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Regenerative therapy in dentistry has gained interest given the complexity to restore dental
and periodontal tissues with inert materials. The best approach for regeneration requires
three elements for restoring functions of affected or diseased organ tissues: cells, bioactive
molecules, and scaffolds. This triad is capable of modulating the processes to replace lost
or damaged tissues and restore function, as it has an impact on diverse cellular processes,
influencing cell behavior positively to induce the complete restoration of function and
morphology of such complex tissues. Hydrogels (HG) have shown advantages as
scaffolds as they are soft and elastic three-dimensional (3D) networks formed from
hydrophilic homopolymers, copolymers, or macromers. Besides simple or hybrid, HG
show chemical, mechanical and biological activities such as the incorporation of cells in
their structures, the retention of high-water content which enhances the transportation of
cell nutrients and waste, and elastic and flexible characteristics that emulate the native
extracellular matrix (ECM). HG can induce changes in cellular processes such as
chemotaxis, proliferation, angiogenesis, biomineralization, and expression of specific
tissue biomarkers, enhancing the regeneration process. Besides some of them have
anti-inflammatory and anti-bacterial effects. This review aims to show an extensive
overview of the most used hydrogels in tissue engineering, emphasizing those that are
studied for the regeneration of oral tissues, their biological effects, and their clinical
implications. Even though most of the HG are still under investigation, some of them
have been studied in vitro and in vivo with outstanding results that may lead to preclinical
studies. Besides there are HG that have shown their efficacy in patients such as hyaluronan
HG that enhances the healing of gingival tissue.
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INTRODUCTION

In recent years, advances have beenmade in oral tissue engineering and regenerative dentistry thanks
to the growing amount of research in fields such as, stem cell biology, genetic, molecular engineering,
and pathologies that affect the dental organ and its supporting tissues (Miran et al., 2016).
Nevertheless, regeneration is still ruled by the need for three elements that have the goal of
restoring functions of affected or diseased organ tissues (Cavalcanti et al., 2013; Lee et al., 2014;
Fukushima et al., 2019): ECM, which serves as a scaffold; active biomolecules, that regulate cell

Edited by:
Larry D Unsworth,

University of Alberta, Canada

Reviewed by:
Zhila Izadi,

Kermanshah University of Medical
Sciences, Iran

Jennifer Patterson,
Instituto IMDEA Materiales, Spain

*Correspondence:
Rosalio Ramos-Payan
rosaliorp@uas.edu.mx

Specialty section:
This article was submitted to

Biomaterials,
a section of the journal
Frontiers in Materials

Received: 12 May 2021
Accepted: 15 July 2021
Published: 28 July 2021

Citation:
Ayala-Ham A, López-Gutierrez J,
Bermúdez M, Aguilar-Medina M,

Sarmiento-Sánchez JI,
López-Camarillo C,

Sanchez-Schmitz G and
Ramos-Payan R (2021) Hydrogel-

Based Scaffolds in Oral
Tissue Engineering.

Front. Mater. 8:708945.
doi: 10.3389/fmats.2021.708945

Frontiers in Materials | www.frontiersin.org July 2021 | Volume 8 | Article 7089451

REVIEW
published: 28 July 2021

doi: 10.3389/fmats.2021.708945

http://crossmark.crossref.org/dialog/?doi=10.3389/fmats.2021.708945&domain=pdf&date_stamp=2021-07-28
https://www.frontiersin.org/articles/10.3389/fmats.2021.708945/full
https://www.frontiersin.org/articles/10.3389/fmats.2021.708945/full
http://creativecommons.org/licenses/by/4.0/
mailto:rosaliorp@uas.edu.mx
https://doi.org/10.3389/fmats.2021.708945
https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#editorial-board
https://doi.org/10.3389/fmats.2021.708945


growth and differentiation; and mesenchymal cells, needed for
the new tissue formation (Sakata et al., 2015). Thus, in tissue
engineering, regeneration will be achieved if a structural scaffold
is provided, conferring mechanical properties (Goker et al., 2019),
but also, inducing migration of cell populations. Besides,
biomaterials used in tissue engineering must be degraded in a
time range comparable to the growth of the new tissue (Colombo
et al., 2014).

Consequently, dental biomaterials have passed from passive
bioinert structures to bioactive materials that have the final goal
to return form and function to oral tissues (Schmalz and Smith,
2014). Despite progress, oral tissue regeneration is challenging as
the dental organ is made up of different tissues as well as the
periodontium. In this regard, hydrogels (HG), have been gaining
interest since they possess three-dimensional (3D) polymeric
networks with characteristics similar to tissues (Athirasala
et al., 2018).

According to Slaughter et al., HG are defined as 3D insoluble
polymer matrices created from crosslinked hydrophilic
homopolymers, copolymers, or macromers (Slaughter et al.,
2009). Due to their thermodynamic compatibility, these
polymers are soft and elastic with water and have been used
in many biomedical applications (Peppas et al., 2000; Slaughter
et al., 2009). In the case of biological HG, they can be formed
mainly from agarose, alginate, chitosan, hyaluronan, fibrin, and
collagen (Lee and Mooney, 2001; Malafaya et al., 2007).

Such HG, either simple or hybrid, have shown excellent
chemical, mechanical and biological activities (Moussa and
Aparicio, 2019). They work incorporating cells in their
structures, and at the same time, degrading themselves to let
place to new healthy tissue. HG, been porous structures, can
retain high-water content enhancing the transportation of cell
nutrients and waste. Besides, HG are elastic and flexible
emulating the native ECM (Mantha et al., 2019).

HG are considered the biomaterial of choice for tissue
engineering in dentistry and biomedicine. According to
Eelkema et al., at present, HG are used in personal care
products, biomaterials, coatings, and plant fertilizers. They also
are considered for future applications such as sensing, drug
delivery, soft robotics, and biohybrid or biointerfacing
materials (Chai, 2009). When HG are compared with other
types of biomaterials, they are superior showing proper
mechanical strength, porous structure, enhanced
biocompatibility, and adjustable biodegradability (Chai et al.,
2017). HG have emerged as a promising biomaterial for
therapeutic delivery of cells and bioactive molecules for tissue
regeneration in dentistry, showing the capacity to conform to the
three-dimensional defect and the adaptability for minimally
invasive surgical procedures. Given that HG have been
considered the biomaterial of choice for tissue engineering
applications (Fan and Wang, 2017), review aims to show an
extensive overview of the most used hydrogels in tissue
engineering, emphasizing those that are studied for the
regeneration of oral tissues , their biological effects, and their
clinical implications. This is the first review that compiles the use
of hydrogels in regenerative dentistry, taking into consideration
all dental and periodontal tissues.

HYDROGEL-BASED SCAFFOLDS USED IN
TISSUE ENGINEERING

The success of tissue regeneration relies on the design of
biofunctional scaffolds. Lately, HG are considered the best
candidates given their characteristics that emulate the natural
ECM, enabling proliferation, vascularization, and survival of cells.
Here we summarize the most common HG used in tissue
engineering, their characteristics and its current uses.

Collagen-Based Hydrogels
Collagen-based HGmimic interactions between cells and ECM in
vivo and can be biofunctionalized. Collagen is the most studied
fibrous protein, it confers unique properties to the ECM allowing
cell adhesion, migration, and proliferation (Lodish et al., 2000).
One of the most common methods to obtain it for therapeutic
purposes is by decellularization of organs or tissues (Magno et al.,
2020). Currently, collagen-based HG can be found commercially
in different concentrations, alone or mixed with various
molecules, such as cinnamaldehyde (Kwon et al., 2017),
riboflavin (that confers resistance, compression, shortens the
setting time, and also confers photocurable properties), and
chondroitin sulfate-polyethylene glycol (CS PEG) adhesive
(Chae et al., 2014). Collagen can be biofunctionalized using
growth factors (Momose et al., 2016a, 2016b), bone
morphogenetic proteins (BMPs) (Yamamoto et al., 2003),
cytokines, or exomes potentiating their use (Barthes et al., 2021).

Collagen-based HG can mimic cell-cell and cell-matrix
interactions in vivo and regulate more orderly cell growth, for
this reason, it have been applied to the engineering of cardiac
tissues (Kaiser et al., 2018), corneal and corneoscleral regions
(Chae et al., 2014), alveolar bone, and periodontal tissues (Kato
et al., 2015). Also in the aesthetic area, cosmetic formulations are
widely used due to their moisturizing, regenerating, and film-
forming properties, for filling wrinkles and facial expression lines
(Li et al., 2005).

Hyaluronic Acid Hydrogels
Hyaluronic acid or hyaluronan (HyA) HG can be combined to
improve their characteristics and have multiple clinical uses in
human. HyA is a biopolymer that can be modified and processed
to form HG for biomedical applications (Burdick and Prestwich,
2011). It has great biological importance since it has a high
affinity to CD44 and is degradable through oxidative species and
various enzymes such as hyaluronidase, beta-D glucuronidase
and beta D-N-acetyl-hexosaminidase (Stern, 2004). HyA HG can
combine with DNA/polyethyleneimine molecules and MMP-
sensitive peptides to modulate the delivery of particles to cells
(Gojgini et al., 2011). HyA can be directly combined with 2-
Aminoethyl methacrylate (AEMA) (Niloy et al., 2020a), platelet
lysate (HAPL) (Almeida et al., 2018a), polyethylene glycol
diacrylate (PEGDA) + Gelatin (HySistem-C) (Jones et al.,
2016a, 2016b), and catechol (enhancing adhesion in vivo)
(Shin et al., 2015). HyA HG systems have been successful for
clinical use in human patients in areas such as ophthalmology
(Chang et al., 2021), orthopedics (Pitarresi et al., 2013), oncology
(Suo et al., 2019), gynecology (Chen et al., 2017), dentistry (Ni
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et al., 2019), and plastic surgery (Borzacchiello et al., 2015) for the
repair of skin (as dermal fillers) and neural tissues, (Yeom et al.,
2010), in gingival tissue (Jentsch et al., 2003), corneal tissue
(Williams et al., 2017), for inter-articular viscosupplementation
(Narkbunnam et al., 2012) and prevention of postoperative
adhesions (Li et al., 2014a).

Gelatin Hydrogels
Gelatin based HG offer a variety of benefits for tissue engineering
that enable their use as scaffold and drug delivery system. Gelatin
is an insipid protein derived from collagen used in food and
pharmaceutical industries (Mariod et al., 2011). It is obtained
from the skin, scales, bones, ligaments, and tendons of bovine and
porcine livestock (Okonkwo et al., 2007). Its abundance, low
price, biodegradability, and non-toxicity (Ulfa et al., 2015) make
it ideal for therapeutical use. Gelatin-based HG retain their
structure as basic polymer chains, which can be combined,
allowing biocompatibility, low immunogenicity, rapid
biodegradation, allowing their use in biomedical applications
such as in the manufacture of contact lenses, matrices for
tissue engineering, and systems drug administration (Hoffman,
2012).

Nowadays, methacrylate gelatin HG (GelMA), is also used and
polymerizes under ultraviolet light, in the presence of a
photoinitiator, in a thermosetting cross-linked HG (Yue et al.,
2015). It is biocompatible and preserves the RGD binding motifs
to cells and the MMP binding domain, allowing its
biodegradation (Sun et al., 2018). Besides, can be used as an
injectable 3D bioprinted scaffold through electrospun fibrous
membrane by light-induced crosslinking, extrusion, and
microfluidics (Radhakrishnan et al., 2017). GelMA has been
used also for the construction of cell-loaded microspheres for
bone regeneration in vivo (Zhao et al., 2016), as multicomposite
with polyethylene glycol (PEG), gelatin, and heparin (PGH)
scaffold to induce chondrogenesis (Chen et al., 2020), in
combination with sodium alginate, and poly (ethylene glycol)-
tethacrylate (PEGTA) as a bio-link to print highly organized and
perfusible 3D biologically relevant vessels with significant
potential in tissue construct engineering vascularized (Jia et al.,
2016).

