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Large segmental bone loss and bone resection due to trauma and/or the presence of
tumors and cysts often results in a delay in healing or non-union. Currently, the bone
autograft is the most frequently used strategy to manage large bone loss. Nevertheless,
autograft harvesting has limitations, namely sourcing of autograft material, the requirement
of an invasive procedure, and susceptibility to infection. These disadvantages can result in
complications and the development of a bone substitute materials offers a potential
alternative to overcome these shortcomings. Among the biomaterials under consideration
to date, beta-tricalcium phosphate (β-TCP) has emerged as a promising material for bone
regeneration applications due to its osteoconductivity and osteoinductivity properties as
well as its superior degradation in vivo.However, current evidence suggests the use β-TCP
can in fact delay bone healing and mechanisms for this observation are yet to be
comprehensively investigated. In this review, we introduce the broad application of
β-TCP in tissue engineering and discuss the different approaches that β-TCP scaffolds
are customized, including physical modification (e.g., pore size, porosity and roughness)
and the incorporation of metal ions, other materials (e.g., bioactive glass) and stem cells
(e.g., mesenchymal stem cells). 3D and 4D printed β-TCP-based scaffolds have also been
reviewed. We subsequently discuss how β-TCP can regulate osteogenic processes to aid
bone repair/healing, namely osteogenic differentiation of mesenchymal stem cells,
formation of blood vessels, release of angiogenic growth factors, and blood clot
formation. By way of this review, a deeper understanding of the basic mechanisms of
β-TCP for bone repair will be achieved which will aid in the optimization of strategies to
promote bone repair and regeneration.
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INTRODUCTION

Large bone loss as a result of trauma, tumor removal, infection,
and developmental congenital disorders, often leads to delayed
healing or non-union, and remains a critical challenge for
orthopedic surgeons. Until recently, the standard clinical
management to facilitate bone healing was the use of a bone
autograft (Zheng et al., 2018). Still, the drawbacks of this
technique, such as limited autogenous bone source and
potential complications necessitates other bone substitutes for
clinical use to be evaluated (Robering et al., 2020). The main
challenge for large bone defect repair and regeneration remains
the inadequate recruitment of mesenchymal stem cells (MSCs),
reduced vascularization, and decreased growth factors
stimulation within the scaffold construct to support cell
viability and tissue growth. Consequently, enhancing the
adhesion of MSCs, augmenting the release of growth factors,
and promoting angiogenic potential of biomaterial scaffolds after
implantation are pivotal for successful bone regeneration.

Beta-tricalcium phosphate (β-TCP) is a bioceramic material
favored by orthopedic surgeons for bone repair due to its
exceptional biocompatibility and bioactivity (Kang et al., 2020).
Application of β-TCP alone can significantly increase bone
regeneration in bone defect animal models compared with
nanostructured carbon implants and porous titanium (Gilev
et al., 2019) and studies suggest β-TCP can significantly enhance
bone regeneration compared with bone autografts (Pereira et al.,
2017). To create a favorable osteogenic environment, β-TCP
scaffolds have been modified in a number of ways to boost bone
healing, including modulating physical features (e.g., pore sizes,
porosity and surface roughness), combining with ionic
components, and the addition/delivery of growth factors.

However, conflicting results indicate the clinical use of β-TCP for
bone repair remains questionable in several specific experiment
models. For example, implantation of β-TCP into critical size
circumferential defects of sheep ilium demonstrated significantly
reduced new bone formation (1.1% ± 0.5) compared with control
(11% ± 2.9), suggesting β-TCP may contribute to delayed healing
(Choo et al., 2013). Furthermore, in a rat mandibular defect model, a
delay in early bone healing compared to control was observed when
β-TCP particles were applied locally (Wang et al., 2018a). One
possible explanation for a β-TCP-mediated delay in bone healing
could be the accelerated formation of fine fibers within blood clots as
a consequence of Ca2+ and PO4

3− ions released by β-TCP.
Consequently, this may hinder early recruitment of MSCs for
bone repair and regeneration.

These conflicting results surrounding β-TCP-mediated bone
healing therefore warrant further investigation and evaluation of
the clinical application of β-TCP for bone defect repair. It has
been demonstrated that Ca2+ released from β-TCP plays a crucial
role in the proliferation and differentiation of MSCs and
osteoblasts (Lei et al., 2018). Since the release of Ca2+ is
closely linked to the process of neovascularization in the
fracture site, and blood clot structure at the fracture site is
critical for bone healing, it is possible that Ca2+ released from
β-TCP affects blood clot structure thus delaying bone
regeneration. This review therefore focuses on the latest

developments in β-TCP materials, the impact of its features on
bone regeneration, and the role of β-TCP in blood clot formation
and the initial stage of bone healing.

