out-of-plane bending rigidity governs the
geometry of the wrinkles obtained during the forming of the
reinforcements (Boisse et al., 2011; Boisse et al., 2018).

It has been shown that in-plane shear loading/unloading is
rare during the forming of fibrous reinforcements (Ghafour et al.,
2019). However, it is frequent for bending: the reinforcement is
subjected to loading/unloading in bending when it passes over an
edge radius of the forming tool. Thus, these non-monotonous
bending loadings that occur during forming make appear the
inelastic behavior of the reinforcement. The aim of this work is to
study the influence of inelasticity in bending on the simulation of
the forming of textile reinforcements.

This manuscript proposes a version of Dahl’s friction model
allowing to take into account the inelastic bending behavior of a
fibrous reinforcement. This model describes this complex
mechanical behavior in a very satisfactory way, while being
relatively easy to use.

The first objective of this work was to characterize the
mechanical behavior of woven reinforcements in bending by
means of three-point bending tests (Jin et al., 2012; Mathieu
et al., 2015) and cantilever tests (Peirce, 1930; ASTM, 2002; Liang
et al., 2014). The three-point bending tests made it possible to
impose loading/unloading in bending and thus to highlight the
inelastic nature of these materials. The Dahl friction model (Dahl,
1976) was then adapted to bending to describe the inelastic
behavior in this mode of deformation.

The resulting model was then implemented in an finite
element code based on shell elements specific to textile
reinforcements (Hamila et al., 2009). This allowed a
simulation-experimental comparison of bending
characterization tests to validate the use of this model for
woven reinforcements.

Finally, the influence of taking into account the inelastic
behavior in bending on the numerical simulation of the
forming process was studied for wrinkling forming as well as
for a hemispherical forming case.

ANALYSIS OF MECHANICAL BEHAVIOR IN
BENDING

The Bending Tests
The bending behavior of woven reinforcements can be
characterized using Peirce’s device (Peirce, 1930), which is a
cantilever test. Its exploitation is based on the assumption of
linearity between bending moment and curvature. The device is
made of two plates, the first one is horizontal and the second one
is inclined at an angle θ � 41.5° with respect to the first one. The
test consists of positioning a specimen on the horizontal plate and
then sliding it until its end reaches the inclined plate. The bending
stiffness can then be determined from the angle θ, the overhang

FIGURE 1 | A punch release after hemispherical forming of a textile
reinforcement based on glass fibers.
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length and the linear weight density. This test has become an
ASTM standard test (2002).

Extensions of Pierce’s test were performed by de Bilbao et al.
(2010) and Liang et al. (2014) in order to find a non-linear
relationship between bending moment and curvature. These
works are based on the determination of the curvature along
the deformed reinforcement by optical measurement.

The KES-FB-2 bending test is another standard test used for
woven reinforcements (Kawabata, 1980; Lomov et al., 2003). This
test was developed by Kawabata and allows the bending moment
to be recorded as a function of the curvature during bending
loading. This test provides a non-linear relationship between
bending moment and curvature. On the other hand, this test is
designed for clothing fabrics and is not always adapted to
composite reinforcements which can be stiffer and thicker.

Another device, based on the same principle as the Kawabata
bending test, has been proposed (Ropers et al., 2016; Sachs and
Akkerman, 2017). This device allows to monitor temperature and
strain rate.

At the macroscopic scale, standard bending tests use two
simple models relating bending moment to curvature: Peirce’s
linear elastic model (Peirce, 1930) and Grosberg’s non-elastic
model (Grosberg, 1966; Grosberg and Kedia, 1996).

Some works (Ngoc et al., 2002; de Bilbao et al., 2010) have used
the Dahl friction model to describe the inelastic bending behavior
of woven reinforcements.

The Model of Dahl
Dahl’s model (Dahl, 1976) was originally developed to describe
the dry friction occurring in a rolling bearing system. This model
is a dynamic regularization of the Coulomb model, in the
meaning that the friction at a point will be a function of the
history of the motion, of the set of intermediate positions having
led to this point.