Another HG used is the microbial transglutaminase (mTG)
enzymatically crosslinked gelatin. mTG catalyzes the formation
of covalent N e-(g-glutamyl) lysineamide bonds between
individual gelatin strands to form a permanent network of
polypeptides, thus, creating physiologically biocompatible
scaffolds adequate for live surgery procedures, as well as a
slow-release HG to deliver antibiotics and prevent bacterial
colonization on the surface of implants for orthopedic surgery,
as is feasible for intraoperative manipulation and can resist the
pressure force in the insertion of intramedullary implants (Yung
et al., 2007).

Chitosan Hydrogels
Chitosan (CS)-based scaffolds provide mucoadhesive
characteristics through interactions between opposite charges
and can be combined with other synthetic polymers such as
methyl acroloyl glycin (CS-MAG), acquiring photosensitive

properties (Qi et al., 2013), with PEG (Li et al., 2009), with
fibrinogen and different types of proteins such as BMPs or
amelogenin, among others, demonstrating a tissue binding
capacity, able to control the release of many drugs or organo-
specific signaling molecules. These chitosan-based HG have been
gaining ground in biomedicine, cosmetics, immunotherapy, cell
therapy, and tissue engineering. At present, it is used in the repair
of arteriovenous (Kim et al., 2020), bone (Liu et al., 2017), skin
(Huang et al., 2019), dental (Park et al., 2013), and even ocular
tissues (Ozcelik et al., 2013).

Alginate Hydrogels
These type of HG lack of biological activity but can be
biofunctionalized for medical applications. The brown algae
produces a series of anionic biopolymers known as alginates
(unbranched polysaccharides of mannuronic β-d acid (M) and
α-L guluronic acid (G) covalently linked in different sequences
and blocks along the polymer chain) that retain water, which
offers advantages in terms of temperature and pH, enabling
encapsulation and cell recruitment (Augst et al., 2006).

The crosslinked alginate HG have low mechanical rigidity and
are progressively absorbed in vivo due to the release of divalent
cations that crosslink the HG in the surrounding environment in
exchange with monovalent cations (Lee and Mooney, 2012).
Although alginate HG lack biological activity, they can suffer
chemical and biochemical modifications (Augst et al., 2006;
Bidarra et al., 2014) that enable biomedicals applications such
as drug delivery (Loebsack et al., 2001) (Supramaniam et al.,
2018), vehicle for Schwan cell transplantation (Mosahebi et al.,
2001), and bulking agent (Loebsack et al., 2001).

Agarose-Based Hydrogel
Agarose is a linear polysaccharide found in marine algae,
composed of -β- d galactopyran, -3,6-anhydrous β-l-
galactopyranose units with thermo-reversible capacity when
solubilized in water that can be combined with chitosan,
gelatin, fibrin, ECM, minerals, and synthetic particles for
biomedical applications (López-Marcial et al., 2018). Agarose
HG are thermosensitive to a temperature between 32 and 40°C,
which enable their use as bioprinting materials in vitro and in vivo
for skin, peripheral nerves, and skeletal tissue (Gopinathan and
Noh, 2018).

Extracellular Matrix-Based Hydrogel
ECM scaffolds are widely used in tissue engineering given their
well-preserved native characteristics. Decellularized ECM-based
scaffolds are generally of porcine or bovine origin and that
preserve the biochemical structure, nanostructure, and
bioinductive properties of the native matrix (Badylak et al.,
2009), structural and functional proteins, such as
glycosaminoglycans, proteoglycans, and growth factors (GF)
(Voytik-Harbin et al., 1998). ECM-derived materials are FDA
approved and have been used in millions of patients (Zantop
et al., 2006) since they can be solubilized in injectable HG by
enzymatic digestion mainly by pepsin-mediated solubilization.
Then the matrix obtained is transported to physiological pH and
salt conditions to adapt to in vivo conditions, as well as to
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inactivate pepsin. The digested ECM is cross-linked on a nano-
fibrous hydrogel after incubation at 37°C (Saldin et al., 2017;
Spang and Christman, 2018).

The biggest disadvantage of the ECM HG are the
manufacturing time and the addition of aggressive proteins for
digestion. Nevertheless, they are widely used for various tissue
engineering applications (Saldin et al., 2017) such as
photothrombotic cortical and other soft tissue ischemic lesion
in rats (Kočí et al., 2017) and percutaneous transendocardial
injections for cardiac repair (Traverse et al., 2019).

Keratin Hydrogels
Keratin is a structural fibrous protein associated with epithelial
cells, is also found in hair, wool, claws, and nails (Coulombe
et al., 2000). It is considered one of the most abundant natural
polymers (Donato and Mija, 2020) and its products are keratein
and keratose (obtained when extracted at low pH in the presence
of reducing agents) (Hill et al., 2010; Rouse and Van Dyke,
2010). The extracted keratin proteins can self-assemble
preserving the RGD Leu Asp-Val (LDV) and Leu-Asp-Ser
(LDS) motifs, which favor cell union and growth (Verma
et al., 2008; Ajay Sharma et al., 2017a). Keratin HG influence
cell behavior, allowing innate response modulation, as well as
epithelial cell polarization (Salas et al., 2016). Furthermore,
these HG promotes adhesion, proliferation, and
differentiation of ad-MSCs in adipocytes, osteoblasts, vascular
endothelial cells, and myocytes in vitro and improves skin
wound healing in vivo (Lin et al., 2019).

Peptide-Based Hydrogel
Peptide-based HG are biomedical materials that have great
stability due to their self-assembly capacity, their high-water
content allows an application based on infiltrates. These can be
obtained by various methods, such as enzyme controlled
hydrogelation, Spontaneous self-assembly, hydrogelation,
Chemical, and physical crosslinking enhanced
hydrogelation, presenting microporous structure,
mechanical stability, biocompatibility, injectability, and
tissue elasticity (Li et al., 2019). Furthermore, they can be
combined with other types of molecules that make them
suitable for biomedical applications such as drug delivery
(Paladini et al., 2013), antitumor therapy (Altunbas et al.,
2011), 3D bioprinting, 3D culture neural tissue, tissue
engineering, and wound healing (Altunbas et al., 2011).

Synthetic Hydrogels
Synthetic hydrogels are a group of materials with diverse
biomedical applications that possess thermostability and
durability in comparison with natural hydrogels (Varaprasad
et al., 2017). Furthermore, they are reasonably inexpensive
(Munim and Raza, 2019). They can be divided into degradable
and non-degradable HG.

Polylactic acid (PLA) is a synthetic, hydrophobic, bio-based
polymer obtained from the bacterial fermentation of
renewable carbohydrates of vegetable origin, it is
biocompatible and biodegradable (Jain et al., 2016). It has
adequate mechanical properties, is safe and non-toxic

(Reichert et al., 2020). PLA can be conjugated to PEG and
polysaccharides to form HG(92).

Polyvinyl alcohol (vinyl alcohol) (PVA) is a polymer
consisting of repeating units of vinyl alcohol, with a constant
relative weight allowing a high polydispersity index (Goodship
and Jacobs, 2009). Biomaterials based on PVA have
biocompatibility and are sensitive to pH changes, allowing
commercial availability and facilitating the synthesis of HG
(Peixoto et al., 2006). These PVA HG have particular physical
properties that preserve microstructure, being ideal for tissue
substitution and other biomedical applications (Jiang et al., 2011)
such as administration through nanoparticles that encapsulate
the drug that respond to changes in temperature, changes in pH,
and the presence of an oscillating magnetic field (Koetting et al.,
2015).

PEG is widely used to produce constructs for biological
applications due to hydrophilicity, non-toxicity, low protein
adhesion, and non-immunogenicity (Yang et al., 2005; Buxton
et al., 2007). The PEG HG must be cross-linked to achieve a
high-water content construction. Furthermore, the terminal
hydroxyl groups of PEG molecules can be easily
functionalized by thiol, carboxyl and acrylate groups. It also
can bind to other molecules or bioactive agents (Zhu, 2010).
PEG-based HG can be synthesized by radiation crosslinking and
covalent crosslinking allowing reactive chain ends (Zhu and
Marchant, 2011).

HYDROGELS FOR DENTAL TISSUE
REGENERATION

HG have emerged as an alternative for the regeneration of
dental organ tissues (Figure 1) and their characteristics make
them a promising alternative for clinical application (Table 1).
Tooth loss is a global health problem that affects socially and
economically (Righolt et al., 2018). It causes affections in vital
functions such as biting, chewing, smiling, speaking, and also
have psychosocial implications. Dental caries and periodontal
disease are major causes of tooth loss (Angelova Volponi et al.,
2018). Caries is the most common disease reported worldwide
(Petersen, 2003; Kassebaum et al., 2015) and is given by an
imbalance in the demineralization-remineralization
equilibrium caused by the presence of dental biofilm leading
to a clear loss of tooth minerals, progressing to a cavity through
the dissolution of the subsurface mineral tooth structure,
followed by progression to irreversible cavitation of the
enamel and/or dentine layers (Han et al., 2017; Jablonski-
Momeni et al., 2019; Pandya and Diekwisch, 2019).

When a tooth is cavitated in the dentin limit with the pulp
chamber, the odontoblast layer secretes bioactive molecules to
induce dentinogenesis. Nevertheless, the processes of reparative
dentine formation, as well as enamelogenesis, are still unclear,
and their regeneration is a clinical challenge (Smith et al., 1995;
Bleicher, 2014; Wang et al., 2014). Additionally, in the case of
pulp involvement, one of the main intentions of clinical treatment
is the preservation of pulp vitality by using direct capping with
biocompatible materials to form reparative dentin (Huang, 2011;
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Hilton et al., 2013). Although this treatment is in some cases
effective, so far there is not a successful treatment to induce the
full regeneration of the enamel, dentin, and pulp.

Hydrogels-Bassed Scaffolds for Dental Pulp
Regeneration
The dental pulp is one of the most difficult tissue to regenerate,
given its complex nature. The dental pulp is a dynamic
connective tissue that has an innate capacity to respond to
infections or injuries (Morotomi et al., 2019). This property has
provided the basis for the design of regenerative treatments.
Research on pulp regeneration increases steadily in the

literature, applying biological principles to protect the pulp
(Nakashima et al., 2017). According to Ahmadian et al.,
successful pulp therapy depends on the form and site of
injury, the age of the tooth, and the therapeutic approach
and capping material (Ahmadian et al., 2019). The
investigations have focused on the use of HG, in studies with
pulp tissue cells, in vitro and in vivo. This knowledge is applied
in clinical treatments, which include; indirect or direct pulp
capping, pulpotomies, and pulp revascularization, with
emphasis on dentin formation, sensory nerves, and blood
vessel development (Moussa and Aparicio, 2019). Here we
present an overview of all HG studied for dental pulp
regeneration.

FIGURE 1 | The combined use of cells, bioactive molecules, and scaffolds such as HG is considered the best approach to achieve tissue regeneration. (A) Dental
organs can be damaged principally by caries and trauma, injuring enamel, dentin, or pulp. Advances in the field of HG could be beneficial to find the ideal scaffold to
regenerate every lost tissue. (B) HG can induce changes in cellular processes such as chemotaxis, proliferation, angiogenesis, biomineralization, and expression of
specific tissue biomarkers, enhancing the regeneration process.
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TABLE 1 | Hydrogel-based scaffolds for dental tissue regeneration.

PULP

Hydrogel type Type of study Effect Reference

Hyaluronic acid (HA) hydrogels Review These hydrogels collaborate as a scaffold
support, as they are biocompatible and safe in
human dental cell therapy.

Ahmadian et al.
(2019)

2-Aminoethyl methacrylate (AEMA)–modified
Hyaluronic acid (HA) hydrogels

In vitro. 2-aminoethyl methacrylate (AEMA)
modified hyaluronic acid (HA) hydrogels were
synthesized by UV polymerization. Tests were
performed by MTT assay, Hoechst 33342 live
cell staining, and propidium iodide staining of
dead cells.