THE INFLUENCE OF PHYSICAL
PROPERTIES OF BETA-TRICALCIUM
PHOSPHATE ON OSTEOGENESIS

The physical characteristics of implanted biomaterials can affect the
proliferation rate of osteoblasts and has important effects on cytokine
gene expression (Barbeck et al., 2021). It has been established that the
porous structure of calcium phosphate material can significantly
influence bone regeneration (Xie et al., 2016; Bastami et al., 2017;
Seong et al., 2020; Zamani et al., 2021). The porous surface of bone
materials enhances the mechanical interlocking between the bone
substitute and the surrounding bone tissues, providing mechanical
stability to the bone-material interface (Meka et al., 2019; Roopavath
et al., 2019; Cao et al., 2019; Dos Santos Trento et al., 2020). Two
different range of pore sizes have generally been studied: micropore
(<5 μm in diameter) and macropore (>100 μm in diameter)
(Blokhuis et al., 2000). The presence of micropores increase in the
surface area of biomaterials while micropore structures have been
demonstrated to enhance material resorption and boost
osteoinduction (Davison et al., 2014; Rustom et al., 2019). Open
and interconnected macropores are not only useful for cell migration
and blood vessel formation, but also essential for the diffusion of
nutrients, waste and pro-osteogenic factors (Loh and Choong, 2013;
Lim et al., 2020). Therefore, porosity not only allows biomaterials to
absorb growth factors, but also controls the complex interaction
between bone materials and pro-osteogenic factors (e.g., bone
morphogenetic proteins). In a femur defect model of rabbit, the
honeycomb β-TCP scaffolds with interconnected pore structure
(ihTCP) presented higher new bone formation volume compared
to the unidirectional pore structure (uhTCP) (Lu et al., 2020a).
Studies have demonstrated that materials with high porosity have
a positive impact on bone formation (Hannink and Arts, 2011;
Raeisdasteh Hokmabad et al., 2017; Ishikawa et al., 2018). Similarly,
porous β-TCP has the ability to augment the dissolution and
absorption of the material and boost the infiltration of MSCs,
thus enhancing new bone formation (Karageorgiou and Kaplan,
2005; Lopez-Heredia et al., 2012). An in vitro study showed that
murine osteoblast precursors (MC3T3-E1) and human adipose stem
cells (hADSCs) exhibited excellent proliferation and osteogenic
differentiation when seeded into porous β-TCP blocks (Kim and
Kim et al., 2019). Furthermore, when β-TCP blocks with 58.1 ± 1.7%
porosity were implanted into rabbit distal femoral bone defects for
4weeks, the amount of newly formed bone in porous β-TCP blocks
group was approximately 200-fold higher compared with the dense
β-TCP blocks group (with 10.9± 2.3 porosity) (Putri et al., 2020). In a
study operating Opening-Wedge High Tibial Osteotomy in 25
patients, β-TCP blocks with 60% porosity showed a superior bone
formation compared to the β-TCP blocks with 75% porosity (Tanaka
et al., 2008). To sum up, the suitable porosity of β-TCP block to boost
bone regeneration is approximately 60%.

Surface roughness is a factor that influences cellular
attachment and subsequent bone repair (Albrektsson and
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Johansson, 2001; Faia-Torres et al., 2015; Dantas et al., 2017;
Dong et al., 2020). Materials with a high surface roughness can
enhance the attachment of bone-forming cells, thereby
promoting osteogenic differentiation and osteointegration,
while low surface roughness may result in integration failure
due to inferior cell attachment. It has been demonstrated that
8–10 arithmetical roughness average (Ra) calcium phosphate-
coated titanium alloy showed a superior adhesion capacity of type
I collagen compared with a 2-3 Ra calcium phosphate-coated
surface (Ozerdem 2002). Additionally, using argon glow
discharge plasma (GDP) to modify the surface of β-TCP can
remove macro and micro particles of < 7 μm in size from β-TCP
bigger particles surface thus promoting human mesenchymal
stem cells (hMSCs) proliferation, osteoblastic differentiation, and
increasing more new bone formation compared to the untreated
β-TCP block (Choy et al., 2021). These results suggest that the
porous structure and surface roughness of β-TCP-based materials
can be optimized to enhance new bone formation. Furthermore,
pores of different sizes can be adjusted to facilitate protein
adsorption, cell infiltration and neovascularization (Figure 1).

METAL ION/ESSENTIAL ELEMENT -
INCORPORATED BETA-TRICALCIUM
PHOSPHATE COMPLEX

In addition to modulating the physical features of β-TCP, the
incorporation of metal ions can improve the osteoinductive
capacity of β-TCP scaffolds. The release of metal ions, such as

cobalt (Co2+), copper (Cu2+), and magnesium (Mg2+), and
essential elements, such as zinc (Zn2+) and silicon (Si4+) can
enhance the biological performance of bone regenerative
scaffolds, which can induce angiogenesis and osteogenesis
(Wang, et al. 2017a). Previous studies have demonstrated
that metal ions can be easily incorporated into β-TCP
(Matsunaga et al., 2015). Mg2+, Zn2+ and other divalent
cations smaller than Ca2+ can preferentially substitute the
Ca (4) and Ca (5) cation sites in β-TCP. However, larger
divalent cations such as strontium (Sr2+) preferentially
reside in sites Ca (1)-Ca (4), but not Ca (5) (Enderle et al.,
2005; Ji et al., 2014). Mono- and trivalent cations tends to
occupy Ca2+ on the partially occupied Ca (4) site. Si4+ is an
alternative cation of P5+ on the tetrahedral sites in the PO4

groups (Reid et al., 2005).
The addition of certain metal ions can lead to favorable effects

on bone regeneration. For example, Co2+-containing β-TCP
composite scaffolds (CCP) can significantly induce the
expression of osteogenic marker genes (ALP, OCN and IBSP)
in human MSCs (hMSCs) compared with unmodified β-TCP
scaffolds (Chen et al., 2015a). Similar findings have been
demonstrated with the application of Cu2+, which could
enhance the osteogenic and angiogenic capacities of β-TCP
powders (Zhang et al., 2019). This can be explained by the
hypoxia-mimicking microenvironment induced by Co2+ and
Cu2+. The stabilization of hypoxia inducible factor 1-α (HIF-
1α) can stimulate the endogenous release of angiogenic growth
factors from the surrounding cells, which initiate the ingrowth of
new blood vessels from host tissues, further facilitating

FIGURE 1 | Schematic diagram showing the effects of various physical features of β-TCP scaffolds on bone healing. (A) Macropores (>100 μm) provide greater
space for access of growth factors, MSCs, blood vessels, oxygen, and nutrients into β-TCP scaffolds compared with micropores (<5 μm). (B) High porosity can
significantly increase the specific areas of β-TCP scaffolds, as compared to β-TCP scaffolds with low porosity. (C) Rough surface of β-TCP scaffolds can improve MSC
adhesion and proliferation, thereby promoting bone regeneration.
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osteogenesis via the angiogenesis-osteogenesis coupling (Krock
et al., 2011; Zhao et al., 2021).