The time derivative of the frictional force is considered:

dF(x)
dt

� dF(x)
dx

dx
dt

� dF(x)
dx

_x (1)

where t is time, x is the space variable and F(x) is the frictional
force which is a function of x only.

Dahl assumes that the evolution of the frictional force F(x) as a
function of x follows a typical function whose shape is visible in
Figure 2A. F(x) increases asymptotically towards a value Fc when
x increases and decreases asymptotically towards −Fc when x
decreases.

The following differential relationship is established:

dF(x)
dx

� σ(1 − F(x)
Fc

sgn( _x))
n

(2)

The parameter σ is the slope of the tangent at the points where the
curve intersects the axis F(x) � 0. σ measures the speed with
which F(x) tends towards its asymptote Fc. The parameter n
allows to adjust the shape of the curve F(x) as a function of x
(Figure 2B).

This model has been used to describe the bending behavior of
woven reinforcements (Ngoc et al., 2002; de Bilbao et al., 2010).
The bending stiffness of woven reinforcements is assumed to be
mainly due to friction between the yarns and the layers
constituting the woven fabric.

The model of Dahl applied to the moment-curvature
relationship can be written in the form:

dMb(χ)
dχ

� B(1 −Mb(χ)
M0

sgn( _χ))
n

(3)

where Mb is the bending moment, χ is the curvature, B is the
bending modulus for Mb(χ) � 0 and M0 is the asymptote of the
moment Mb.

This Dahl model, which is based on friction behavior, is well
suited to inelastic behavior in bending because it is related to the
friction between the fibers.

FIGURE 2 | The model of Dahl: (A) Typical function of the frictional force, (B) Shape parameter n.
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In this work, the bending behavior was characterized by three-
point bending tests as well as cantilever tests. The cantilever
bending tests do not allow the woven reinforcement to be
subjected to unloading. However, three-point bending tests
allow this to be done. Thus, these latest tests have allowed us
to study the inelastic bending behavior of the woven
reinforcements. The cantilever bending tests were nevertheless
carried out in order to compare the relationships between the
bending moment and the curvature obtained from these tests
with those obtained from the three-point bending tests for the
loading phase. The bending behavior relationships sought in this
work are based on the Dahl model adapted to bending, and in the
form of a relationship between moment and curvature so that
they are adapted to the finite element code used.

Bending Tests: Material and Method
The material studied in this work is a woven reinforcement based
on glass fibers: 3D orthogonal non-crimp woven fabric (Pazmino
et al., 2014; Naouar et al., 2015) with a thickness of approximately
3 mm (Figures 3A,B).

To carry out the three-point bending test (Figure 3C), the
experimental protocol consists of placing a specimen of the
reinforcement between two supports and then moving the
loading pin down to impose loads/unloads. The loading
phases were controlled in displacement while the unloading
phases were controlled in load (unloading until zero force).
The specimen was initially oriented along x-axis for the weft
direction and y-axis for the warp direction.

The equipment that was used: a computer-controlled tensile
machine (Lloyd LF Plus 1 kN); a 100 N load cell; a support
carrying two 16 mm diameter cylindrical supports; and a
camera connected to the computer to monitor the

reinforcement during the test. The specimens are 210 × 55 ×
3 mm in size.

For the cantilever bending test, the specimen was fixed on one
side with a metal support (blocking any displacement/rotation)
and allowed to bend under its own weight (Figure 3D). A camera
connected to a computer was used to take an image of the
deformed sample. The specimens are 445 × 70 × 3 mm in size.

For the three-point bending test, the bending momentMb and
the curvature χ were calculated at the point of load application
(where the curvature is maximum) during loading/unloading.
This allowed to find an experimental relationship corresponding
to a non-monotonic loading. The behavior law is assumed to be
valid for all sections of the woven reinforcement. For the
cantilever bending test, the moment and the curvature were
calculated along the deformed specimen to find a non-linear
relation Mb(χ) corresponding to the loading stage.

This woven reinforcement is quasi-balanced and the bending
moment-curvature behavior is considered to be the same in the
warp and weft directions.