Improves expression of NANOG and SOX2 in
dental pulp stem cells (DPSC) and these cells
presented spherical morphology. presents
potential for regeneration.

Niloy et al.
(2020a)

Hyaluronic acid (HA) HG incorporating platelet
lysate (HAPL) hydrogel

In vitro. HA hydrogels incorporating PL (HAPL)
were prepared. hDPSC were placed on the
hydrogel. Cell metabolism and DNA
quantification were evaluated as well as
calcium and alkaline phosphatase activity
(ALPL) and RUNX2 gene expression.

The incorporation of PL increased cellular
metabolism and stimulated the deposition of
mineralized matrix by hDPSCs.

Almeida et al.
(2018a)

hyaluronic acid (HA)with cellulose nanocrystals
(CNC) and enriched with platelet lysate (PL)
hydrogel

In vitro and ex vivo. chemotactic and
proangiogenic activity was evaluated by
Recruitment and cell in human umbilical vein
endothelial cell co-cultures.

Incorporating CNC improved the stability of
materials against hydrolytic and enzymatic
degradation. stimulated chemotactic and
proangiogenic activity.

Silva et al. (2018)

HyStem-C ™ polyethylene glycol diacrylate
(PEGDA), hyaluronan (HA), and gelatin (Gn)
hydrogel

In vitro. hDPSC viability was evaluated
embedded in PEGSSDA-HA-Gn hydrogels at
2% (p /v). Fibronectin (Fn) was added to
determine the effect of protein concentration of
the extracellular matrix.

Gelation time decreases with increased
concentration. The hydrogel is biocompatible
with hDPSCs, and they facilitate cell
propagation.

Jones et al.
(2016a, 2016b)

fibrin and chitosan(Cs) Hydrogel In vitro. Various fibrin-chitosan formulations
were examined by rheological analysis, as well
as antimicrobial effect, cell viability, extracellular
matrix deposition, and collagen production.

The fibrin-chitosan hydrogel is cytocompatible at
pH 7.2. the chitosan presented antibacterial
effect, the hydrogel was biocompatible and
stimulated the production of type I/III collagen.

Ducret et al.
(2019)

keratin hydrogels In vitro e in vivo. Biocompatibility was evaluated
as a pulp response, the gel was implanted in rat
molars performing a partial pulpotomy. After
28 days, it was analyzed by histological and
immunohistochemical methods to identify the
formation of DMP-1.

The gel is dimensionally stable, hydrophilic and
biocompatible allowing pulp healing by
expression of DMP-1.

Ajay Sharma
et al. (2017a)

Multidomain Peptide Hydrogels Ex vivo. MDP hydrogel was injected into the
interface of the odontoblasts and dentin or into
the core of the pulp of the jaw cuts and
subsequently cultured for up to 10 days.
Histology and alizarin red staining were
evaluated as well as immunohistochemistry.

Scaffolds placed in pulp tissue are biocompatible
and preserve the local tissue architecture.

Moore et al.
(2015)

Synthetic Clay-based Hypoxia Mimetic Hydrogel In vitro. Resazurin-based toxicity assays, and
viability of human DPCs on a synthetic hydrogel
were performed clay-based 5–0.15% as well
as charged hydrogels. Production of VEGF
from DPC of the supernatant was measured

Biocompatible in DPC. Cell monolayer and cell
cluster formations were observed. stimulated
VEGF production in DPC.

Müller et al.
(2018)

Enzyme-cleavable hydrogel In vitro e in vivo. FGF, TGFβ1, and VEGF were
evaluated. Cell morphology and propagation in
three-dimensional cultures were visualized.
Subcutaneous transplantation of the hydrogel
into dentin casts was performed in
immunosuppressed mice.

Formation of vascularized soft connective tissue
similar to dental pulp.

Galler et al.
(2012)

(Continued on following page)
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TABLE 1 | (Continued) Hydrogel-based scaffolds for dental tissue regeneration.

DENTINE

Hydrogel type Type of study Effect Reference

Alginate In vitro. Measurement of endogenous
transforming growth factor TGF-β1 to the
dentin-pulp complex as a signal of
restorative processes.

Release of TGF-β1 Odontoblast-like cell
differentiation. TGF-β1 may indicate both the
induction of cell differentiation and the up-
regulation of its matrix secretion in the human
dentin-pulp complex.

Dobie et al.
(2002)

bEMCCollagen 1 In vitro. evaluation of the level of odontogenic
differentiation of DPSCs on hydrogel scaffolds
derived from bone extracellular matrix (bECM)
vs those seeded on Col-I.

Demonstrated that the levels of mRNA
expression of the DSPP, DMP-1 and MEPE. In
addition, increased mineral deposition was
observed in bECM hydrogel scaffolds and was
demonstrated by Von Kossa staining.

Paduano et al.
(2016)

ChitosanHydroxyapatite In vitro. Proliferation and osteogenic
differentiation of DPSCs in injectable thermo-
sensitive chitosan/b-glycerophosphate/
hydroxyapatite hydrogel.

DPSCs exhibit high expression of alkaline
phosphatase and high regulation in expression
of Runx-2, Collagen 1, and osteocalcin.

Chen et al. (2016)

Chitosan + (VEGF/CS/βGP) In vitro. Effects on DPSCs, cultured on the CS
/β-GP hydrogel, assessing adhesion
proliferation, and vitality

Sustained release of VEGF could promote
odontogenic differentiation as the high
expression of ALP, RUNX-2, OCN and OSX was
observed after 7 and 14 days, which allowed the
high formation of mineralized nodules
demonstrated with the red alizarin staining (ARS).

Wu et al. (2019)

Glycol-Chitosan Supplemented whith Enamel
Matrix

In vitro. Effect of GC-TRS and collagen on cell
viability was examined by diphenyltetrazolium
bromide assay. Expression of markers for
odontogenic/osteogenic differentiation was
analyzed byqPCR.

It promotes odontogenic differentiation of DPSC,
which expressed dentin sialophosphoprotein
and dentin matrix protein 1, and osteopontin
messenger RNA was significantly regulated.

Park et al. (2013)

Gelatin Methacryloyl (GelMA) In vitro. cell viability, and proliferationwith simple
engineering strategies for reconstruction of
tissue similar to dental pulp.

Viscosity was shown to allow greater printability
of the bio-links, in formulations containing higher
concentrations of alginate. At concentrations of
100 µg ml-1, these soluble dentin molecules
significantly enhance the odontogenic
differentiation of apical papilla stem cells
encapsulated in bioprinted hydrogels.

Athirasala et al.
(2018)

Gelatin Methacryloyl (GelMa) In vitro. Hydrogels were micropattern by
photolithography, to generate microgrooves
and ridges, where SCAP was seeded and
analyzed for self-alignment by fluorescence
microscopy using F-actin/DAPI. Furthermore,
odontogenic differentiation was analyzed by
the expression of the alkaline phosphatase
protein.

Micropatterned hydrogels enhance the
odontogenic potential of SCAPs in vitro,
demonstrating an increase in ALP expression on
stamped substrates within 7 days in culture.

Ha et al. (2020)

Self-assembling Peptide HydrogelK(SL)3RG(SL)
3KGRGDS (K, lysine; S, serine; L, leucine; G,
glycine; R, arginine; D, aspartic acid)

In vivo. Mice 8- to 10 week-old females, strain
NIH-III were used as subcutaneous transplan
recipients of dentin cylinders loaded hidrogel
on the dorsal surface of each animal.

Material for tissue regeneration, releasing VEGF,
TGF-β1 and FGF-1, which promotes the
differentiation of DPSCs in Odontoblast-like
cells.

Galler et al.
(2011a)

Recombinant Human Collagen (rh Collagen)
Peptide (Puramatrix)

In vivo. Roots of human premolars injected with
Puramatrix™ or rhCollagen containing SHED
were implanted subcutaneously into
immunodeficient mice (CB-17 SCID).

SHEDs, were differentiated to odontoblasts
expressed (DSPP, DMP-1, MEPE), after 21 days of
interaction allowing the ability to form new tubular
dentin.

Rosa et al.
(2013)

Chitosan In vivo. Microsphere loaded porous chitosan
membrane with TGF-1 (MS-TGF) for a
sustained release, in the pulp coating and the
formation of restorative dentin in a Beagle
breed dog model, At 60 days after stimulation.

TheMS-TGF group generated reparative dentin with
a thickness of (142 ± 29) m, 3 times thicker than with
Dycal and 6 times thicker TGF-free chitosan
membrane.

Li et al.,
(2014b)

GelatinL-lactic acid oligomers In vivo. Hydrogelimplanted subcutaneously in
the backs of twelve 10 week-old BALB/c
immunocompromised nude mice.

The controlled release of simvastatin from hydrogels
promotes the odontoblastic differentiation of
DPSCs, improving the activity of alkaline
phosphatase, calcium deposition and morphogenic
secretion of bone protein-2 and dentin sialoprotein,
which promoted calcification both in vitro and in
vivo.

Miyazawa
et al. (2015)

(Continued on following page)
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Hyaluronic Acid Hydrogels
HyA favors stem cell therapy in dentin/pulp lesions, although in
vivo studies showed a high degradation rate and poor mechanical
resistance (Ahmadian et al., 2019). HyA can be modified with 2-
Aminoethyl methacrylate (AEMA) to form a non-cytotoxic HG for
dental pulp stem cells (DPSCs). This HG mimics the in vivo 3D
environment to cell growth andmaintains their native morphology
and stemness, increasing the expression of stemness factors such as
NANOG and SOX2, in comparison with cells grown on
conventional culture plates (Niloy et al., 2020b). On the other
hand, the HyA HG biofunctionalized withHAPL enhances the
recruitment of DPSCs isolated from permanent teeth and
stimulates the mineral matrix deposition, evidencing its potential
for repairing damaged pulp/dentin tissue (Almeida et al., 2018b).
Also, when HyA is combined with cellulose nanocrystals improves
the stability of the material against hydrolytic and enzymatic
degradation, producing an HG that can be injected in situ.

Besides, the addition of HAPL to this HG results in the
release of the chemotactic and pro-angiogenic growth factors
such as platelet-derived growth factor (PDGF) and vascular
endothelial growth factor (VEGF) which function as
chemotactic and pro-angiogenic agents promoting DPSCs
recruitment and proliferation, in co-cultures of DPSCs and
human umbilical vein endothelial cells. Besides, in a
chorioallantoic membrane assay (CAM) the arrangement of
DPSCs nearby the new vessels promoted by the CAM
infiltration into the HG was seen (Silva et al., 2018).

In the case of the commercially available HyStem-C™
injectable HG PEGDA, hyaluronan, and gelatin (Gn)], the
modification of PEGDA by adding a disulfide bond results in
a biocompatible HG that can hold DPSCs, meanwhile,
increased ratios of HyA: Gn improves cell viability for
14 days. Besides, when fibronectin is added, cell
proliferation increases over time (only when

TABLE 1 | (Continued) Hydrogel-based scaffolds for dental tissue regeneration.

ENAMEL

Hydrogel type Type of study Effect Reference

CaCl2 agarose hydrogel In vitro. hydrogel biomimetic mineralization
model on an etched enamel surface in the
presence of 500 ppm fluoride, was analyzed
with scanning electron microscopy, X-ray
diffraction.

The generated tissue had enamel prismlike
layers containing well-defined hexagonal
hydroxyapatite crystals. Themodulus of elasticity
and the nanohardness of the regenerated
enamel prismlike tissue were similar to those of
natural enamel.

Cao et al.
(2014a, 2014b)

rP172 hydrogel In vitro. HG was applied to artificial caries
lesions on extracted human third molars and
tested for static gel remineralization in the
presence of artificial saliva, pH cyclic treatment
at pH 5.4 acetic buffer and pH 7.3 gel
remineralization.

Remineralization activity on early artificial caries in
a cyclic treatment model and multispecies oral
biofilm model. Repetitive application of the
hydrogel significantly improved enamel hardness
continuously over time.