Mg2+ is a known activator for phosphate-transferring enzymes
(Gu et al., 2019) with Mg-doped bone substitute biomaterials able
to regulate bone metabolism and facilitate bone regeneration by
inducing a significant increase in osteogenic differentiation of
MSCs (Wang and Yeung, 2017). An in vitro study demonstrated
cell proliferation and viability of human bone marrow-derived
MSCs (hBMSCs) and human umbilical vein endothelial cells
(HUVECs) were significantly enhanced when treated with Mg-
doped β-TCP scaffolds, compared with control β-TCP scaffolds
(Gu et al., 2019). And Mg2+ in β-TCP/Mg-Zn composite scaffold
was demonstrated to promote the differentiation of hBMSCs into
osteoblasts via mitogen activated protein kinases (MAPKs)-
regulated Runx2/Osterix (Osx) interaction (Wang et al.,
2020a). However, in a murine dental alveolus grafting model,
Mg-doped β-TCP granules scaffolds presented lower biosorption
and less newly formed bone compared with the β-TCP group (p <
0.05) (Yassuda et al., 2013). The most plausible explanation for
this is Mg2+ incorporation into β-TCP granules reduces
resorption by downregulating parathormone (PTH)
production in vivo, thereby inhibiting osteogenesis (Yassuda
et al., 2013).

Zinc and silicon are two essential elements that have been
widely studied to improve the osteoinductivity of β-TCP for
osteogenesis. An in vitro study clearly demonstrated that both
zinc oxide (ZnO)-doped β-TCP (Zn-TCP) and silicon oxide
(SiO2) doped β-TCP (Si-TCP) scaffolds could improve the
expression of osteogenic marker genes, such as BMP-2, and
Runx2 compared with the unmodified β-TCP group (Fielding
et al., 2019). Moreover, in a rabbit tibial defect model, a significant
increase in new bone formation was observed in ZnO- and SiO2-
doped β-TCP scaffold groups compared with the β-TCP control
group (Nandi et al., 2018). A plausible explanation for this effect
is that Si4+ replaces P5+ in the β-TCP lattice, and Zn2+ replaces
Ca2+. The released Ca2+ ions can therefore enhance the
expression of osteogenesis-related genes through the activation
of intracellular calcium and Wnt signaling (Majidinia et al., 2018;
Martineau et al., 2017).

The incorporation of 10 wt% manganese ion (Mn2+) doped
β-tricalcium phosphate (Mn-TCP) into calcium phosphate
cement (CPC) has proper physicochemical properties and
exhibits higher ability to promote osteogenic differentiation
in vitro compared to the control group (0 wt% Mn-TCP-CPC),
20 wt% Mn-TCP-CPC group and 30 wt% Mn-TCP-CPC group
(Wu et al., 2020). Nanosized-Ag-doped porous β-TCP scaffolds
facilitate new bone formation and exhibits superior anti-infective
properties as compared to pure β-TCP group, when tested in a
rabbit femoral bone defect model (Yuan et al., 2020).

BETA-TRICALCIUM PHOSPHATE IN
COMBINATION WITH OTHER MATERIALS

The degradation rate of β-TCP leaves insufficient time for
osteoblast migration and colonization, impairing normal bone
healing and limiting its clinical application (Pilliar et al., 2001). To

address this problem, other materials have been combined with
β-TCP to form composite scaffolds with superior biomechanical
properties. In a recent study, β-TCP mixed with hydroxyapatite
(HA) composite scaffolds (BCP) showed a remarkable increase in
compressive strength (1.7 MPa) compared with normal β-TCP
scaffolds (1.2 MPa) (Stastny et al., 2019). Moreover, the BCP
scaffolds presented a steady andmoderate degradation rate with a
compressive strength of 0.5 MPa in the presence of an acidic
buffer solution (pH � 5.5), which was demonstrated to be more
beneficial for hMSCs adhesion, proliferation, and bone
metabolism activity (Stastny et al., 2019). Furthermore, Cheng
et al fabricated 25% collagen-15% thermosensitive hydrogel-60%
β-TCP (CTC) composite scaffolds, which were showed to have
better mechanical properties, osteoinductivity and weight-
bearing capacity than 70% HA/30% β-TCP composite
scaffolds when implanted into tibia defect in mice (Cheng
et al., 2021).

An in vitro study found that a composite scaffold comprised of
30% β-TCP and 70% bioactive glass (BG) stimulated the
proliferation of osteoblast-like MG-63 cells, compared with the
β-TCP group (Seidenstuecker et al., 2017). Another study found
that a nano-sized β-TCP and polylactic acid (PLA) mixture
presented significantly higher disc height compared to the
autograft group (Cao et al., 2017). Moreover, the β-TCP-PLA
mixture membrane has been demonstrated to favor bone healing
in the anterior esthetic area of the maxilla in a recent clinical study
(Canullo et al., 2019). It has also been revealed that β-TCP-
chitosan composite scaffolds can significantly enhance the
proliferation and osteogenic differentiation of BMSCs in vitro
(Wang et al., 2019a). Additionally, the addition of pulverized
human bone into β-TCP-chitosan composite scaffolds presented
excellent mechanical properties and induced significantly higher
ALP activity than β-TCP-chitosan composite scaffolds when
seeded with MG63 cells (Kowalczyk et al., 2021). Besides, Han
et al found that the 50% PCL-50% β-TCP spinal fusion cage had
optimal osteogenic capacity as compared to 60% PCL-40%
β-TCP and 55% PCL-45% β-TCP spinal fusion cage in vitro
(Han et al., 2021). Although large volume of β-TCP-based
composites have been developed, further clinical trials are
required before applying it to the clinic.

THE ADDITION OF STEM CELLS AND
CELL-DERIVED ACTIVE SUBSTANCE TO
BETA-TRICALCIUM PHOSPHATE

The addition of stem cells or cell-derived active substance, such as
exosomes and extracellular matrix (ECM), to β-TCP can largely
improve its osteogenic properties (Zhang et al., 2016). For
example, in a monkey femur bone defect model, the ratio of
successful bone union in composites containing β-TCP blocks
and bone marrow mesenchymal stem cells (BMSCs) (5/7) was
markedly higher compared to the β-TCP blocks alone (1/5)
(Masaoka et al., 2016). In another study, β-TCP/gelatine
scaffold combined with allogeneic adipose-derived stem cells
(ASCs) showed a superior pro-osteogenic effect compared
with β-TCP/gelatine scaffold and pure β-TCP scaffold in a
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rabbit femoral bone defect model (Liu et al., 2021). Du et al.
recently revealed that bone marrow mononuclear cells
(BMMNCs)/β-TCP scaffold had a 1.5-fold more bone volume
compared to the bone marrow-derived mesenchymal stem cells
(BMSCs)/β-TCP scaffold after implanted into a tibia bone defect
for 12 months (Du et al., 2021). Furthermore, in a recent clinical
study, patients treated with MSC/β-TCP composite scaffolds
presented significantly more new bone formation and
improved functional recovery compared with the pure β-TCP
(Chu et al., 2019).