Determination of the Bending Curvature χ
For the three-point bending test, several images were obtained for
each test. Each image corresponds to a time t during loading/
unloading. For the cantilever bending test, only one image was
obtained for each test. The software “Fiji” (Schindelin et al., 2012)
was used to extract from each image experimental points
belonging to the mid-line of the specimen. Once the
experimental mid-line was obtained, a polynomial f (x) was
then sought to approximate this line as closely as possible by
the method of least squares (Figures 4A, 5A). Piecewise
approximations can be performed if a single polynomial is not
enough to properly approximate the experimental mid-line.

FIGURE 3 |Glass-based 3Dwoven reinforcement: (A) image, (B) 3D tomography reconstruction (Naouar et al., 2015). (C) Three-point bending test, (D)Cantilever
bending test.
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FIGURE 4 | Three-point bending test (A) experimental points and fitted curve of the mid-line at time t, (B) bending curvature at the point of application of the load as
a function of the displacement, (C) bending moment as a function of the curvature at the point of application of the load for a loading/unloading.

FIGURE 5 | Cantilever bending test (A) experimental points and fitted curve of the mid-line of the deformed reinforcement, (B) curvature as a function of x, (C)
bending moment as a function of curvature.
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The curvature was calculated from f ’(x) and f ’’(x), the first and
second derivatives of f (x) with respect to x:

χ(x) � f }(x)
(1 + f ′

2(x))32 (4)

Determination of the Bending Moment Mb
For the three-point bending test, the calculation of the moment
was carried out on the mid-line of the deformed sample. The
bending moment was determined at the point of application of
the load on the updated configuration provided by the images of
the sample. At any time t, the point of contact between the
supports and the fabric was also updated (Figure 6).

In the initial state, the mid-line of the woven reinforcement is
assumed to coincide with the horizontal axis (x-axis). The origin
of the coordinate system is on the mid-line of the sample before
deformation, and at the level of the left support (Figure 6).

The Geometric Relationships Give:

β � −tan−1(f ′(x1)) ; z1 � −0.5(da + e)(1 − cos β) ; f (x1) � z1 (5)

with da the diameter of the supports, e the thickness of the fabric,
(x1, z1) are the coordinates of the projection of the contact point
on themid-line (point P1 in Figure 6) and β the angle between the
tangent to the mid-line at x1 abscissa point and the x-axis. Solving
the three equations system (Eq. 5) gives us the values of x1, z1
and β.

The studied woven reinforcement remains horizontal on the
two supports when it is not subjected to any effort: its own weight
is not important enough to make it bend. Thus, the own weight is
neglected in the calculation of the moment.

The bending moment at the point of load application is
given by:

Mb � Fm
2 cos β

(dm + z1)sin β + Fm
2
(L0 − x1) (6)

with dm and Fm, are, respectively, the displacement and load
applied by the machine.

For the cantilever bending test, the bending moment at any
point A along the deformed sample was calculated as follows:

Mb(A) � ∫
L

s

w(u − s)cos(∅(u)) du (7)

where s is the curvilinear abscissa of point A, L is the length of the
sample, w is the weight per unit length, and u and ∅ are the
Frenet coordinates of a point B moving along the profile from A
to the free end of the profile.

Bending Test Results and Behavior
Modelling
Three-Point Bending Tests
Figure 7A shows the load-displacement curve corresponding to a
loading/unloading in bending. The loading phase was controlled in
displacement while the unloading phase was controlled in load
(unloading until zero force). This curve clearly shows that the
behavior of the studied reinforcement is inelastic. In addition,
after a loading/unloading, the reinforcement did not return to its
initial configuration: a residual deformation was obtained. Figure 7B
corresponds to alternating loading/unloading. This figure shows that
the residual displacement at zero force of each load/unload depends
on the imposed displacement during the loading phase: the greater
the imposed displacement, the greater the residual displacement.

In order to get an idea of the interaction between the different
fiber layers, the variation of the direction of the cross sections
during the loading phase of a three-point bending test was
studied. This study is interesting because it allowed, with a
macroscopic scale test, to find a possible source of inelasticity
which is the friction between the different layers of fibers.