Fan et al. (2012)

CS-AMEL hydrogel In vitro. Two models for enamel defects,
erosion and early caries, were asessed in this
study. After pH cycling and treatment with CS-
AMEL hydrogel enamel defects were analized.

Repair of artificial incipient caries by re-growing
oriented crystals and reduction of the depth of
the lesions by up to 70%.

Ruan et al. (2016)

Ch-LRAP hydrogel In vitro. Effect of hydrogel was analized by
scanning electron microscopy , X-ray
diffraction ,focus-ion beam, transmission
electron microscopy, and Vickers
microhardness test.

Stimulates the growth of organized de novo
aprismatic crystals on demineralized enamel
surfaces that showed significant hardness of the
demineralized enamel surface, after 3 days of
treatment.

Mukherjee et al.
(2016)

EMD-agarose Hydrogel In vitro. Human enamel slices were
demineralized with 37% phosphoric acid for
1 min. They were covered with hydrogel.
Results were obtained by Scanning electron
microscopy, energy-dispersive X-ray
spectroscopy, and X-ray diffraction.

EMD promotes in vitro biomimetic mineralization
and facilitated enamel prism like tissue formation
on demineralized human enamel.

Cao et al.
(2014a, 2014b)

BRGD-PA hydrogel In vitro. LS8 and primary EOE cells were
cultured within PA hydrogels injected into the
enamel organ epithelia of mouse embryonic
incisors. The expression of AMEL, AMBN,
integrin α5, and integrin α6 was detected by
QPCR and immunodetection

EOE cell proliferation with differentiation into
ameloblasts as evidenced by their expression of
enamel specific proteins. Nanofibers within the
forming extracellular matrix, in contact with the
EOE cells engaged in enamel formation and
regeneration.

Huang et al.
(2008)

Chitosan hydrogel In vitro. Human premolars extracted were
sectioned into 1mm thick slices. After
remineralization, the enamel surfaces were
ultrasonically cleaned for 2 min and analyzed
with SEM. Energy Dispersive Analysis X-Ray
spectrometer.

The regeneration of enamel erosions in an
enamel-like layer in this study supports the use of
chitosan in cases of dental erosions.

Ibrahim et al.
(2018)
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concentrations of 1.0 and 10.0 μg/ml in PEGDA-HyA-Gn HG
are used) (Jones et al., 2016a, 2016b).

Other Natural Hydrogels
Chitosan (Cs) is a biodegradable natural biopolymer of amino
polysaccharides used in pharmaceuticals, biomedicine, tissue
repair, and tissue engineering, given its biocompatibility (Li
et al., 2009). Its residual products are not toxic nor
immunogenic (Tamura et al., 2011). Cs-based HG (CsHG) can
be easily modified or coupled with various molecules and proteins
that potentiate the repair effect or act synergistically (Giri et al.,
2012). In oral research, CsHG has been used both in vitro and in
vivo, adding hydroxyapatite (HA), β-glycerophosphate (β-GP),
VEGF, or extracellular enamel matrix.

CsHG combined with fibrin shows an excellent capacity to
maintain DPSCs viability, fibroblast-like morphology,
proliferation rate, and type I/III collagen production. Besides,
it has an antibacterial effect against Enterococcus faecalis (Ducret
et al., 2019); meanwhile, Keratin HG has shown biocompatibility
with the dental pulp of upper molars in partial pulpotomy
treatments, and after 28 days the expression of dentin matrix
protein 1 (DMP-1) was detected, suggesting that keratin HG may
be a source of biomaterial for biological treatment of pulp tissue
(Ajay Sharma et al., 2017b).

Synthetic Hydrogels
The multidomain peptide HG (MDPh), in ex vivo organ culture,
shows compatibility with the dental pulp and stimulates
odontoblasts to be synthetically active. Also, MDPh can
stimulate the expression of dentin-matrix proteins as dentin
sialophosphoprotein (DSPP). An important finding is that
when MDPh is used in dental pulp did not induce
mineralization, but preserved pulp tissue architecture (Moore
et al., 2015). On the other hand, the synthetic clay-based HG can
maintain the viability of dental pulp cells (DPCs), without
increasing VEGF levels in the supernatant when DPCs are
cultured on the clay-HG loaded with hypoxia mimetics agents
such as dimethyloxalylglycine (DMOG), desferrioxamine,
L-mimosine, and CoCl2. In contrast, the supernatant of
DMOG-loaded HG alone stimulated VEGF production
(Müller et al., 2018). In the case of the enzyme-cleavable HG
(made from self-assembling peptide nanofibers), it can be
combined with basic fibroblast growth factor (FGF2),
transforming growth factor (TGF-β1), and VEGF, maintaining
DPSCs morphology and enhancing their spreading in 3D
cultures. Besides, the subcutaneous transplantation of this HG
within dentin cylinders into immunocompromised mice
enhances the formation of a vascularized soft connective tissue
similar to the dental pulp (Galler et al., 2012).

Hydrogels-Bassed Scaffolds for Dentin
Regeneration
In the regenerative dentistry area, it has been implemented the
use of HG for dentin regeneration, testing different biomaterials
such as alginate alone or in combination with GelMa, Cs, glycol-
chitin, ECM, self-assembled peptides, and collagen. Dentin is

considered the second hardest mineralized tissue in the body after
enamel and corresponds to the largest part of the tooth crown.
During odontogenesis, cells from the neural crest migrate into the
mesenchyme and reach the branchial arch where they contribute
to the formation of maxillary dental germs. The odontoblast
precursors migrate from the front-nasal bud where interactions
between the epithelial cells of the dental lamina andmesenchymal
cells contribute to the formation of pulp. Initially, these cells do
not appear to be functional, but later, they can constitute a deposit
for the renewal of apoptotic odontoblasts, becoming prepolarized
osteoblasts (Mao and Prockop, 2012). Dentin is formed by two
simultaneous processes, the formation of a collagenmatrix, which
is associated with soluble and insoluble signaling molecules that
stimulate odontogenesis (Chun et al., 2011), and the formation of
mineral crystals in this matrix. These processes are orchestrated
mainly by Ca2+ where they interact with ATPase, Na+, calcium
channels, and intercellular binding proteins. This specialized
tissue has specific functions such as root formation and the
formation of new dentin throughout life, this is a physiological
process known as secondary dentin formation; meanwhile, the
repair induced by environmental stimulus generating an interface
between pulp and damaged dentin (Couve et al., 2014) or
restoration (Sloan and Waddington, 2009) is known as tertiary
dentin. The HG used for dentin are summarized below.

Alginate Hydrogels
Alginate HG have been applied for wound healing, as they can
structurally emulate ECM and can be combined with various
drugs or molecules for sustained release (Lee and Mooney, 2012).
Currently, printable alginate HG combined with dentin matrix
have been designed, showing that this biomaterial increases cell
viability, due to their ability to retain soluble dentin molecules
within itself, improving their regeneration capacity (Athirasala
et al., 2018). Besides, when is combined with GelMa (known as
micropatterned HG) induces a synergistic effect, increasing the
odontogenic potential of stem cells from apical papilla (SCAPs)
in vitro, increasing alkaline phosphatase (ALP) expression in
stamped substrates within 7 days of culture (Ha et al., 2020).
Alternatively, the effect of the alginate HG loaded with TGF-β1
on root discs shows a sustained release of this growth factor,
increases dentin matrix deposition, and induces odontoblast cell
differentiation with subsequent secretion of tubular dentin matrix
on the cut surface (Dobie et al., 2002).

Chitosan-Based Hydrogel
CsHG coupled with HA and β-GP induces a high ALP expression
and a positive regulation in the expression of Runx-2, type I
collagen (COL1), and osteocalcin (OCN) in DPSCs (Chen et al.,
2016). Also, the effects of the CsHG/β-GP as a sustained release
system for VEGF in DPSCs has been evaluated, demonstrating
that this biomaterial enables adhesion, cell proliferation, and
odontogenic differentiation with high expression of ALP,
RUNX-2, OCN, and osterix (OSX) after 7 and 14 days,
allowing the formation of mineralized nodules in vitro (Wu
et al., 2019).

In the case of ChHG supplemented with enamel matrix
derivatives (EMD), it promotes the odontogenic differentiation
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of DPSCs, showing a porous and well-interconnected structure,
allowing proliferation, odontogenic differentiation of DPSCs and
the expression of DSPP, DMP-1, and osteopontin (OPN) (Park
et al., 2013). In vivo studies using a porous material loaded with
microspheres of ChHG with TGF-β1, a sustained release over
7 days of more than 40% was shown. After days of stimulation,
reparative dentin was formed, resulting in 3 times thicker dentin
than the Dycal group and 6 times thicker than ChHG without
TGF-β1(137).

Extracellular Matrix-Based Hydrogel
The ECM provides physical scaffolding to cells and structural
support to tissues, offering specific signals that are needed for
regeneration and homeostasis, through its proteins,
proteoglycans, and anchor sites (Hussey et al., 2018). ECM
allows the release of cytokines and signaling molecules that
induce cell activation and differentiation (Johnson et al.,
2019). EMC-based HG are 3D networks capable of absorbing
large amounts of water or physiological fluids from the
implantation site (Rosales and Anseth, 2016). In vitro studies
have shown odontogenic differentiation of DPSCs in HG
scaffolds derived from decellularized bone ECM (bECM) or
COL1, demonstrating that the levels of mRNA expression of
DSPP, DMP-1, and matrix extracellular phosphoglycoprotein
(MEPE) increases significantly in cells grown in bEMC vs
those grown in COL1 scaffolds. In addition, increased mineral
deposition has been observed in bECM HG scaffolds (Paduano
et al., 2016).

Peptide Hydrogel
Peptides are short amino acid chains that can be used in
biomaterials without the need to replicate the entire natural
sequence. In this regard, the supramolecular self-assembled
and patented HG, Puramatrix™, has been used for in vivo
research, injected into the human root canals in the back of
immunodeficient mice (CB-17 SCID), containing human SHED
(stem human exfoliated deciduous teeth), resulting in
differentiation to odontoblasts that express DSPP, DMP-1, and
MEPE, after 21 days of interaction, allowing the formation of new
tubular dentin (Rosa et al., 2013). Additionally, conjugates with
TGF-β1, FGF2, VEGF in DPSCs have also been used, showing not
only dentin reparation after 6 weeks, but also vascularized and
soft connective tissue like dental pulp within the dentin cylinder.
Dental Sialoprotein (DSP) was used to detect odontoblastic-like
cells at the dentin interface, confirming cell differentiation (Galler
et al., 2012).

Collagen-Based Hydrogel
Collagen is the most abundant protein within the ECM (Ricard-
Blum, 2011). Collagen-based HG have been used as
immunomodulators, drug carriers, healing agents, chelators,
and in tissue regeneration (Wei et al., 2019). This type of HG
can promote adhesion, proliferation, and differentiation in
cardiac, corneal epithelial, endothelial, liver, bone, and
mesenchymal stem cells (MSCs) (Agmon and Christman,
2016) and have been studied in a Yucatecan mini-porcine
model, where the porcine DPSCs were transferred through the

collagen HG directly to the root canal, previously prepared
through pulpectomy, then, after 4 months, the analysis showed
that vascularized soft tissue was recovered, creating a structure
similar to a dentin bridge covering it. In addition,
immunohistochemical analysis detected the expression of
nestin, DSPP, DMP-1 and bone sialoprotein in cells similar to
odontoblasts (Zhu et al., 2018).