The incorporation of exosomes derived from bone
mesenchymal stem cells (BMSC) and hypoxia inducible factor-
1α (HIF-1α) to β-TCP scaffolds significantly repaired rat critical-
sized bone defects by facilitating new bone regeneration and
neovascularization (Ying et al., 2020). Dental pulp stem cells
(DPSCs)-derived extracellular vesicle (EVs)/β-TCP scaffolds was
demonstrated to boost bone formation in the periphery of the
defects (Imanishi et al., 2021). Moreover, in a pig mandibular
bony defect model, MSCs and platelet-rich plasma (PRP)-
impregnated polycaprolactone (PCL)-β-TCP bio-scaffold
presented excellent ability to enhance bone regeneration
around dental implants (Almansoori et al., 2021).

3D AND 4D PRINTED BETA-TRICALCIUM
PHOSPHATE-BASED SCAFFOLDS

It was only until recently that three-dimensional (3D) printed
β-TCP-based materials were widely used in research and clinical
applications due to the easily controllable size and shape. For
example, the 3D printed β-TCP scaffolds with diverse pore size
(500, 750, and 1,000 µm) not only possess excellent mechanical
properties, but also boost proliferation of MG-63 cells
(Seidenstuecker et al., 2019). Moreover, 3D-printed
polycaprolactone (PCL)/β-TCP scaffolds showed promising
potential for oromandibular reconstruction in vivo (Lee et al.,
2020). However, the manufacturing process of traditional 3D
printing is performed at high temperatures, whichmay lead to the
loss of bio-efficacy of sensitive growth regulators, such as icariin
(ICA) (Zhang et al., 2021). To incorporate various active growth
regulators within the porous architectures of β-TCP materials,
low-temperature based 3D printing technique is used. For
example, the low-temperature extrusion-based 3D printing of
composite scaffolds constructed by poly (ε-caprolactone) (PCL)
and β-TCP encapsulated with ICA (ITP scaffolds) promoted
differentiation of BMSCs in vitro (Zhang et al., 2021). Though
3D-printing allows for the manufacturing of complex shapes on
demand, those shapes of printed products do not change over
time. The emerging 4D printing technology is gaining great
interest because of its changeable shapes. Wang et al.
constructed β-TCP-based nanocomposite scaffolds by
incorporating black phosphorus nanosheets and osteogenic
peptide into β-TCP/poly (lactic acid-co-trimethylene
carbonate) (TCP/P (DLLA-TMC)) by 4D printing. The shape
of the 4D-printed scaffolds can be reconfigured to adjust precise
fitting in irregular bone defects when the scaffold temperature
rapidly increases to 45°C (Wang et al., 2020b). To date, the

β-TCP-based 4D printed products have rarely been reported
in bone tissue engineering, however, these materials have
substantial potential as bone substitutes although further
research is warranted.

BETA-TRICALCIUM
PHOSPHATE-MEDIATED MECHANISMS
FOR OSTEOGENESIS REGULATIES

Although the pro-osteogenic effects of β-TCP remain
controversial, β-TCP affect bone repair by interacting with
the surrounding tissues through the regulation of growth
factors, cytokines and ions. A possible mechanism of
β-TCP-regulated osteogenesis is that β-TCP can directly or
indirectly (via the release of ionic components such as Ca2+

and PO43−) facilitate osteoblast differentiation, promote
vascularization, regulate the release of growth factors, and
alter blood clot formation thus boosting bone healing at
defect sites.

The Effect of Ca2+ on Osteoblast
Differentiation
Numerous studies have confirmed the crucial role of Ca2+

released from β-TCP plays in proliferation and differentiation
of MSCs and osteoblasts. It has been suggested that 2–4 mmol/L
Ca2+ in vitro is favorable to the proliferation and survival of
mouse primary osteoblasts (mOBs), whereas slightly higher
concentrations (6–8 mmol/L) can facilitate mOBs
differentiation and matrix mineralization (Maeno et al., 2005;
Wang et al., 2020c). Other studies have found that a higher
concentration of Ca2+ (up to 14 mmol/L) can lead to a rounded
shape osteoblast morphology while a lower concentration of Ca2+

(≤8 mmol/L) can promote the migration of human osteoblasts
(Lei et al., 2018; Nakamura et al., 2010).

It has been suggested that Ca2+-mediated osteoblast
differentiation involves the activation of the Calmodulin and
Calmodulin-dependent kinase II (CaM–CaMKII) pathway (Cary
et al., 2013; Liu et al., 2020). The activation of α-CaMKII boosts
autophosphorylation of threonine 286, resulting in increased
affinity of CaMKII for Ca2+/CaM by nearly 1000-fold while
also maintaining the enzyme in a partially activated or
autonomous state (Zayzafoon et al., 2005). The
phosphorylated α-CaMKII subsequently modulates the activity
of several transcription factors, such as CRE-binding protein
(CREB) and extracellular signal-regulated kinase (ERK)
(Zayzafoon et al., 2005; Lu et al., 2020b) which transactivate
the serum-response element (SRE) and cAMP-response element
(CRE) within the promoter of c-fos respectively (Kukushkin et al.,
2002; Sen et al., 2015). This in turn enhances expression ofAP-1, a
transcription factor involved in differentiation of bone forming
cells and ultimately results in the differentiation of osteoblasts
(Figure 2) (Wagner 2002; Babu et al., 2013). Another study
suggested L-type voltage-gated calcium channels (L-VGCCs) play
a role in modulating the Ca2+ released from β-TCP. Blockade of
L-VGCCs with nifedipine significantly inhibited the expression of
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the osteoblast differentiation protein, bone morphogenetic
protein 2 (BMP-2), indicating that osteogenic differentiation
may be regulated by L-VGCCs (Barradas et al., 2012).
Similarly, another study has demonstrated inhibition of
L-VGCCs can suppress the osteogenic differentiation of rat
BMSCs (Wen et al., 2012). Interestingly, conflicting results
have been reported using mouse BMSCs. Ma et al.
demonstrated L-VGCCs treated with the blocker, benidipine
enhanced mouse BMSCs differentiation by upregulating the
Wnt/β-catenin pathway in an ovariectomized (OVX) mouse
model (Ma et al., 2015). This phenomenon is probably due to
different L-VGCCs subtypes which exist in cells from different
tissues and species (Tan et al., 2019).