Dot marks have been drawn on the yarns whose direction is in
the plane of the photo. These points were used to define the
direction of a cross section of the reinforcement at time t.
Figure 8 shows the deformed specimen as well as the cross
sections studied at the initial time (Figure 8A) and at the time
corresponding to a 30 mm displacement of the loading pin
(Figure 8B). These different cross sections were chosen in a
way to cover the different zones of the specimen: some sections
are close to the loading point, others close to the cylindrical
supports and others between these two zones.

The cross sections are initially vertical and perpendicular to
the mid-line of the reinforcement. Figure 8C shows the evolution
of the angle between the different cross sections and the mid-line.
The measurement uncertainty is of the order of 3°. This figure
shows that the transverse directions do not remain perpendicular
to the mid-line of the reinforcement during deformation. This
mobility confirms that there is slippage between the layers of
fibers, which can cause friction. This explains, in part, the inelastic
behavior observed in Figure 7.

Figure 4 shows the results of calculations of the moment and
curvature of a loading/unloading in bending, the corresponding
load-displacement curve is shown in Figure 7A. After fitting the
experimental points belonging to the mid-line by a continuous
function (Figure 4A), the curvature was calculated at the point of
application of the load using Eq. 4 for each image corresponding
to a displacement during the loading/unloading (Figure 4B). This
figure shows that the relationship between curvature and

FIGURE 6 | Point of contact between support and fabric; and direction
of support reactions.
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displacement is quasi-linear and that this relationship is the same
for loading and unloading. The evolution of the moment as a
function of the curvature is shown in Figure 4C where a
distinction is made between the loading phase and the
unloading phase. These two phases take different paths due to
the dissipative (inelastic) behavior of the reinforcement.

The bendingmodel of Dahl (Eq. 3) gives the material an inelastic
behavior comparable to a perfect elasto-plastic behavior; the bending
stiffness is the same for the loading phase and for the unloading
phase when the bending moment is zero (Figure 2A). This stiffness
is equal to parameter B of the model (Eq. 3).

However, Figure 4C shows that the bending stiffness of the
studied reinforcement is not the same for loading and for unloading
under zero bendingmoment: the stiffness at low bendingmoment is
much lower for the unloading phase than for the loading phase.
This calls into question the relevance of an analogy with the
behavior of a classical elasto-plastic material for which the
bending stiffness would be the same for the loading and
unloading phases under zero bending moment. This deviation
from a classical elasto-plastic material may be due to a
phenomenon of reorganization of the fiber networks during the
deformation, whichmodifies the number of contacts between them.

It has been noticed that woven reinforcements have a different
mechanical behavior from that of more classical materials: for
example, it is possible to fold and unfold a piece of woven
reinforcement without damaging the material. Moreover,
woven reinforcements are stored in rolls and often flattened to
be used. Thus, it is proposed to adapt the inelastic model of Dahl
to the woven reinforcements by giving model parameters for the
unloading phase that are different from those of the loading
phase. The model becomes:

dMb(χ)
dχ

� Bl(1 −Mb(χ)
M0l

)
nl

if _χ ≥ 0

dMb(χ)
dχ

� Bu(1 +Mb(χ)
M0u

)
nu

if _χ < 0
(8)

This model was used to describe the bending behavior
experimentally found in this work (Figure 4C). For the

loading phase the model parameters are: Bl � 745 N.mm, M0l �
2.6 N and nl � 1. For the unloading phase: Bu � 18.9 N.mm,M0u �
0.81 N and nu � 2.5. These parameters were chosen by the method
of least squares to fit the experimental points as well as possible.

The parameters of the unloading phase depend on the loading
history and more specifically on the curvature χmax and the
moment Mbmax at the end of the loading phase (Figure 4C).
Thus, it is necessary to find the parameters of the unloading phase
for any previous loading phase (and thus for any value of χmax).
For this purpose, several unloadings were carried out
corresponding to several values of χmax. When the curvature
χmax changes, the residual curvature χr (under zero moment)
shown in Figure 4C also changes. Figure 9A shows the
relationship between the residual curvature χr and the
curvature χmax for several unloading phases. This relationship
is linear and takes the form:

χr � 0.52 χmax (9)

This relationship can be used when determining the
parameters of the unloading phase.

