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The records of maintenance activities are required for modeling the track irregularity
deterioration process. However, it is hard to guarantee the completeness and accuracy of
the maintenance records. To tackle this problem, an adaptive piecewise modeling
framework for the rail track deterioration process driven by historical measurement
data from the comprehensive inspection train (referred to as CIT) is proposed. The
identification of when maintenance activities occurred is reformulated as a model
selection optimization problem based on Bayesian Information Criterion. An efficient
solution algorithm utilizing adaptive thresholding and dynamic programming is
proposed for solving this optimization problem. This framework’s validity and
practicability are illustrated by the measurement data from the CIT inspection of the
mileage section of K21 + 184 to K220 + 308 on the Nanchang-Fuzhou railway track from
2014 to 2019. The results indicate that this framework can overcome the disturbance of
contaminated measurement data and accurately estimate when maintenance activities
were undertaken without any historical maintenance records. What is more, the adaptive
piecewise fitting model provided by this framework can describe the irregular deterioration
process of corresponding rail track sections.

Keywords: maintenance activities identification, Bayesian information criterion, track irregularity, adaptive
thresholding, dynamic programming

INTRODUCTION

Track irregularity directly impacts the running stability and safety of trains. Maintaining tracks in an
acceptable condition is essential, but it consumes many physical and staff resources. In order to
develop cost-effective and rational maintenance plans under limited resources, prior information
about track irregularity is required. Thus, this study on predicting the deterioration of track
irregularity is critical to railway operation. Many kinds of research have been carried out to
forecast track irregularity. Meier-Hirmer et al., (2006) modeled the changes in standard
deviation of longitudinal level within a maintenance cycle using the Gamma process. Veit and
Marsching, 2010 developed an exponential function to model the behavior of track quality
deterioration between two adjacent maintenance events and discussed the interrelations between
deterioration rate and the initial quality. Zhu et al., (2013) applied a Gaussian random process to
model track irregularities of profile and alignment and studied their power spectral densities.
Considering that the evolution of track irregularity is periodic, exponential, and has multiple stages,
Xu et al., (2012) employed a multi-stage linear fitting model to describe the track irregularity
deterioration process between two adjacent maintenance actions. Lee et al., (2018) combined an
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artificial neural network (ANN) and support vector regression
(SVR) to better represent the deterioration phenomena of track
segments for optimizing the maintenance plans in terms of time
and cost. In their experiments, at least two years of maintenance
records were required to obtain a stable prediction of track
deterioration. Mercier et al., (2012) conjointly utilized
longitudinal and transversal leveling indicators using a
bivariate Gamma process to predict track quality. Vale and
Lurdes (2013) developed a stochastic model based on the
Dagum distribution for longitudinal level.

Considering that maintenance activities, including tamping,
grinding, and others obviously recover track irregularity and have
an effect on the deterioration modes (Quiroga and Schnieder,
2010), the aforementioned studies mainly focus on the
deterioration process between adjacent maintenance activities.
Some studies for multiple maintenance periods have been
developed under the following two main assumptions. One is
that maintenance records are accessible for modeling; the other is
that deterministic mathematical models can express the
relationship between deterioration rates and initial qualities
right after maintenance actions. Accordingly, segmenting the
deterioration process of track irregularity according to
maintenance activities is fundamental for exploring the
deterioration rules based on historical measurement data.
However, the complete and accurate records of maintenance
activities are unobtainable because most of the previous
records have been lost. Thus, it has become an urgent task to
establish an algorithm to automatically identify when
maintenance activities were carried out in the process of
deterioration (referred to as maintenance-points). Each
maintenance-point is tagged by the detection date, which is
right after the maintenance activities.