The Effect of Beta-Tricalcium Phosphate on
Neovascularization
To survive, osteoblasts (OBs) must reside within 150–200 µm
of capillaries to obtain a sufficient supply of oxygen and
nutrients (Nguyen et al., 2012). Conversely, inadequate
angiogenesis can result in necrosis in the central region of
bone tissues, and delay the bone regeneration process.
Therefore, the extent and rate of vascular growth are
thought to be important determinants in effective bone
healing (Liu et al., 2015). Ca2+, one of the major
components of β-TCP, plays a critical role in blood vessel
formation. Studies over the past decade has demonstrated that
intracellular Ca2+ concentration is associated with the
proliferation and movement of endothelial cells. The
intracellular Ca2+ wave drives proliferation, homing and
tubulogenesis of endothelial progenitor cells (EPC) (Moccia
et al., 2014; Moccia et al., 2012). Ca2+ exhibits a unique

regulatory role in cytoplasm, organelles, and nuclei by
acting as an allosteric activator or inhibitor of various
intracellular enzymes. It can also interact with other
proteins to regulate calcium-dependent enzymes and ion
channels. The most significant example is CaM, a Ca2+

decoder for cell proliferation that is involved in regulating
the CaMKII family and several other membrane channels.
Multiple studies have shown that CaMKII is directly involved
in several transition points in the progress of the cell cycle (G1
to S) (Kahl and Means, 2003; Zeng et al., 2020; Koval et al.,
2019). Moreover, calcium-dependent enzymes initiate the
activation of several nuclear factors related to DNA
division, such as cyclin, which is closely associated with the
proliferation of endothelial cells (Li et al., 2016; Hui et al.,
2011). Vascular endothelial growth factor (VEGF), a potent
regulator of vascular formation, stimulates the proliferation,
migration, differentiation and formation of capillary-like
structures in endothelial cells via the Ras/mitogen-activated
protein kinase (Ras/MAPK), phosphatidylinositol 3-kinase
(PI3K/AKT) and phospholipase Cγ/inositol triphosphate
(PLCγ/IP3) signaling pathways in the presence of Ca2+ after
binding to vascular endothelial growth factor receptor 2
(VEGFR2) (Jin et al., 2017; Kim et al., 2018). Given the
critical role of Ca2+ in angiogenesis, it is not surprising that
β-TCP can effectively induce neovascularization. In a rabbit
tibial defect model, significantly increased angiogenesis
measured by average number of blood vessels, was observed
in the β-TCP group (4.47 ± 0.2) compared with the bioactive
glass group (1.58 ± 0.246) (Anghelescu et al., 2018). In clinical
practice, similar results were observed when using β-TCP-
based dental implants (Dautova et al., 2018). These results
suggest β-TCP can augment angiogenesis, which could be the
reason for its osteoinductivity (Kusumbe et al., 2014; Rather
et al., 2019).

The Incorporation of Bone Regenerative
Growth Factors in Beta-Tricalcium
Phosphate for Osteogenesis
With a deeper understanding of bone repair and fracture union,
studies have shown that the biological performance of scaffolds
can be improved by incorporating certain growth factors (such as
the BMP family). An in vitro study found that β-TCP particles
exhibited excellent capacities to deliver growth factors from
platelet concentrates such as BMP-2 and BMP-7, compared
with the control group (non β-TCP particles) (Bonazza et al.,
2018). Interestingly, in a rat femoral defect model, the residual
β-TCP in the BMP-delivery treatment group was notably lower
than the β-TCP control group, indicating that BMPmay facilitate
the degradation of β-TCP and subsequently enhance bone
healing (Xie et al., 2019). Based on the aforementioned
evidence, it is speculated that β-TCP could boost the process
of bone regeneration via interacting with growth factors such
as BMPs.

It has been demonstrated that growth factors play an
important role in cell migration, cell proliferation, and tissue
angiogenesis, further facilitating new bone formation at the defect

FIGURE 2 | β-TCP-released Ca2+ activates the α-CaMKII pathway and
modulates CREB and extracellular ERK activity. The activation of CRE-binding
protein (CREB) and extracellular signal-regulated kinase (ERK) increase the
transactivation of SRE and CRE respectively, both of which regulate the
c-fos promoter resulting in enhanced expression of AP-1 and ultimately
osteoblast differentiation.
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sites (Kim et al., 2014; Mochizuki et al., 2020). Osteogenesis is the
process by which new bone is synthesized by graft cells (mainly
cells that survive on the surface of the graft) or host cells. During
material-mediated osteoinduction, the migration and
proliferation of undifferentiated host MSCs will be recruited to
the defect sites, driven by growth factors such as BMPs,
transforming growth factor beta (TGF-β) and platelet derived
growth factor (PDGF). These growth factors have been found to
induce early bone healing by binding to fibrinogen or
extracellular matrix (ECM) proteins (Martino et al., 2013;
Hulsart-Billstrom et al., 2015).