For the unloading phase, the representative curveMb(χ) of the
model of Dahl (Eq. 8) passes through the two points (χmax ,
Mbmax) and (χr , 0). The first point corresponds to the end of the
loading phase and the second corresponds to the point where the
moment is zeroed during the unloading phase (with residual
curvature χr). This leads to a relationship between the different
parameters which is as follows:

Bu � −(Mbmax +M0u)−nu+1(M0u)nu +M0u(χmax − χr)(nu − 1) (10)

The parameter nu is a shape parameter and does not change from
one unloading phase to another (nu � 2.5). χr is estimated using
Eq. 9. This leaves only the parameter M0u to be determined and
the parameter Bu will be calculated using Eq. 10. Figure 9B shows
the relationship between the parameter M0u and the moment
Mbmax for several unloadings. For each unloading phase, the
value of M0u is chosen by the least squares method to best fit the
model of Dahl to the experimental values of the bending

FIGURE 7 | Experimental load-displacement curve (A) one loading/unloading, (B) several loadings/unloadings.
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moments. The relationship between M0u and Mbmax is almost
linear and can be written as:

M0u � 0.31Mbmax (11)

Thus, from the curvature χmax and the moment Mbmax

corresponding to the end of the loading phase, the parameters
of the unloading phase can be determined using Eqs 9–11.

Figure 9C shows the experimental relationship between the
bending moment and the curvature corresponding to the test
shown in Figure 7B. Figure 9C also shows the modified Dahl

model whose unloading phase parameters were determined using
Eqs 9–11.

Cantilever Bending Test
Figure 5 shows the results of the cantilever bending test. The
curvature was calculated along the specimen (Figure 5B). The
curvature is maximum at the level of the fixed side and decreases
rapidly away from this zone to become almost zero for
x � 100 mm. This rapid decrease is due to a high bending
stiffness for low curvatures.

FIGURE 8 | Cross sections of the reinforcement (A) initial state, (B) after a displacement of 30 mm. (C) Angle between the different cross sections and the mid-line
of the reinforcement during loading.
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This test allowed to obtain a non-linear relationship between
the bending moment and the curvature (Figure 5C). However,
this relationship corresponds to the loading phase since this test
does not allow the reinforcement to be subjected to unloading in
bending. The relations Mb(χ) obtained by this test and by the
three-point bending test for the loading phase are in agreement
(Figure 5C). A slight difference is still observed for large
curvatures. This difference may be due to the hypothesis made
in this work which is the following: the bending moment is a fair
function of the curvature (transverse shear is neglected).
However, both relationships remain correct to describe the
bending behavior of this reinforcement and can be used for
finite element simulations.

NUMERICAL SIMULATION BY THE FINITE
ELEMENT METHOD

On a macroscopic scale, the main objective is to simulate the
shaping of the fibrous reinforcements on the scale of the entire
part. Among the known macroscopic approaches, there are

geometrical kinematic drape modeling approaches (Mack and
Taylor, 1956; Van Der Weeën, 1991; Borouchaki and Cherouat,
2002) which only integrate geometric effects (without stress) and
mechanical approaches integrating the behavior of the material
and the boundary conditions. Among the latters, there are
discrete and continuous approaches. Discrete approaches
consist in considering the textile as a discontinuous assembly
of deformable elements (Sze and Liu, 2005; Boubaker et al., 2007)
while continuous approaches assume a continuous material at the
macroscopic scale.

Different approaches, whether hypoelastic (Yu et al., 2005;
Khan et al., 2010) or hyperelastic (Charmetant et al., 2012; Gong
et al., 2016; Belnoue et al., 2016), have given convincing results.
These laws are associated with shell or plate finite elements for
thin woven fabrics and brick elements for thick woven fabrics.