Hydrogels-Bassed Scaffolds for Enamel
Regeneration
HG-based scaffolds, provide the essential support needed during
tissue regeneration (Abbass et al., 2020) and can be used for
repairing enamel. This tissue forms the outermost covering of
teeth, being a nanostructuredmineralized tissue. The ameloblasts,
epithelial cells derived from the enamel organ of the developing
tooth, are the cells involved in the production of enamel
(Chatzistavrou et al., 2012) in a highly regulated process
known as amelogenesis, in which proteins are secreted into
the extracellular space to then initiate biomineralization
(Roveri and Iafisco, 2010). Amelogenin (AMEL) is the most
abundant protein, acting as master control of the orientation
and elongation growth of enamel rods during the mineralization
process. Then, is ameloblastin (AMBN) as the second most
abundant non-amelogenin enamel-specific glycoprotein, acting
as a cell adhesion molecule for ameloblasts (Moradian-Oldak,
2009). Lastly, enamelin and tuftelin proteins (found in lower
proportions) that control apatite nucleation and growth in
conjunction with amelogenin. AMEL and other enamel
proteins are eventually degraded by proteinases such as the
matrix metalloproteinase 20 (MMP-20) and kallikrein 4
(KLK4) at different stages of amelogenesis (Moradian-Oldak,
2009; Moradian-Oldak, 2012). At the end of the process, the
enamel is 96% crystalline calcium phosphate in form of HA and
4% organic components (products of degradation of enamel
proteins) and water (Baldassarri et al., 2008).

Since mature enamel does not contain cells, it cannot be
remodeled by itself. Therefore, biomaterials mimicking enamel
are now under revision to regenerate decayed or traumatized
dental organs (Mann, 1997). Nevertheless, HA crystals isolated
from mature enamel are longer and different in shape from those
synthetic. In this regard, the synthesis of enamel-like
hydroxyapatite nanorods has been only possible by applying
extreme laboratory conditions such as high temperature, high
pressure, and extremely acidic pH (Chen et al., 2005; Yamagishi
et al., 2005). Moreover, replacing enamel is difficult since none of
the materials can mimic all its physical, mechanical, and aesthetic
properties (Moradian-Oldak, 2012). Thus, the development of
improved biomaterials that could be used in physiological
conditions is needed. Here we present the emerging
biomaterials in HG presentation that are used for enamel
regeneration.

Chitosan and Amelogenin-Based Hydrogel
In an exploratory study, a biocompatible recombinant amelogenin
(rP172)HGwas prepared to release phosphate, Ca2+, and F−. ThisHG
applied to artificial enamel caries lesions, displayed remineralization
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activity on early artificial caries in a cyclic treatment model and
multispecies oral biofilm model. Repetitive application of the HG
significantly improved enamel hardness continuously over time (Fan
et al., 2012).

Ibrahim, et al., have used CsHG in enamel slices etched with
37% phosphoric acid. After application, morphological changes
on the enamel surface were observed by scanning electron
microscopy showing the regeneration of an enamel-like layer
in the treated samples with a difference between the Ca/P ratios.
They showed that Cs provided a substrate to immobilize the
nano-building units acting as a template for the structured
assembly of the regenerated enamel layer (Ibrahim et al., 2018).

The amelogenin-CsHG (CS-AMEL) is biocompatible,
biodegradable, and has antimicrobial and adhesion properties
(Ruan et al., 2013; Ruan and Moradian-Oldak, 2014). It has been
used for biomimetic repair of human enamel with erosive or carious
lesions in two pH-cycling systems. CS-AMEL HG showed
effectiveness at pH 4.6 (similar to the pH of the mouth after food
consumption) and pH 6.5 (average pH during the nighttime). This
HG forms a new organized layer of enamel-like crystals on the surface
of erosive lesions and could repair artificial incipient caries by
regrowing oriented crystals and reducing the depth of the lesions
by up to 50–70% under pH-cycling conditions (Ruan et al., 2016).

Cs with leucine-rich amelogenin peptide (Ch-LRAP) HG system
acts as an organic template on acid-treated enamel surfaces and allows
faster mineral induction and results in organized crystal growth of
hydroxyapatite. The demineralized tooth slices treated with a single
application of Ch-LRAP HG for 3 days showed a dense mineralized
layer comprising very well-organized enamel-like apatite crystals with
a continuous growth at the interface between the repaired layer and
natural enamel. There was an improvement in the surface hardness
after treatment of the demineralized sample with almost 87% recovery
of the hardness value (Mukherjee et al., 2016).

Agarose-Based Hydrogel
An HG biomimetic mineralization model consisting of an enamel
slice, CaCl2 agarose HG, ion-free agarose HG, and a phosphate
solution was designed to regenerate enamel prism-like crystals. The
CaCl2 agaroseHG regulated the pattern, size, andmineral phase of the
growing crystals through cooperative interactions with calcium,
phosphate, and fluoride ions. The regenerated apatite crystals were
found to be highly oriented along the c-axis with good crystallinity
(Cao et al., 2014a, 2014b). Agarose HG has been also combined with
the enamel matrix derivative (EMD) and applied to demineralized
enamel, showing enamel prism-like crystals with hexagonal structures
denser, thicker, and more orderly packed than the crystals formed
without EMD (being calcium, phosphorus, and fluorine the main
elements found in their composition), confirming that they were
fluorinated hydroxyapatite.Moreover, the degree of crystallinity of the
hexagonal crystals formed is improved in the presence of EMD.
Nevertheless, the degree of structural perfection in the regenerated
enamel prism-like tissue without EMD was higher than that with
EMD (Cao et al., 2014a, 2014b).

Peptide-Based Hydrogel
The self-assembled peptide amphiphile (PA), containing the peptide
motif Arg-Gly-Asp, or “RGD” (BRGD-PA), were used in ameloblast-

like cells (line LS8) and primary enamel organ epithelial (EOE). Cells
were culturedwithin PAHG, and the PAwas injected into the enamel
organ epithelia of mouse embryonic incisors. In vitro, LS8 cells and
primary EOE cells responded to the BRGD-PA nanostructures with
enhanced proliferation and higher amelogenin, ameloblastin, and
integrin expression levels. In the organ culture model, the
site of BRGD-PA injection showed EOE cell proliferation with
differentiation into ameloblasts, expressing enamel-specific
proteins such as AMEL and new discovered proteins
involved such as thrombospondin 2 (TSP2). Ultrastructural
analysis showed the nanofibers within the forming ECM, in
contact with the EOE cells engaged in enamel formation and
regeneration (Galler et al., 2011b).

HYDROGELS FOR PERIODONTAL
REGENERATION

HG can be easily administered into irregular shapes of tissue
defects as those caused by periodontal disease (Li and Guan, 2011;
Shi et al., 2017; Xu et al., 2019). Periodontal disease is a prevalent
infectious disease worldwide, that causes the damage of
periodontal support tissues, which can eventually lead to tooth
loss. Periodontal treatments aim to first control the infections and
then reconstruct the architecture and function of periodontal
tissues including cementum, periodontal ligament (PDL), and
alveolar bone (Liu et al., 2019). Nevertheless, clinical periodontal
therapy fails in regenerating the lost periodontal tissues, thus
alternative treatments are needed (Sowmya et al., 2017a).

The engineering of periodontal tissues is a challenging approach
given the complex hierarchical architecture comprising of a soft tissue
interspersed between two distinct hard-tissue structures (Carranza
et al., 2006). The attempts for simultaneous regeneration of the lost
tooth-supporting structures are ultimately dependent on the interplay
among scaffold, cells, and bioactive signals (Sowmya et al., 2017b)
(Figure 2). Another limiting factor is the stiffness of scaffolds since
they may lead to poor adaptation of the construct on the root surface
(Ivanovski et al., 2014). Hence, HG can be used as an alternative, as
they are a widely employed carrier in drug-controlled release, and
possesses distinctive qualities, such as easy preparation, low cost, low
toxicity and eases of use (Ahadian et al., 2015; Merino et al., 2015)
(Table 2).

Hydrogels-Bassed Scaffolds for
Periodontal Ligament Regeneration
Currently, various materials have been used to regenerate the
periodontal ligament (Tomokiyo et al., 2019), among them, are
fibrin, transglutaminase gelatin, alginate, Cs, chitin-HyA, chitin-
PGLA, peptides, and synthetic ECM. The PDL is conformed of
fibers arranged in different spatial directions. PDL allows
anchoring, provides firmness and cushioning capacity, and is
located in the space between the dental organ and alveolar bone
(Mehrotra and Singh, 2019). It is a specialized connective tissue,
mainly composed of extrinsic collagen fibers known as Sharpey´s
fibers, mesenchymal cells, undifferentiated fibroblasts, as well as
by the vasculature of the dentinal arteries, which allows rapid
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healing and remodeling (Yamamoto et al., 2016). Chronic
periodontitis and aggressive periodontitis cause loss of
function of PDL and later loss of support of the dental organ,
ending in their premature loss. The HG used for periodontal
ligament regeneration are presented below.

Transglutaminase Gelatin-Based Hydrogel (TG-Gels)
High rigidity matrix-based materials such as TG-gels can
allow osteogenic differentiation in vitro. New findings
demonstrate macrophage modulation and stem cell
recruitment in highly rigid HG for regeneration of the
periodontal complex, where macrophages tend to undergo
M1 polarization. Furthermore, when they were prepared in
3D and combined with IL-4 or stromal cell-derived factor 1

(SDF1), they repaired periodontal defects 4 weeks after
surgery, allowing regeneration of hybrid tissue composed
of bone, periodontal ligament, and cementum (He et al.,
2019).

Chitosan Hydrogels
CsHG have been studied for regeneration of the periodontal
complex. In vivo, CsHG with PDL cells transplanted in rat
intraosseous periodontal defects is highly biocompatible and
biodegradable. Histological analysis showed that the CsHG is
degraded after 4 weeks of implantation and instead a cell
complex, cement, PDL, and new bone formation were formed
at the margin of the defect without any adverse reaction in the
surrounding tissue (Park et al., 2003).

FIGURE 2 | The complete regeneration of the periodontium is not possible yet given the complex characteristics of the tissues. (A)HG are a promising alternative to
restore the structure and function of the periodontal complex. (B)HG in periodontal cells can induce differentiation, proliferation, chemotaxis, and angiogenesis, enabling
the formation of new tissue. Besides some HG in periodontium show anti-inflammatory effect.
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TABLE 2 | Hydrogel-based scaffolds for periodontal tissue regeneration.

PERIODONTAL LIGAMENT

Hydrogel type Type of study Effect Reference

Chitin-hyaluronic (The CS-HA hybrid) In vitro. Modified hyaluronic acid (HA) and chitosan
(CS) were employed to create a hybrid CS-HA
hydrogel scaffold for periodontal regeneration. for
cell culture was tested using NIH3T3 and MG63
cell lines.

The Alamar Blue test showed increased
cellular viability and high CD44 expression,
suggesting that the cells had higher migration
when seeded onto the CS-AH scaffolds.

Miranda et al.
(2016)

Fibrin-based In vitro/In vivo. In vitro studies, a PEGylated fibrin
hydrogel was combined with DPSCs. evaluated
their cell proliferation, cell morphology, matrix
degradation, collagen production and mineral
deposition. In vivo study transplanted PEGylated
fibrin constructs into dentin discs in
immunosuppressed mice and examined for new
tissue formation.

In vitro the cells were able to proliferate within
PEGylated fibrin. In addition, the histological
analysis revealed fibrin degradation and
production of a collagen matrix. In vivo
transplantation produced vascularized soft
connective tissue.

Galler et al.
(2011b)

Transglutaminase gelatin (TG gels) In vitro/In vivo. TG gels containing cytokines and
/or cells, for polarization of murine Mφs. in a critical
periodontal defect in rats.

The presence of IL-4 could induce Mφs
towards an anti-inflammatory M2 phenotype,
which could promote the osteogenesis of
BMSC In vitro. In vivo TG gel periodontal
regeneration was significantly improved,
allowing regeneration of hybrid tissue
composed of bone, periodontal ligament,
and cement.

He et al. (2019)

Alginate/Hyaluronic Acid In vitro/In vivo. Hyaluronic acid (based stem cell
delivery system loaded with TGF-β1 ligand, which
encapsulates PDLSCs; and investigated the
chondrogenic differentiation of cells encapsulated
in alginate /HA hydrogel microspheres.

The results showed that PDLSC in contact
with the hydrogel high levels of expression of
Col II, Aggrecan and Sox-9 genes related to
chondrogenesis. In addition, significant high
expression of Col II was verified in PDLSC
implanted subcutaneously in nude mice after
8 weeks.