In a dog dehiscence defect model, β-TCP with fibroblast
growth factor-2 (FGF-2) was demonstrated to increase bone
volume compared with the β-TCP control (Fukuba et al.,
2021). Similarly, the effect of FGF-2 on bone regeneration has
been demonstrated in a canine maxillary saddle defect model
(Hoshi et al., 2016). Furthermore, when β-TCP scaffolds
containing 0.3% FGF-2 was implanted in patients with
periodontal defects, the percentage of bone growth in the
FGF-2-β-TCP treatment group was significantly increased
compared with the β-TCP treatment group over a period of
13 months (Cochran et al., 2016). BMPs, members of the TGF-β
superfamily, can stimulate DNA recruitment and cell replication
via SMAD and p38-MAPK signaling pathways, thereby
promoting the directional differentiation of MSCs into
osteoblasts. Accordingly, in an in vitro study, β-TCP granules
were used to carry BMP-2, which led to a more pronounced
osteogenic effect compared with the β-TCP control (Kuroiwa

et al., 2019). Moreover, in a study using a rat calvarial bone defect
model, BMP-2-loaded β-TCP granules significantly induced bone
healing compared with the β-TCP group (Figure 3) (Lee et al.,
2021).

Modifying Beta-Tricalcium Phosphate in the
Regulation of Blood Clots to Enhance Bone
Regeneration
The Effect of Blood Clots on Bone Healing
After implantation into the fracture site, the surface of substitute
materials comes into contact with peripheral blood, which
results in the formation of a blood clot around the graft
(Milleret et al., 2015). In the case of a bone fracture, the
blood clot acts as a ‘natural scaffold’ when the extrinsic
coagulation pathway is activated (Einhorn and Gerstenfeld,
2015). Following a fracture, a cross-linked fibrin network is
formed via the generation of thrombin, which strengthens clot
formation by converting fibrinogen into fibrin. Coarse and loose
fibrin clots have an increased rougher surface structure and a
higher porosity which means it is more prone to undergo
fibrinolysis, an enzymatic process by which fibrin is degraded
and which has a beneficial process to the repair and regeneration
of bone tissues (Yermolenko et al., 2011; Varin et al., 2013).
Conversely, dense blood clots composed of thin and dense fibrin
are highly resistant to fibrinolysis and result in a significant
delay in bone regeneration (Wang et al., 2018b). As a
consequence, the change in fibrin structure directly affects

FIGURE 3 | The role of growth factors in regulating angiogenesis during bone formation (A) Vascular endothelial growth factor (VEGF) regulates osteogenesis
through three major signaling pathways after binding to VEGFR2: the PI3K/AKT pathway, the Raf-MEK-ERK pathway and the PLCγ-IP3 pathway. (B) Platelet derived
growth factor (PDGF) regulates angiogenesis by binding to and activating PDGFR-αα, PDGFR-αβ, and PDGFR-ββ receptors. (C) Ca2 released from β-TCP, binds to
calmodulin (CaM) to promote cell cycle progression (G1→S), enhancing endothelial cell proliferation and facilitating neovascularization and bone healing. (D)
Transforming growth factor beta (TGF-β) induces up-regulation of osteogenic gene expression through the SMAD signaling pathway after binding to transforming growth
factor beta receptor2 (TGFR2). (E) Bone morphogenetic proteins (BMPs) facilitate the expression of osteogenic genes via bone morphogenetic protein receptor type-2
(BMPR) and the activation of SMAD and p38-MAPK signaling pathways.
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the bone healing process, as fibrinolysis of the thrombus is
responsible for cell growth and the release of growth factors
(Laurens et al., 2006; Wang et al., 2016). Blood clots with a tight
fibrin network delay bone healing due to the low porosity and
delayed degradation (Wang et al., 2017b). On the contrary, thick
fibrin blood clots with higher porosity facilitate osteoblast
migration and adhesion, thereby promoting bone
regeneration (Collen et al., 1998). Studies have demonstrated
that the structure of blood clots at defects is closely related to
thrombin concentration. Low concentrations of thrombin
produce turbid, coarse and loose fibrin, leading to highly
permeable fibrin clots. While high concentrations of
thrombin result in non-turbid, thin and dense fibrin network
chain and results in low permeability blood clots (Campbell
et al., 2009; Rahmany et al., 2013).

Blood clots can also regulate bone regeneration via secreting
growth factors. For example, platelet concentrate (PC) contains
high levels of crucial growth factors for bone healing, including
PDGF, TGF-β, insulin-like growth factor (IGF), epithelial growth
factor (EGF) and VEGF (Qiao et al., 2017; Nagaraja et al., 2020;

Mijiritsky et al., 2021; Blatt et al., 2021). Moreover, PC also
contains many soluble cytokines (CKs), such as pro-
inflammatory response factors and anti-inflammatory response
factors (Fang et al., 2020). These soluble CKs are important
mediators of tissue healing process (Ma et al., 2019; Pennati
et al., 2020). Studies have shown that PC can promote not only
migration, proliferation, differentiation, and angiogenesis of
adipose mesenchymal stem cells (ADSCs), but also ectopic
osteogenesis (Chen et al., 2015b; Wang et al., 2015; Liou et al.,
2018; Wang et al., 2019b; Ni et al., 2021).

The Effect of Beta-Tricalcium Phosphate on Blood
Clots
Since blood clot formation is the first stage in the generation of
new bone after material implantation, it is necessary to
understand how β-TCP can regulate the formation and
structure of new blood clots. Wang X et al. reported β-TCP
solutions supplemented with increasing concentrations of
fibrinogen resulted in a concomitant decrease in fibrin
diameters (Wang et al., 2018a). Furthermore, the density of