Most simulations of the shaping of dry fibrous reinforcements
are carried out at macroscopic scale and under the assumption of
an elastic mechanical behavior of the reinforcements. An elastic
(reversible) behavior is expressed by a relationship between load
and deformation that remains the same for the loading and
unloading phases. This relationship can be linear or non-linear.

FIGURE 9 | (A) χr as a function of χmax and (B)M0u as a function ofMbmax for several unloading phases. (C) Bendingmoment as a function of curvature for several
loading/unloading.
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In this work, a finite element code using an explicit temporal
scheme and based on stress resultant shell elements (Hamila et al.,
2009) was used. In this approach, the stresses in the textile
reinforcement are represented by the resultant warp and weft
tensions (T1 and T2), the resultant in-plane shear moment (Cs)
and the resultant bending moments (Mb1 and Mb2).

The virtual work of the internal loads of a woven
reinforcement is given by:

Wint( η→) � Wt
int( η→) +Ws

int( η→) +Wb
int( η→) (12)

Wt
int( η

→),Ws
int( η

→) andWb
int( η

→) are, respectively, the virtual work
of internal loads due to tension, in-plane shear and bending. η→ is
any virtual displacement field equal to zero on the part of the
boundary with imposed displacement.

With:

Wt
int( η→) � ∑nc

p�1
pε11( η→) pT1

pL1 + pε22( η→) pT2
pL2

Ws
int( η→) � ∑nc

p�1
p c( η→) pCs (13)

Wb
int( η→) � ∑nc

p�1
pχ11( η→) pMb1

pL1 + pχ22( η→) pMb2
pL2

Where nc is the number of woven cells in a shell element, pA
corresponds to the quantity A for the woven cell of index p, L1
and L2 are the lengths of a unit woven cell in the warp and weft
directions, ε11 and ε22 are the axial strains in the warp and weft
directions, c is the in-plane shear angle (the angle between the
warp and weft directions), χ11 and χ22 are the curvatures of the
warp and weft directions.

For an elastic mechanical behavior model, the relationships
between the loads and the deformation fields (T11(ε11), T22(ε22),
Cs(c),Mb1(χ11),Mb2(χ22)) are the same for loading and unloading.
This finite element approach is detailed in Hamila et al., 2009.

In order to take into account the inelastic behavior in bending,
the behavior model Mb(χ) (Eq. 8) detailed in Analysis of
Mechanical Behavior in Bending has been used in the finite
element code.

Bending Test Simulations
The objective of this part is to simulate by finite elements the
bending tests in order to validate the efficiency of the bending
model used in this work to predict the geometries and the loads
obtained experimentally. For this purpose, the Dahl model has
been implemented in the stress resultant shell elements.

Three-Point Bending Test
The simulation of a loading/unloading in a three-point bending
test was carried out to validate the bending model of Dahl.

The orientations of the specimen fibers and boundary
conditions used for numerical simulation correspond to those
of the experimental test: the reinforcement is placed freely on two
cylindrical supports of 16 mm diameter and a loading pin moves
down/up to impose loading/unloading. The loading phase
corresponds to an imposed displacement of 30 mm. The
unloading phase corresponds to a return to zero force.

FIGURE 10 | Three-point bending test. (A) load/displacement curves at
the point of load application. Numerical and experimental geometries of the
deformed fabric: (B) at the end of the loading phase and (C) at the end of the
unloading phase.

FIGURE 11 |Numerical and experimental deformed sample geometry of
the cantilever bending test.
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Figure 10A shows that the load-displacement relationship at
the point of application of the force obtained by simulation is
consistent with that obtained by experimentation. The mid-
lines of the deformed sample obtained by simulation and
experimentation are shown in Figure 10B for the end of the
loading phase and in Figure 10C at the end of the unloading
phase. The geometry of the deformed sample obtained by
simulation is consistent with that obtained by
experimentation. If during the loading phase the loading pin
imposes the displacement of the reinforcement at the point of
application of the force, this is not the case after its release where
the reinforcement is free to have a residual deformation. At the
end of the unloading phase, the residual displacement obtained
by simulation is consistent with that obtained by
experimentation. The reinforcement would return to its
initial configuration (flat and horizontal) if the simulation
was done with an elastic behavior model. The inelastic model
allowed here to predict the non-elastic return of the
reinforcement.