Ansari et al. (2017)

Chitosan In vivo. Periodontal tissue regeneration using
enzymatically solidified chitosan hydrogels with or
without cell loading.

In terms of periodontal regeneration, alveolar
bone height, alveolar bone area, and
epithelial growth, both CHIT and CHIT+Cell
hydrogels, showed a significant increase in
functional ligament length.

Park et al. (2003)

Chitosan nanoparticles and PLGA (CS-PLGA)
with recombinant human FGF-2

In vivo. The evaluation of this scaffold was carried
out in a periodontal defect model in rabbit.

Demonstrated complete regeneration of
hybrid periodontics tissues.

Sowmya et al.
(2017b)

Synthetic extracellular matrix In vivo. Periodontal defects were induced at six
sites in eight miniature pigs in the premolar/molar
area (−4 weeks).

Demonstrating formation of Sharpey´s fibers
and hybrid tissue in the area of the
periodontal.

Fawzy El-Sayed
et al. (2012)

In vivo. Periodontal defects were induced at four
sites in eight miniature pigs in the premolar/molar
area (−4 weeks).

G-MSCs in conjunction with IL-1ra-loaded
HA-sECM show a significant periodontal
regenerative potential.

Fawzy El Sayed
et al. (2015)

(Continued on following page)
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TABLE 2 | (Continued) Hydrogel-based scaffolds for periodontal tissue regeneration.

ALVEOLAR BONE

Hydrogel type Type of study Effect Reference

Collagen with bone morphogenetic protein 2
(BMP-2) and vascular endothelial growth factor
(VEGF)

In Vivo The synergistic effect of VEGF and BMP-2
on maxillary alveolar bone regeneration was
evaluated in a canine model by microcomputed
tomography and histological staining.

Stimulates early bone formation in alveolar
defects. However, the effective concentration
of BMP-2 and VEGF to add to the scaffold is
unknown.

Kim et al. (2016)

The polyethylene glycol (PEG) with BMP-2 In Vivo. 48 implants were partially placed in adult
mini-pigs. At 9 weeks, soft tissue healing was
assessed and the extent of the new vertical bone
was assessed with microCT and
histomorphometry.

Induces an increase in the height and volume
of the alveolar bone on a dental implant.

Wen et al. (2017)

HyA with bone morphogenetic protein 7 (BMP-7) In Vitro, In Vivo. HA hydrogels were prepared with
human OB ± BMP-7. Cell viability, osteogenic
gene expression, mineralized tissue formation and
BMP-7 release in vitro were evaluated. . In an in
vivo model, subcutaneous ectopic mineralized
tissue formation was assessed by μ-CT and
histology

Demonstrated formation of mineralized
collagen matrix activates formation of
vascularized bone-like tissue, providing a
favorable environment for bone formation.

Hamlet et al.
(2017)

Poly (lactic-co-glycolic acid) (PLGA) with BMP-2 In Vivo. 4 beagle dogs (13–15 kg) were
usedSequential fluorescent labeling and
histological analysis were performed to assess
new bone formation and osseointegration in the
defect area.

Improves bone formation around
osseointegration implants.

Jo et al. (2015)

Gelatin with BMP-2 and OP3-4 In Vivo.OP3-4 was injected subperiosistically with
BMP-2 in the right maxillary diastema. The mice
were sacrificed 28 days later. Bone formation was
analyzed for radiopaque area and bone mineral
content and histological analysis based on
fluorescence.

Induces bone formation, reducing
inflammation caused by BMP-2.

Uehara et al.
(2016)

PLGA with BMP-2, hydroxyapatite and tricalcium
phosphate

In Vivo. Gel /HA /β-TCP compounds alone,
infused with BMP-2 solution (BMPi) or
microspheres (BMPm), were placed in rat jaws
using a mini titanium implant for 4 weeks, efficacy
was assessed by micro-computed tomography,
bone fluorochrome and histology

Showed osteogenic potential and increased
supraalveolar crest bone.

Chang et al. (2017)

Chitosan with biphasic calcium phosphate. In Vitro. Osteoblast proliferation was evaluated,
evaluated by scanning electron microscopy
analysis. cell studies were performed with human
osteoblasts observing expression of alkaline
phosphatase activity

Promotes high proliferation and adhesion of
osteoblastic cells and increases alkaline
phosphatase activity

Iviglia et al. (2016)

Chitosan with Quitinpoli PLGA /nano bioactive
glass-ceramic (nBGC) /cementum protein 1,
chitin-PLGA /fibroblast growth factor 2

In Vivo. Cytocompatibility and cementum, fibrogenic
and osteogenic differentiation of stem cells from
human dental follicle were evaluated. In vivo,
histological and immunohistochemical
microcomputed tomography analysis was
performed.

Stimulates alveolar and periodontal
regeneration.

Sowmya et al.
(2017a)

Chitosan with sodium glycerophosphate b
(b-GP), aspirin, and erythropoietin.

In Vivo. Aspirin and erythropoietin (EPO) release
was evaluated continuously, as well as
immunohistochemical staining and micro-CT
analysis and histological.

Effective to control inflammation, improves
alveolar regeneration.

Xu et al. (2019)

PEG with osteogenic protein (OP-1) In Vivo. Bone defects were created in jaws of
minipigs. Samples were processed for histology
and histomorphometry 3 weeks after
implantation.

High concentrations, this protein induces
faster bone maturation.

Catros et al. (2015)

PEG with growth factors platelet-derived growth
factor-BB (PDGF-BB)

In Vivo. Four mandibular alveolar ridge defects
were created in dogs. After 8 weeks, titanium
dental implants were placed. After 8 weeks of, the
animals were sacrificed and histomorphometric
analysis of the alveolar ridge was performed.

Promotes cell proliferation, angiogenesis and
chemotaxis in osteogenic processes.

Vierra et al. (2016)

Gelatin with transforming growth factor (TGF-b1)
and PDGF-BB,

In Vivo. Regeneration of periodontal tissue was
evaluated after the controlled release of growth
factors in PRP. DNA, mitochondrial activity and
ALP activity were evaluated. and by ELISA release
of TGF-β1. and MTT assay

Promotes cellular activity by increasing
osteogenesis.

Nakajima et al.
(2015)

(Continued on following page)
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TABLE 2 | (Continued) Hydrogel-based scaffolds for periodontal tissue regeneration.

GelMA with encapsulated human periodontal
ligament stem cells hPDLSCs

In Vitro, In Vivo. The microstructure of the GelMA
hydrogels was examined. Critical alveolar defects
were performed in vivo in rats, and the evaluation of
new bone formation was observed by Micro-CT.

Stimulates proliferation, migration and
osteogenic differentiation. efficient for alveolar
regeneration.

Pan et al. (2019b)

Octapeptide of phenylalanine, glutamic acid, and
lysine

In Vitro The ability to host humanmesenchymal stem
cells in three dimensions and induce their osteogenic
differentiation was evaluated. Bone protein synthesis,
including Col-1, osteocalcin and alkaline
phosphatase, and mineralization were evaluated

Showed viability, proliferation and
differentiation of human mesenchymal stem
cells to osteoblasts, synthesizing bone
proteins such as collagen-1 (Col-1),
osteocalcin and ALP.

Castillo Diaz et al.
(2016)

Biphasic Calcium Phosphate Hydroxypropyl
Methyl Cellulose HG (Si-HPMC /BCP)

In Vivo.Efficacy for the treatment of periodontal
defects (canine fenestration and premolar
furcation) in canine models. bone formation was
evaluated in the furcation mode

At 3 months, bone formation was observed.
Si-HPMC hydrogel improves intergranular
cohesion and acts as a barrier.

Struillou et al.
(2011)

The Polyvinyl alcohol (PVA) In Vitro Tensile tests, attenuated total reflectance-
Fourier transform infrared spectroscopy (ATR-
FTIR) and X-ray diffraction (XRD) were performed.

These data suggest bioactivity of the
hydrogel is associated with the surface
distribution of hydrophilic/hydrophobic
components. Hydrogels can have potential
applications in regeneration.

Tang et al. (2015)

CEMENTUM

Hydrogel type Type of study Effect Reference

Chitosan (Cs)Hydrogels In vivo Chitosan hydrogels were prepared and
transplanted into rat intraosseous periodontal
defects. After 4 weeks, the jaws were removed,
for histological, histomorphometric, and
immunohistochemical evaluations.

It was observed to degrade after 4 weeks of
implantation, with no adverse reaction.
Stimulate the formation of cellular cement in
the defect.

Park et al. (2003)

Chitosan (Cs) /Collagen (CS)Hydrogels In vivo Intraosseous defects were created in the
maxillary and mandibular first and third premolars.
and a histological examination was performed.

Stimulates a significant amount of new
cement along the notch and root surface to
the level of the junctional epithelium.

Park et al. (2003)

Chitosan (Cs)/gelatin/glycerolphosphate(GP)
Hydrogels

In vivo A chitosan/gelatin/glycerol phosphate
hydrogel was evaluated for transplanted
stem cells. In animal models, bone defects
were performed in maxillary molars. I
evaluate the new regeneration of PDL (shown
by Masson’s trichrome staining and a
qualification assay).

Increases cementum formation, due to
increased expression of CAP in vitro.
Furthermore, in vivo it showed cementum
formation and decreased inflammation
progress.

Chien et al. (2018)

Chitosan (Cs)-PA-βglycerolphosphate βGP In vitro/in vivo. Physicochemical properties and
in vitro biocompatibility were evaluated. and its
morphology with scanning electron microscopy
and in vivo study in dog class III furcation defects

Short gel time, higher viscosity, higher water
absorption, proper degradation time, porous
structure and no cytotoxicity. In addition, it
promoted newly formed cement in class III
furcation defects in dogs.

Zang et al. (2014)

Collagen (CS) In vivo.Periodontal defects were created. the
hydrogel was implanted in each defect. The
percentage of length of new bone and cement
was evaluated. In vivo. Class II furcation defects
were surgically created. the defect was filled
with the hydrogel. Histometric parameters were
evaluated 2 and 4 weeks after surgery

The hydrogel does not stimulate ankylosis
and the newly formed periodontal ligament
showed normal morphology, demonstrating
regeneration of the periodontium.

Miyaji et al. (2007),
Kosen et al. (2012)

Collagen (CS)/fibroblast growth factor2(FGF2) In vivo. The collagen was injected into a sponge.
Subsequently, the hydrogel with FGF2 was
implanted in class II furcation defects in dogs.
Histometric parameters were evaluated at
10 days and 4 weeks after surgery

Periodontal junction was repaired, with
cement-like tissue, similar to the periodontal
ligament, indicating that FGF2 guided the
self-assembly and restored the function of
the periodontal organs.

Momose et al.
(2016a, 2016b)

Chitin-PLGA-nBGC-CEMP1- fibroblast growth
factor2(FBF2) RPR

In Vivo. Cytocompatibility and cementum,
fibrogenic and osteogenic differentiation of stem
cells from human dental follicle were evaluated. In
vivo, histological and immunohistochemical
microcomputed tomography analysis was
performed.

Stimulates cementum differentiation of hDFC.
In vivo, I encourage the formation of new
cement.

Sowmya et al.
(2017a)

CPC-BMP2-PGA-FGF2 In vivo. Three Macaca fascicularis were used.
Periodontal defects in the mandible were created
After 3 months, tissue regeneration was assessed
by histomorphometry and radiographic
measurements.

Showed descending epithelial growth, while
cementum and ligament regenerated
significantly.

Wang et al. (2019)

(Continued on following page)
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Chitin-Based Hydrogels
Chitin-derived biomaterials can mimic the structure of the ECM,
providing excellent scaffolding for cells, and creating a favorable
immune environment for accurate periodontal healing and
regeneration (Xie et al., 2020). In this regard, the chitin-HyA
hybrid HG generates a perfect scaffold material that can be used
to support osteoblasts, gingival fibroblasts, cementoblasts, and
periodontal fibroblast cells (Miranda et al., 2016; Orellana et al.,
2018). Also, HG composed of chitin nanoparticles and PLGA can
benefit tissue regeneration when is functionalized with recombinant
human FGF-2, since it can achieve total closure of the periodontal
defect in a rabbit model, where histologically periodontal ligament-
like characteristics can be seen (Sowmya et al., 2017b).