Identification of maintenance-points in the process of track
irregularity deterioration is equivalent to making inferences about
unknown multiple change-points in the field of applied statistics.
There are vast amounts of studies on multiple change-points
analysis in different applied contexts, for example, in
econometrics (Dias, 2004), in biology (Xi et al., 2011), in
climatology (Reeves et al., 2007; Lu et al., 2010), and in
hydrology (Perreault et al., 2000). It has also been introduced
to traffic flow data for freeway incident detection. Yang et al.,
(2014) proposed the coupled Bayesian RPCA by extending the
Bayesian robust principal component analysis (RPCA) approach
for detecting unusual traffic events. The traffic events were
localized based on coupling the multiple traffic data streams.
Liu et al., (2008) developed an automated traffic incidents
detection algorithm on the basis of the cumulative sum
(CUSUM). Moreover, in order to achieve real-time defect
detection of high-speed train wheels, Wang et al., (2020)
utilized the Bayesian dynamic linear model (DLM) to detect
change-points in strain monitoring data from high-speed train
bogies. Many effective methods have been developed and verified,
such as maximum likelihood, Bayes-type, cumulative sum, and
others (Jandhyala et al., 2013). Among them, information criteria
provides a method for multiple change-points estimation without
any priori information on their locations and number (Hall et al.,
2013). Bayesian Information Criterion (referred to as BIC) is

popularly applied (Watanabe, 2012; Hall et al., 2015). BIC was
proposed by Schwarz (1978) and is widely applied as a model
selection criterion. Regarding the number of change-points as the
dimension of the model, Yao (1988) applied BIC for making
inferences about the change-points when the means of
observations on different time periods were distinct. However,
Zhang and Siegmund (2007) found that the classic BIC had poor
performance when applied to irregular statistical models. Thus,
Zhang proposed a modified BIC that differently penalized the
model dimension components of BIC’s objective function.
Hannart and Naveau (2012) improved BIC for multiple
change-points analysis by introducing priori information on
the relative positions and amplitude of change-points and
deriving a closed-form mathematical expression of the
criterion based on Laplace approximation. Successes in
applying BIC to other practical problems such as detecting
change in acoustics have been widely reported in the literature
(Chen and Gopalakrishnan, 1998; Kotti et al., 2006).

The major contribution of this paper is to propose an adaptive
piecewise modeling framework that is driven by historical
measurement data from CIT and enables us to describe the
rail track deterioration process. This framework is capable of
tolerating contaminated measurement data and automatically
identifying maintenance-points in the process of deterioration.
This problem is reformulated as a model selection optimization
problem by taking advantage of BIC. Linear regression (referred
to as LR) is applied to model each subsequence individually
divided by maintenance-points. Then the objective function is
derived according to the framework of BIC and is modified by
incorporating an optimized weight for the model complexity
component. Based on the effect of maintenance activities on
deterioration rate, an efficient solution algorithm for minimizing
the objective function is developed by comprehensively utilizing
the adaptive thresholding and dynamic programming. The
proposed framework is validated by the measurement data for
the Nanchang-Fuzhou railway track through CIT collection from
2014 to 2019.

The rest of the article is organized as follows. In Modeling
framework based on Bayesian Information Criterion Section, we
derive an objective function based on BIC and modify it by
incorporating a weight coefficient. In Solution algorithm Section,
we develop a solution algorithm based on adaptive thresholding
and dynamic programming. Then, we discuss the optimal value
of weight coefficient. In Empirical analysis Section, the
performance of the proposed framework is evaluated by
practical measurement data. Finally, we summarize the
research and discuss our ongoing work related to this article.

MODELING FRAMEWORK BASED ON
BAYESIAN INFORMATION CRITERION

For Chinese railways, the track quality index (TQI) is employed
to quantify track irregularity. It is the sum of standard deviations
of seven geometrical parameters for a 200 m-long track section
(Xu et al., 2011). The standard deviation for each geometrical
parameter is calculated from measurement data collected by CIT.
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Among the seven geometrical parameters, track profile
irregularity is particularly related to mechanized maintenance
activities. Thus, the inference about maintenance-points is
studied on the basis of track profile irregularity (referred to
as TQIp).

The inference of change-points based on BIC is a model
selection procedure that minimizes a constrained function
based on the maximum likelihood method defined by BIC
(Gang and Ghosh, 2011). Accordingly, we reformulate the
inference on the number and locations of maintenance-points
in the deterioration process of TQIp into a model selection
problem based on BIC. Denoting the set of all piecewise LR
models as Ω and each model in it as Μ ∈ Ω. BIC defines the
optimal fitting model from Ω as the one that minimizes Eq. 1.

BIC � −2 ln(L) + K ln(N) (1)

whereinN is the sample size, L is the maximized likelihood of fitting
model M, and K is the number of parameters to be estimated.