FIGURE 4 | Polymeric fibrin network formation and β-TCP regulatory sites. Thrombin mediates the of monomeric fibrinogen to polymeric fibrin by catalyzing the
cleavage and release of fibrinopeptides (Fp)A (light red dovetail arrows) and FpB (blue dovetail arrows) from fibrinogen. Fibrin monomers originating from FpA aggregate
longitudinally and form fibrin oligomers, which in turn polymerize to form protofibrils. The protofibrils undergo lateral polymerization via intermolecular interaction at αC
regions to form αC polymers (black dashed circles) and results in the formation of thick fibers. Finally, the fibrin clot, a cross-linked gel-like meshwork forms and
plays an important role in normal hemostasis. β-TCP may regulate fibrin polymerization at the cleavage sites when FpB is released and at the primary binding sites (black
arrow heads) of the fibrinogen γ chain (orange color).
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blood clots in the fibrinogen-200 mg/ml group was markedly
higher than the control group (Wang et al., 2018a) β-TCP is able
to modulate the density of blood clots by regulating the formation
of the fibrin network. This process involves the sequential
cleavage of fibrin peptides (Fp)A and FpB from the central
region of the fibrinogen molecule with subsequent longitudinal
and lateral polymerization (Weisel and Litvinov, 2017). The fibrin
monomers are gathered longitudinally through a knob-pocket
interaction to form a fibrin oligomer, which then polymerizes to
form fibrils (Weisel and Litvinov, 2013). Lateral polymerization
occurs when fibrils form αC polymers through intermolecular
interactions mediated by activated factor XIII resulting in the
formation of thick fibers. Together, longitudinal and lateral
polymerization results in fibrin forming a crosslinked gel-like
network (Weisel and Litvinov, 2013). During the process of fibrin
polymerization, β-TCP may target this pathway by binding to the
fibrinogen γ chain of fibrinogen and result in the release of FpB
(Figure 4).

The Effect of Ca2+ on Blood Clots
The release of Ca2+ from β-TCP plays a prominent role in the
polymerization of fibrinogen. Fibrinogen contains both high and
low Ca2+-binding sites; three high- and 8–10 low-affinity calcium
binding sites (Weisel and Litvinov, 2017). Of the high-affinity
Ca2+ binding sites in the γ chains, γ1, is associated with amino
acid residues γAsp318, γAsp320, γGly324, and γPhe322 and
coordinated with two strongly bound water molecules
(Spraggon et al., 1997; Kamijo et al., 2019). The remaining
high-affinity Ca2+ binding sites (named β1) are located at the
β-nodules within loop β381–385 and both have a coordinating
water molecule (Everse et al., 1998). Of the low-affinity Ca2+

binding sites, γ2 and β2 have been well characterized. Formed as a
consequence of molecular rearrangements as a result of crystal
packing, γ2 sites are located in loops γ294–301 and exert only a
moderate influence on the crystal structure and functional
properties of fibrinogen (Kostelansky et al., 2004a; Kostelansky
et al., 2004b; Kostelansky et al., 2007). The β2 sites are formed by
residues γGlu132, βAsp261, βAsp398, and the backbone carbonyl
oxygen of γGlu132 (Kostelansky et al., 2004a; Kostelansky et al.,
2004b). The β-nodules are anchored to the coiled-coil connector
for functioning via β2 sites, which are involved in the process of
lateral aggregation of protofibrils (Kostelansky et al., 2004a).

The binding of Ca2+ to high-affinity sites protects the γ chains
from enzymatic degradation (Odrljin et al., 1996). and modulates
fibrin polymerization by augmenting lateral aggregation to form
thicker and denser fibers (Weisel and Litvinov, 2013).
Consequently, functionality can be seriously damaged by
mutations influencing these Ca2+ binding sites (Brennan et al.,
2007). Furthermore, the conformational changes which occur
when FpB is cleaved is Ca2+ dependent with the affinity of the
Ca2+ binding sites changing upon FpB release (Dyr et al., 1989;
Mihalyi 1988). The functional relevance of the β2 site was
elucidated when the binding of a knob ‘B’ mimetic peptide
(Gly His-Arg-Pro) in the presence of Ca2+ resulted in a 10-
fold increased binding to fibrinogen compared with in the
absence of Ca2+. This suggests the β2 site may be involved in
the conformational change associated with binding of Gly

His-Arg-Pro (Everse et al., 1999). The interval formed by
dense fibers is inadequate to permit the entrance of osteogenic
factors to the fracture site, resulting in delayed bone healing.

Ca2+ Binding to Factor XIII Regulates the Crosslinking
of Fibrin Monomers
Under normal physiological conditions, Ca2+ is an essential factor
involved in the extrinsic coagulation pathway (Figure 5). Plasma
factor XIII, a 325.8 kDa heterotetrameric proenzyme which
stabilizes fibrin, is composed of two catalytic A subunits
(FXIII-A) and two inhibitory B subunits (FXIII-B) (Ashcroft
et al., 2000; Muszbek et al., 2011; Singh et al., 2019). It is the last
factor in the coagulation cascade and facilitates crosslinking
between fibrin monomers, protects fibrin from shear stress,
and guards clots from premature degradation (Duval et al.,
2014; Vasilyeva et al., 2018; Alshehri et al., 2021). For factor
XIII to react with fibrin monomers, it is converted to an activated
transglutaminase and functions in the presence of thrombin and
Ca2+. The activation of plasma factor XIII under physiological
conditions comprises two steps, firstly, the cleavage of a peptide
from the N-terminal end of FXIII-A at Arg37-Gly38 by thrombin
and secondly, the separation of FXIII-A from FXIII-B (in the
presence of Ca2+) to form the active configuration. Thrombin can
also inactivate FXIII-A by cleaving at Lys513-Ser514. Ca2+ is a key
regulator of the proteolytic degradation of plasma factor XIII and
can prevent thrombin-mediated inactivation of FXIII-A even at a
very high concentrations of thrombin (Mary et al., 1988). After
FXIII-A and FXIII-B subunits have been dissociated, Ca2+ binds
to the high-affinity binding sites on FXIII-A to convert the free
FXIII-A into an active transglutaminase, which subsequently
facilitates the cross-linking and stabilization of fibrin
monomers (Hornyak and Shafer, 1991; Hethershaw et al.,
2014; Protopopova et al., 2019; Mangla et al., 2021). The
formation of crosslinks, including α–α, γ–γ, and α–γ
crosslinking, have a variety of functions (Shainoff et al., 1991;
Piechocka et al., 2017). The α–α and to a certain extent, γ–γ
crosslinking play a vital role in regulating the physical properties
of clots (e.g. stiffness, elasticity and tautness) compared with α–γ
crosslinking (which affects the rigidity of clots less) (Duval et al.,
2014; Standeven et al., 2007). In addition, the rate of crosslinking
varies. For example, γ–γ crosslinking is significantly quicker than
α–α crosslinking which is likely due to the complexity of αC
polymer formation (Guthold et al., 2007; Helms et al., 2012).