Synthetic Extracellular Matrix Hydrogels
These new generation HG have been designed from synthetic HyA
scaffolds (Espandar et al., 2012) to improve the results of
periodontal treatment. These HG can be modified by adding
IL1 receptor antagonist (IL-1ra) that binds with high affinity to
cell surface IL-1 receptors (Gorth et al., 2012). As it is known that in
periodontitis there is an increase in IL-1 (Suwatanapongched et al.,
2000), a favorable effect in periodontal wound healing is seen when
the HG containing IL-1ra is administered (Zhang et al., 2004). In
vivo studies confirm the periodontal regenerative potential of this
HG with gingival margin stem cells (GMSCs) demonstrating the
formation of Sharpey´s fibers and hybrid tissue in the area of the
periodontal defect (Fawzy El Sayed et al., 2015).

Hydrogels-Bassed Scaffolds for Alveolar
Bone Regeneration
Tissue engineering in alveolar bone regeneration has developed
new alternatives for the treatment of bone defects. The alveolar
bone is essential to guarantee the success of dental organ

preservation, and also if the use of dental implants is required
(Warnke et al., 2004). The close relationship between alveolar
bone, periodontal ligament, and cement, hinders successful
regeneration. To solve this problem, It is necessary to develop
HG in combination with biomolecules (Lee and Shin, 2007).
Alveolar scaffolds must be osteoinductive or osteoconductive,
have mechanical resistance, adequate degradation, avoid the
collapse of the area to be regenerated, good flexibility, adapt to
different morphologies, and be easily managed. However, until
now, biomaterials with all of these characteristics are not available
(Kaigler et al., 2011). Here we summarize the HG used for
alveolar bone regeneration.

Hydrogels Biofunctionalized With BMPs
HG with different BMPs have been used, due to their
commercial availability and their easy incorporation into
different HG. For instance, the collagen HG with BMP-2 and
VEGF, in vivo has shown a favorable early bone formation in
dogs with alveolar defects. However, the effective concentration
of BMP-2 and VEGF to add to the scaffold is unknown, and
long-term studies are required. (Kim et al., 2016). The
polyethylene glycol (PEG) HG with BMP-2 in vivo induces
an increase of the height and volume of the alveolar and cortical
bone over an implant placed in the jaw of pigs, indicating that it
could enhance the retention of the implants when the alveolar
crest is small. (Wen et al., 2017). In the case of HyA HG with
bone BMP-7, it has the capability of forming a mineralized
collagen matrix in vitro. Interestingly, in vivo, this HG can form
vascularized bone-like tissue after 4 weeks in a rat model, since it
provides a favorable environment for bone formation. (Hamlet
et al., 2017). The PLGA HG with BMP-2 has been used in beagle
dogs creating irregular bone defects around implants resulting
in the improvement of bone formation and osseointegration
when compared with control without BMP-2 (Jo et al., 2015).

TABLE 2 | (Continued) Hydrogel-based scaffolds for periodontal tissue regeneration.

GINGIVAL TISSUE

Hydrogel type Type of study Effect Reference

Hyaluronic acid In vivo. Conducted a randomized controlled
clinical pilot study. carried out the Evaluation of the
efficacy of a biogel based on hyaluronic acid on
periodontal clinical parameters.

HA esterified gel showed an effect in reducing
gingival inflammation when used as an
adjunct to mechanical plaque control at
home and could be used successfully to
improve periodontal clinical indices.

Pilloni et al. (2011)

In vivo. In a randomized study, 50 male subjects
with plaque-induced gingivitis. The clinical indices
(API, Turesky index, PBI) and the crevicular fluid
variables (peroxidase, lysozyme) were determined
at the beginning of the study and after 4, 7, 14 and
21 days.

The result was a significant decrease in the
activities of peroxidase and lysozyme after 7,
14 and 21 days.

Jentsch et al.
(2003)

In vivo. Hyaluronic acid was used to repair the
interdental papilla in the aesthetic zone.

HA gel as gingival filling material can be
considered as a treatment option for
augmenting interdental papilla in aesthetic
área.

(288)

In vivo. Effect of hyaluronan in 19 patients affected
with mild chronic periodontal disease, with
shallow pockets in at least two different
quadrants, comparing the material with normal
oral hygiene.

Subgingival placement of 0.2% HA gel along
with SRP provided a significant improvement
in gingival parameters.

(266)
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The Gelatin HG with BMP-2 and the osteoprotegerin mimic
peptide OP3-4 (YCEIEFCYLIR) was created to avoid the side
effects of BMPs, such as inflammation and carcinogenesis. This
combination in a murine model applied by subperiosteal
injection shows the induction of bone formation, reducing
inflammation caused by BMP-2 (Uehara et al., 2016). The
PLGA HG with BMP-2, hydroxyapatite and tricalcium
phosphate has been used in rats for supra-alveolar crest
augmentation treatment, showing osteogenic potential and
increasing supra-alveolar crest bone (Pilloni et al., 2011).

Chitosan Hydrogels
CsHG can be combined with biphasic calcium phosphate. The
incorporation of ceramic particles in this material makes it stable
at different pH and increases the elastic modulus and maximum
tensile strength. Besides, it promotes high proliferation,
osteoblastic cell adhesion and increases ALP activity (Iviglia
et al., 2016). Other additions that have been made to the
CsHG such as Quitinpoli PLGA/nano bioactive glass-ceramic
(nBGC)/CEMP-1, chitin-PLGA/FGF2 as PDL layer, and platelet-
rich plasma-derived growth factors and chitin-PLGA/nBGC.
This three-layer nanocomposite HG is cytocompatible and
favors osteogenic differentiation of stem cells from the human
dental follicle, and its content of growth factors helps the
formation of bone trabeculae, stimulating alveolar and
periodontal regeneration (Sowmya et al., 2017a). CsHG can be
used also with β-GP, aspirin, and erythropoietin. In vivo
experiments revealed that this HG is effective in controlling
inflammation, enhances alveolar regeneration, and could be
used in the future for clinical application (Xu et al., 2019).

Other Hydrogels
The PEG HG has been used in defects in the mandibular alveolar
ridge of dogs showing unpredictable bone formation and, in most
cases, a negative impact on alveolar regeneration (Vierra et al.,
2016). The PEG with osteogenic protein (OP-1) in a mini-pig
alveolar defects model shows that in high concentrations, this
protein induces faster bone maturation (Catros et al., 2015). In
the case of HG with growth factors such as platelet-derived
growth factor-BB (PDGF-BB), it promotes cell proliferation,
angiogenesis, and chemoattraction in osteogenic processes
(Pan et al., 2019a). Meanwhile, gelatin HG with TGF-β1 and
PDGF-BB promotes cellular activity by increasing osteogenesis
(Nakajima et al., 2015)

The GelMA HG with encapsulated human periodontal
ligament stem cells (PDLSCs) presents a highly porous and
interconnected network providing an optimal niche for
proliferation, migration, and osteogenic differentiation. In vivo,
performing alveolar bone defects in rats, the PDLSCs
encapsulated in GelMA HG show to be more efficient for
alveolar regeneration and it may represent a new strategy for
therapy of alveolar bone defects (Pan et al., 2019b).

The use of biodegradable HGwith octapeptide of phenylalanine,
glutamic acid, and lysine has shown the formation of an ideal
niche, apt for cell physiological functions. In vitro tests showed
viability, proliferation, and differentiation of human mesenchymal
stem cells to osteoblasts, synthesizing bone proteins such COL1,

OCN, and ALP. Furthermore, mineralization within the HG was
evident, showing potential to regenerate hard tissues such as
alveolar bone (Castillo Diaz et al., 2016).

Regarding Biphasic Calcium Phosphate Hydroxypropyl
Methyl Cellulose (Si-HPMC/BCP) HG, due to its BCP particle
components helps to osteoconduction process, while Si-HPMC
improves intergranular cohesion. This biomaterial is easy to use
and simplifies the filling process for bone lesions. However, more
research is needed to be used on alveolar defects. (Struillou et al.,
2011).

The PVA HG has chemical stability, biocompatibility and is
porous facilitating cell adhesion. In vitro tests showed excellent
biocompatibility, and in X-ray Diffraction tests, it was observed
that it has affinity to form HA. This HG may have potential
applications in alveolar bone regeneration, as it was also associated
with the surface distribution of hydrophilic/hydrophobic components
(Tang et al., 2015).

Hydrogels-Bassed Scaffolds for Dental
Cementum Regeneration
Cementum neoformation is esencial for periodontal regeneration.
Precementum formation starts following the fragmentation of
Hertwig’s root sheath, the matrix of proteins formed
subsequently provides an adequate attachment substrate to
support differentiation of cementoblasts from ectomesenchymal
progenitors of the dental follicle (Hammarström et al., 1996).
Cementum deposition continues with the apical development of
the root allowing the integration of Sharpey´s fibers collagen
bundles, into the newly generated cementum (Menicanin et al.,
2015). The formed tissue is a hard and avascular connective tissue
located on the dental root that emerges from the alveolar bone to
the dental organ. It has been described two types of cementum
depending on the content of inner cells: cellular and acellular (Veis,
2002). Dental cementum participates in key processes such as
maintaining stability and chewing charge distribution, thus, when
cementum is infected or suffers trauma, treatments require to
provide a disinfected root surface to promote the reinsertion of
collagen fibers and avoid the formation of pathological spaces that
would promote reinfection. Consequently, the success of
periodontal regenerative therapy relies on the health of the
dental cementum, its health, and its capacity to regenerate
(Grzesik and Narayanan, 2002).

Dental cementum is composed of 50% of organic matrix, of
which, 90% is COL1. Another cement-related collagen protein is
type III collagen, involved in the development, repair, and
regeneration of periodontal tissues (Alvarez-Pérez et al., 2006).
Besides, within its organic composition, there are two specific
proteins of this tissue 3-Hydroxyacyl coenzyme A dehydratase 1
(HACD1)/Cementum Attachment Protein (CAP) and CEMP-1.
HACD/CAP has been implicated in the nucleation, regulation,
and direction of hydroxyapatite crystal growth and regeneration
of critical bone defects in rat calvaria, meanwhile, CEMP-1 regulates
the activity of cementoblasts by inducing differentiation andmediates
in the mineralization process, migration, and proliferation of
gingival fibroblasts (Arzate et al., 1992; Bermúdez et al., 2015;
Villegas-Mercado et al., 2018); Furthermore, CEMP1 also
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promotes the nucleation of octacalcium phosphate crystals,
which is a mineral phase and a precursor of HA crystals
(Alvarez-Pérez et al., 2006). The other 50% are minerals,
mostly HA [Ca10 (PO4)6 (OH)2] (Nanci and Bosshardt,
2000). Here we show the HG able to sustain at the same
time biomineralization for cementum regeneration and
proliferation of cells for periodontal ligament formation.

Chitosan-Based Hydrogels
CsHG with or without fluorescently labeled PDL cells were
prepared and transplanted into rat intrabony periodontal
defects; untreated defects were used as empty controls. After
4 weeks the results showed that PDL cells remained viable upon
encapsulation within CsHG before transplantation but
histological analysis demonstrated that the CsHG were
degraded after 4 weeks without affection of the adjacent tissue.
Interestingly, CsHG without cell loading showed a newly formed
cellular cementum limited to the apical part of the defect (Yan
et al., 2015). In another study, one-wall intrabony defects of
beagle dogs were surgically created in the bilateral maxillary first
and third, and the mandibular second and fourth premolars and
treated with a Cs/collagen sponge, at 8 weeks after the operation,
a significant amount of new cementum formed along the notch
and root surface to the level of the junctional epithelium was
found (Park et al., 2003).