Cantilever Bending Test.
The boundary conditions for this test are as follows: the left end of
the specimen is embedded while the rest is free and bends under
its own weight. The dimensions of the specimen are: 445 ×
70 × 3 mm.

The finite element numerical simulation of the cantilever
bending test gave a geometry of the deformed sample that is
consistent with that obtained experimentally (Figure 11).

Thus, these characterization tests validate the use of the
bending model of Dahl and the parameters of this model
described in Bending Test Results and Behavior Modelling.

Simulation of Wrinkling Under Longitudinal
Compression
The low bending stiffness of the fibrous reinforcements makes
them sensitive to buckling when compressed in their plane, which
leads to the formation of wrinkles.

In this section, loading/unloading in bending during the
formation of wrinkles is highlighted. In addition, the
importance of using an inelastic model to simulate wrinkles
formation is studied.

For this purpose, a compression in the plane of three samples
was applied, by numerical simulation. These three samples
corresponded to three different woven reinforcements having,
respectively, the bending stiffnesses R1, R2, and R3. R1
corresponds to the bending stiffness of the fabric studied in
this work. R2 and R3 are, respectively, 100 times and
1,000 times weaker than R1. Longitudinal compression was
applied to 100 × 20 mm specimens by bringing their ends

FIGURE 12 | (A)Out-of-plane deformation obtained during in-plane compression of a woven reinforcement. (B)Curvature as a function of time of an element of the
reinforcement.
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closer together causing out-of-plane deformation. The principle
is observed in Figure 12A for the reinforcement whose stiffness is
R2. Figure 12B shows the evolution of the curvature as a function
of time of an element of this reinforcement during deformation.
This figure shows that some areas of the reinforcement are
subjected to loading/unloading in bending during wrinkles
forming. Hence the interest to study the importance of taking
into account the inelastic behavior on the formation of wrinkles.

Figure 13A shows a comparison between the geometries of the
deformed samples obtained by numerical simulations of
wrinkling under longitudinal compression using an inelastic
behavior model and those obtained with an elastic behavior
model for the different bending stiffnesses R1, R2, and R3.

For the R1 stiffness reinforcement, the elastic and inelastic
simulations gave the same geometry after deformation. This is
due to the fact that this reinforcement was subjected to bending
loading without unloading: during the formation of a single
wrinkle there are no elements that move from an area with
more bending stress to an area with less bending stress.

For the two other stiffnesses R2 and R3, the formation of
several wrinkles leads some elements to move from an area with
more bending stress to an area with less bending stress (as in

Figure 12). Thus, these reinforcements were subjected to loading/
unloading and the inelastic mechanism was solicited. This
explains the difference between the deformed shapes obtained
by simulations with an elastic model and those obtained with an
inelastic model. This difference remains small: the number of
wrinkles and their amplitudes have not changed significantly.

Figure 13B shows the deformed shapes of the reinforcements
after unloading (release of its ends): they do not return to their
initial configurations.

Experiments and Simulation of a
Hemispherical Forming
In this part the hemispherical forming is studied. This forming
geometry presents a double curve shape. The forming was carried
out without using a blank holder in order to study the formation
of wrinkles in the areas of the reinforcement that were not
exposed to the punch.

The punch is a hemisphere of radius R � 75 mm and the
woven reinforcement was initially square in shape and 450 ×
450 mm in size. Figure 14A shows the tool geometry of this
forming. The simulation of the process was carried out on the
glass-based reinforcement studied in Analysis of Mechanical
Behavior in Bending for an initial orientation of the yarns at 0°