The Effect of Polyphosphate Ions on the
Polymerization of Fibrin
Inorganic polyphosphate (polyP) is a linear polymer composed
of 60–100 orthophosphate residues linked by high-energy
phosphoanhydride bonds (Muller et al., 2009; Ruiz et al.,
2004). and functions to regulate the physical properties of
fibrin clots and regulate fibrin polymerization (Whyte et al.,
2016). It has been suggested that incorporation of the negatively
charged polyP into fibrin is through the net positive charge on
the αC regions of fibrinogen (Smith and Morrissey, 2008). This
interaction increases the length of fibrin monomers, possibly as
a result of the αC region reaching beyond the D-region of the
fibrin monomer. Furthermore, polyP may function to enhance
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D-D interactions between fibrin monomers as a result of lateral
extension of αC region instead of longitudinal. This may
account for shortened fibrin oligomers (Whyte et al., 2016).
It is likely that polyP functions as a nucleus that attracts

fibrinogen resulting in denser areas of fibrin (Whyte et al.,
2016; Mutch 2016). Moreover, the presence of polyP can lead
to more turbid fibrin clots and thicker fibrin fibrils compared
with clots without polyp (Smith and Morrissey, 2014). PolyP

FIGURE 5 | The role of factor XIII in the extrinsic coagulation cascade. Following trauma, factorⅢ (FIII; tissue factor) stimulates factor VII (FVII) to form an activated
complex (TF–FVIIa) wherein TF–FVIIa activates factor X (FX) to form FXa and converges into the common coagulation cascade. In the presence of Ca2+ and phospholipid
(PL), FXa and its cofactor FVa form the prothrombinase complex (FXa–FVa-PL-Ca2+), which boosts the conversion of prothrombin to thrombin. Lastly, thrombin
catalyzes fibrinogen to produce fibrin, leading to fibrin clot formation and achievement of hemostasis. Factor XⅢ (FXIII) contains two A subunits and two B subunits.
The B subunit dissociates from the A subunit with the assistance of Ca2+ and thrombin and exposes Ca2+ binding sites resulting in the binding of Ca2+ and FXIII facilitating
the stabilization and cross-linking of fibrin to form fibrin clots.

FIGURE 6 | Phosphate ions (PO4
3−) released from β-TCP can polymerize to form PolyP, which regulate fibrin polymerization and enhance resistance to fibrinolysis.

PolyP binding to αC region in fibrinogen results in extension beyond the D-region, with subsequent D-D interaction, resulting in lateral aggregation of fibrin. Moreover, the
formed PolyP can further defend fibrinolytic protein from linking to the fibrin, leading to dense and undissolved fibrin.
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seems to be directly integrated into fibrin clots, by currently an
unknown mechanism.

In addition to altering the structure of the fibrin network,
polyP also regulates fibrinolysis. The process of fibrinolysis, is
regulated by tissue plasminogen activator (tPA) and urokinase
(uPA). Both tPA and plasminogen exert their functions by
attaching avidly to C-terminal lysine residues on the fibrin
surface (Foley et al., 2011). PolyP can inhibit fibrinolysis
through modulating the binding of tPA and plasminogen to
fibrin, although the detailed mechanism remains unclear
(Morrissey and Smith, 2015; Mutch 2016). From the above
considerations, we speculate that phosphate ions (PO4

3−)
released from β-TCP form polyP which can lead to fibrin clots
that are dense and more resistant to fibrinolysis. Moreover, as
dense clots can hinder the migration of osteogenesis factors
(Wang et al., 2016). and MSCs into the fracture site, polyP
formation may be one of the possible mechanisms by which
β-TCP delays bone regeneration (Figure 6).

SUMMARY

In this review, we have described recent advances in the
application of β-TCP for bone regenerative medicine. β-TCP
with its customizable pore size, porosity, and roughness, exhibits
substantial advantages for the repair and regeneration of
damaged bone tissues. Furthermore, the incorporation of other
materials to modulate its hardness and ability to degrade can
improve the mechanical performance of β-TCP. The porous
structure of β-TCP can act as cargo carriers to deliver pro-
osteogenic growth factors with favorable releasing kinetics and
results in reduced side effects due to its inherent bioactivity.
Compared to other biological materials, β-TCP has a more
appropriate degradation rate, which is beneficial to the
delivery of therapeutic ionic dissolution products.

Through the phenomenon β-TCP delays bone healing are
observed just in several specific experimental models, the role of
hematoma formation in osteogenesis is highlighted. The
formation of a blood clot as a ‘natural scaffold’ is fundamental
to early bone healing. Coarse and loose fibrin clots have a rougher
surface structure, resulting in higher porosity and is more prone
to undergo fibrinolysis. Consequently, this is favorable to the
ingrowth of blood vessels and the adhesion of growth factors and
MSCs, leading to successful bone regeneration. On the contrary,
dense blood clots composed of thin and dense fibrin are highly

resistant to fibrinolysis, resulting in a significant delay in the
growth of new blood vessels, entry of growth factors and MSCs,
leading to delayed bone regeneration. β-TCP, directly or
indirectly (through its release of Ca2+ and PO4

3− ions), affect
blood clot structure by regulating fibrin polymerization. The
release of Ca2+ and subsequent binding to FXIII-A can
accelerate fibrin polymerization and lead to fibrin that is
highly resistant to fibrinolysis. The release of PO4

3− ions may
initiate the formation of dense fibrin which is not susceptible to
degradation. From this perspective, β-TCP may delay early bone
regeneration and therefore further investigation is warranted to
explore the effects of modified β-TCP materials on blood clot/
vessel formation to accelerate bone healing.

As yet, several methods have been discovered to control the
structure of hematoma to facilitate bone regeneration, such as
applying the copper (Cu) dose gradient to realize the well-
controlled nitric oxide (NO) releasing, which results in
hematoma that is porous and susceptible to degradation.
However, no perfect parameter or technique has been attained
to endow a designable biomaterial with the desirable properties to
completely control hematoma configuration. For this, more
researches are required to gain knowledge of the key factors
that have influence on the hematoma performance, thus finding
suitable methods to manipulate hematoma formation to boost
bone healing.
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