In 2018 Chien et al., applied an injectable and thermosensitive
Cs/gelatin/glycerol phosphate HG to enhance stem cell delivery
and engraftment. Synergistic effects of iPSCs and BMP-6
increased cementum formation which was confirmed by CAP
expression since it was significantly up-regulated in vitro. Besides,
iPSCs-BMP-6-HG in vivo showed the formation of cementum
and minimized the progress of inflammation in rats with
maxillary-molar defects. These findings suggest that this
combination can promote stem cell-derived graft engraftment
with an anti-inflammatory effect, which resulted in highly
possible periodontal regeneration (Chien et al., 2018).
Interestingly, a thermosensitive CsHG using autoclaved Cs
powder (121°C, 10 min) and β-GP (Cs-PA/GP) were compared
to the physicochemical properties and biocompatibility in vitro.
According to their results, the Cs-PA/GP HG had a shortened
gelation time, higher viscosity, increased water absorption,
appropriate degradation time, porous structure, and no
obvious cytotoxicity on human periodontal ligament cells.
Besides, the Cs-PA/GP HG promoted cell-like newly formed
cementum in dog class III furcation defects (Zang et al., 2014).

Collagen-Based Hydrogels
In 2017, Miyaji et al., studied collagen HG on periodontal wound
healing in beagles. Sixty-four periodontal dehiscence type defects
were created on the buccal roots of four beagles for collagen HG
implantation. After 8 weeks new cementumwas found in a higher
proportion when compared with the control group indicating
that periodontal regeneration was stimulated by collagen HG
implantation (Miyaji et al., 2007). Another study in surgical-
created defects was developed by Kosen et al., where collagen HG/
sponge scaffold was prepared by injecting collagen HG, cross-
linked to the ascorbate-copper ion system, and placed in class II

furcation defects in beagle dogs. At 2 weeks, the collagen HG/
sponge scaffold displayed high biocompatibility and
biodegradability with numerous infiltrating cells. In the
experimental group, reconstruction of alveolar bone and
cementum was frequently observed 4 weeks after surgery. The
study showed that cell-rich connective tissue had reformed along
the root surfaces after the application of HG. Also, the 4-week
specimens in the HG group showed no ankylosis, and the newly
formed periodontal ligament showed functional morphology,
demonstrated by the connection of newly formed cementum
to the alveolar bone with Sharpey´s fibers (Kosen et al., 2012)

Momose et al., evaluated the application of collagen HG
scaffold in combination with FGF2 in furcation defects in
beagle dogs. Collagen HG was associated with FGF2 and
injected into sponge-form collagen and then implanted into
class II furcation defects in dogs. This combination improved
cell and tissue growth where cells and blood vessel-like structures
were found on day 10. At 4 weeks, periodontal attachment,
consisting of cementum-like tissue, periodontal ligament-like
tissue, and Sharpey’s fibers, was repaired, indicating that
FGF2-loaded scaffold led to self-assembly and then re-
established the function of periodontal organs (Momose et al.,
2016a, 2016b).

Other Hydrogels
Sowmya et al., in 2017 used the strategy of a tri-layered
nanocomposite HGl scaffold that was developed by
assembling chitin PLGA/nano bioactive glass-ceramic
(nBGC)/CEMP-1 as the cementum layer, chitin–PLGA/FGF2
as the PDL layer, and chitin–PLGA/nBGC/platelet-rich plasma-
derived growth factors as the alveolar bone layer layers in the
order of periodontal tissue location, i.e., cementum, PDL, and
alveolar bone. The cementogenic differentiation of human
dental follicle stem cells on the tri-layered nanocomposite
HG scaffold with growth factors was comparable to the
cellular differentiation on the tri-layered nanocomposite HG
scaffold cultured in induction medium. In vivo, complete
healing with the formation of new cementum was more
pronounced in tri-layered nanocomposite HG scaffold with
growth factors in comparison to the other groups (Sowmya
et al., 2017a).

The calcium phosphate cement (CPC)/propylene glycol
alginate (PGA) with BMP-2 and fibroblast growth factor (FGF)-
2 gel (CPC/BMP+PGA/FGF) was studied in a periodontal defect
model inMacaca fascicularis where three-wall periodontal defects
were surgically created in the mandible. Results showed that
epithelial downgrowth, meanwhile cementum, and ligament
were regenerated significantly when compared to the control
group (Wang et al., 2019).

Hydrogels-Bassed Scaffolds for Gingival
Tissue Regeneration
The gingival tissue can be completely regenerated (Freedman,
2012). The gingival tissue is a fibromucous membrane that covers
the mandibular and maxillary bone, designed to withstand
constant trauma from chewing. Clinically it is divided into
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free, inserted, and papillary. According to its structure, it is made
up of stratified squamous epithelium, rich in keratinocytes. The
gingival epithelium is divided into oral epithelium, sulcus
epithelium, and junction epithelium (Andrian et al., 2006).
HG used for gingival tissue regeneration are presented below.

Hyaluronic Acid-Based Hydrogels
Various injuries can cause periodontal damage, in the clinical
area, several studies have been able to demonstrate the capacity of
new materials based on polysaccharides such as HyA since it is
known to be a powerful antioxidant, biocompatible, anti-
inflammatory, with viscoelastic and bacteriostatic properties.
The efficacy of topical application of HyA HG in the
treatment of gingivitis has been evaluated and it turned out to
be a potentially useful supplement in therapy against this disease
(Pistorius et al., 2005). The gel containing 0.2% hyaluronate has a
beneficial effect in the treatment of gingivitis, the result was a
significant decrease in the activities of peroxidase and lysozyme
after 7, 14, and 21 days (Jentsch et al., 2003), complemented with
scaling and root planing (SRP) in patients with chronic
periodontitis (Gontiya and Galgali, 2012).

In terms of better healing after nonsurgical therapy,
supplemental use of 0.8% hyaluronan HG after complete
mechanical debridement potentially has significant clinical
benefits (Bolt and Bhupinder, 2007). In the area of dental
esthetics, it has been used to repair the interdental papilla,
where it is infiltrated until extravasation, after 3 months of
follow-up, a completely healthy gum was observed and the
papilla was filled (Zatta da Silva et al., 2019).

CLINICAL IMPLICATIONS

Given that human dental tissues cannot be biologically repaired
once formed, strategies such as the use of cells and biomolecules
in 3D scaffolds for regeneration are required. Nonetheless, pulp
tissue vulnerability needs a different perspective, since it lacks
collateral circulation and requires the revascularization and
reinnervation of the new tissue (Bermúdez et al., 2021).
Therefore, the development of strategies with the potential for
clinical implementations is still a far task to achieve.

From a clinical viewpoint, HG combined or alone can enhance
remineralization or increase thickness and mechanical properties of
the regenerated enamel and dentin. Furthermore, HG present
outstanding chemical, mechanical and biological activities (Moussa
and Aparicio, 2019) such as the capacity of incorporating cells in their
structures and at the same time degrading themselves to let place to
new healthy tissue. Besides, they can retain high-water content which
enhances the transportation of cell nutrients and waste, and also are
elastic and flexible emulating the native ECM (Mantha et al., 2019).
Nevertheless, most of them remain under experimental investigation
on in vitro cell models and preclinical models and need to validate
their dose and efficiency to be used. Nowadays, only ChHG with
TGF-β1and Puramatrix™ have shown promising results in dental
tissues in vivo. ChHG with TGF-β1showed a sustained release over
7 days ofmore than 40% of the TGF-β1 in vivo, resulting in reparative
dentin formation (Li et al., 2014b). In the case of Puramatrix™, when

is injected into the human root canals in the back of immunodeficient
mice (CB-17 SCID), containing human SHED, induces the
differentiation to odontoblasts that express DSPP, DMP-1, and
MEPE, allowing the formation of new tubular dentin and when
conjugates with growth factors TGF-β1, FGF2, VEGF in DPSC,
vascularized and soft connective tissue similar to a dental pulp was
observed within the dentin cylinder after 6 weeks (Almeida et al.,
2018a). These results could, in the future, change the clinical approach,
avoiding the use of inert materials for treating dental tissues.

Concerning periodontal tissues, during in vitro or ex vivo tests,
normal conditions such as resistance of occlusal mechanical forces of
PDL, cementum, and alveolar bone cannot be completely achieved.
Due to their complex composition, HG should be capable to interact
with hard and soft tissues at the same time (Elango et al., 2020). Many
options have been studied in vitro with promising results that may
lead to preclinical studies (Nagy et al., 2018), but this closed
relationship hinders the use of HG in clinical studies. Thus, in vivo
models are mandatory for representing the occlusal state to support
the functional regeneration design (Bermúdez et al., 2021). Besides,
one of the biggest challenges is the reconstitution of the insertion
apparatus (Sharpey’s fiber connecting cementum and alveolar bone)
since its absence impacts negatively the capacity of the tooth to
support the occlusal forces (Liang et al., 2020).

Regarding HG used to promote bone, PDL, and cementum
healing and regeneration, most of them have only been
evaluated in vitro or in preclinical animal studies. Among
the HG reported for alveolar regeneration, the PEG HG with
BMP-2 (Wen et al., 2017) and PLGA HG with BMP-2 (Jo et al.,
2015) have proved their value to regenerate bone defects
around implants in animal models resulting in the
improvement of bone formation and osseointegration.
Another promising HG is the collagen HG/sponge achieving
the formation of bone, cementum, and periodontal ligament
with functional morphology (Kosen et al., 2012). Also, its
combination with FGF2 results in periodontal attachment,
consisting of cementum-like tissue, periodontal ligament-
like tissue (Momose et al., 2016a, 2016b).

In the case of gingival tissue wound healing stimulated by the
application of HG, it should benefit the clinical outcome of other
oral surgical procedures by guaranteeing that the tissue is sealed
off from the contaminated oral environment, conducting to
a more rapid connective tissue reorganization and causing a
faster gain in wound strength, reducing the potential for
scarring and scar tissue contraction, thus gingival restoration
and stability is crucial to obtain predictive results (Villa et al.,
1943). Fortunately, HG have proved their value in regenerating
soft tissues. For instance, the 0.2% hyaluronate HG decreases the
peroxidase and lysozyme activity (Jentsch et al., 2003), enhancing
wound healing after SRP in patients with chronic periodontitis
(Gontiya and Galgali, 2012). Besides, 0.8% hyaluronan HG (Bolt
and Bhupinder, 2007) has been used to repair the interdental
papilla with completely healthy gum and the papilla after
3 months (Zatta da Silva et al., 2019).

Finally, although the results obtained with HG are promising,
wemust not lose sight of the fact that oral tissues function unified,
and during their development, signal pathways can crosstalk and
participate in more than one tissue. Thus, the stimuli given by one
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HG can be useful for another closely related one (Bermúdez et al.,
2021). For instance, some promising HG alone or combined
might induce biomineralization in enamel, dentin, cementum,
and alveolar bone, and others might function for
neovascularization and neoformation of the dental pulp and
soft periodontal tissue. Despite this, more research is needed
to determine which combinations of biofunctionalizing
molecules, cells, and HG can improve clinical results.

CONCLUDING REMARKS

HG-based scaffolds used for oral tissue regeneration offer several
advantages including the capacity of incorporating cells in their
structures and at the same time degrading themselves to let place
to new healthy tissue. Besides, they can be injectable and retain
high water content which enhances the transportation of cell
nutrients and waste. They are elastic and flexible emulating the
native ECM. Additionally, HG can be combined with
biofunctionalizing molecules to induce cellular processes such

as chemotaxis, proliferation, differentiation, neovascularization,
and biomineralization.

Even though most of the HG are still under investigation,
some of them have been studied in vitro and in vivo with
promising results that may lead to preclinical studies. Besides,
there are HG that have shown their efficacy in healing gingival
tissue in patients, such as hyaluronan HG.

Finally, the use of HG could become a gold standard for
the treatment of damaged oral tissues by replacing the use of
inert materials that are currently highly used in dental
practice, if limitations for in vivo studies are exceeded
and well-designed clinical studies support their value to
be broadly used.
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