(warp direction) and 90° (weft direction).
Figure 14D shows the evolution of the curvature as a function

of time as well as the bending moment as a function of the
curvature of the element Elt (visible in Figure 14A). This element
has been chosen in such a way that it is representative of the areas
that undergo a loading/unloading when passing through an edge
radius of the forming tool. Figure 14D highlights the presence of
a loading/unloading in bending during the forming of the
reinforcement. This non-monotonous loading is due to the
passage of the studied element by an edge radius of the tool.
For most forming processes, the passage through an edge radius
of the tool is unavoidable and, therefore, some areas of the
reinforcement are subjected to loading/unloading in bending.
This figure also shows that, for the studied element, the maximum
curvature reached for the elastic simulation is greater than the one
for the inelastic simulation. This is due to the fact that the areas
adjacent to this element, and which are closer to the edge radius,
are first subjected to a loading/unloading. In addition, the tangent
stiffness increases during the transition from the loading phase to
the unloading phase (see relation Mb(χ) in Figure 14D). This
increase in stiffness for the areas adjacent to the element Elt
reduces the maximum curvature reached by the latter.

Figure 14C shows the numerical geometries obtained at the
end of the hemispherical forming of the studied reinforcement
with the elastic and inelastic behavior models. These geometries
obtained with the two behavior models are not significantly
different and are consistent with the one obtained by
experimentation (Figure 14B). Small differences were
nevertheless observed at the level of the wrinkles: the widths
of some wrinkles of the deformed reinforcement corresponding
to the inelastic simulation are slightly smaller than those
corresponding to the elastic simulation. The encircled wrinkle
in Figure 14 shows that the wrinkle width obtained by the

FIGURE 13 | (A) Simulation of wrinkling under longitudinal compression
of woven reinforcements of stiffness R1, R2 and R3, (B) Deformed shapes of
the reinforcements after unloading.
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inelastic simulation was closer to the one obtained by
experimentation than the one obtained by the elastic simulation.

Figure 15 shows the magnitude of the internal bending
loads. The differences in loads between the simulation with the
elastic model and the one with the inelastic model are
significant in some areas (up to 60%). It is necessary to
accurately calculate the internal bending moments at the
end of the forming process since they determine the
internal stresses to be taken into account for the resin
injection phase for LCM processes.

In the case of monotonous forming, the final geometry of the
preform is mainly imposed from the punch geometry. This
explains why simulations with both behavior models (elastic
and inelastic) give close geometries. However, in the case of
punch removal, the final geometry of the preform is no longer
imposed. Thus, this case is interesting to study since it allows to

better investigate the relevance of the proposed inelastic model.
Figure 15C shows the numerical geometry of the deformed
reinforcement obtained after the removal of the hemispherical
punch. The reinforcement did not return to its original
configuration as in the case of an elastic behavior. This
numerical geometry is consistent with that obtained by
experimentation (Figure 1).

CONCLUSION

In this work, the inelastic behavior in bending was highlighted by
applying loading/unloading in three-point bending test. Thanks
to the optical monitoring of the yarns, a slip between the different
layers of fibers was observed. This slippage is expected to generate
friction; which explains, in part, the observed inelastic behavior.

FIGURE 14 | Hemispherical forming (A) tool geometry, (B) experimental geometry of the deformed woven reinforcement, (C) numerical geometries obtained with
elastic and inelastic behavior models, and (D) the curvature as a function of time and the bending moment as a function of the curvature of the element Elt.
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The friction model of Dahl was adapted to describe the
inelastic behavior in bending of woven reinforcements. Then,
this model was implemented in stress resultant shell elements
and validated by comparison simulation-experiment of
bending tests.

During the forming of a textile reinforcement, the latter is
subjected to loading/unloading in bending when passing through
an edge radius of the forming tool as well as during the formation
of wrinkles. This makes appear the inelastic behavior of the
reinforcement. Concerning the geometry of the reinforcement
during its forming, numerical simulations with an inelastic
behavior model have given results that are close to those
obtained with an elastic behavior model. However, the
difference becomes significant if the punch or load is released:
the simulation with an elastic model does not predict the non-
elastic return of the reinforcement.

In addition, simulation with an inelastic behavior model was
able to predict accurately the loading/unloading loads of a three-
point bending test. The model was then used in a forming
simulation to estimate residual stresses.

Further studies at the meso-scopic scale would allow a better
understanding of the different sources of dissipations.
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