In a certain time period, suppose that n inspections have been
accomplished for a 200 m-long track section, the set of difference
in days between the ith detection date and the first detection date
are denoted by t � (t1, t2,/, tn) while the set of corresponding
detection values of TQIp by y � (y1, y2,/, yn). And there are m
maintenance-points in y � (y1, y2,/, yn). The maintenance-
points split y � (y1, y2,/, yn) into m + 1 independent
subsequences. Denoting τk(0≤ k≤m + 1) as the maintenance-
point that splits the kth and the (k + 1)st subsequences and τ0 � 0,
τm+1 � tn. Each subsequence is modeled by LR. Thus, the LR
model M̂k for the kth subsequence is denoted as

yi � βk0 + βk1ti + εk(τk−1 ≤ ti < τk) (2)

where βk � (βk0, βk1) is the corresponding parameter vector for
M̂k and the random error term εk is iid. Denoting the variance of
εk as σ2k, we obtain that εk ∼ N(0, σ2k). Based on the assumption on
the distribution of εk, for τk−1 ≤ ti < τk, we obtain that
yi ∼ N(βk0 + βk1ti, σ

2
k). Denoting the value of TQIp in the

ith(0< i≤ n) detection as yi and the probability density
function of yi is expressed as

P(yi) � 1
σk

���
2π

√ e
− 1
2σ2

k
(yi−βk0−βk1ti)2

(3)

the maximum likelihood estimation of M̂k is

L(M̂k

∣∣∣∣βk, σ2k) � 1

(2πσ2k)τk− τk− 1
2

e
− 1
2σ2

k
∑τk

ti�τk−1
(yi−βk0−βk1ti)2

(4)

σ2k �
1

τk − τk−1
∑τk

ti�τk−1
(yi − βk0 − βk1ti)2 (5)

FIGURE 1 | The different characteristics of maintenance activities and contaminated measurement data.

FIGURE 2 | A typical realization of the adaptive thresholding method.
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Suppose that M̂ � {M̂1, M̂2,/, M̂m+1}, β � {β1, β2,/, βm+1},
the maximum likelihood estimation of M̂ is

L(M̂∣∣∣∣β, σ2) � 1

(2π)n2σ2e
−∑m+1

k�1 (τk−τk−1)
2 (6)

σ2 � ∏m+1

k�1
(σ2

k)τk− τk− 1
2 (7)

The number of parameters to be estimated, including
[(β10, β11),/, (β(m+1)0, β(m+1)1)], (τ1,/, τm), and σ2 is 3m.
Based on Eq. 1, we obtain

BIC(M̂) � n(ln 2 π + 1) + ln σ2 + 3m ln(n) (8)

n(ln 2 π + 1) in Eq. 8 is fixed when the series is given.
Accordingly, the objective function of BIC(M̂) is redefined as

BIC(M̂) � ln σ2 + 3m ln(n) (9)

where ln σ2 is the sum of squared residuals that reflects the
precision of the model and 3m ln(n) is the penalty term of

model complexity. We denote ζ(0< ζ ≤ 1) as a weight
coefficient for the complexity of the fitting model. The weight
coefficient is determined according to a guideline which will be
introduced in The optimal value of the weight coefficient Section.
Thus, the object function is

BIC(M̂) � ln σ2 + ζ × 3m ln(n) (10)

The optimal fitting model M̂ for the deterioration process is
defined as the one that minimizes Eq. 10. And we consider that
the change-points of M̂ are the maintenance-points which will be
identified in the deterioration process.

SOLUTION ALGORITHM

Since the number of maintenance-points is unknown, a large
amount of computation is needed for attaining the optimal fitting
model based on Eq. 10. In order to reduce computation load and

FIGURE 3 | Pseudo code for the adaptive thresholding method.
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to make the algorithm practical, we propose an efficient solution
algorithm based on the characteristics of maintenance-points.

The Different Characteristics of
Maintenance-Points and Contaminated
Measurement Data
This paper is targeted to automatically identify the maintenance-
points in the deterioration process of TQIp for exploring the
deterioration rules of track irregularity. However, outliers in the

deterioration process caused by contaminated measurement data
might interfere with the identification of maintenance-points.
Each outlier is tagged by the corresponding detection date.
Maintenance-points and outliers are characterized as follows.

The deterioration process of TQIp of a 200 m-long track
section on the Nanchang-Fuzhou railway from 2014 to 2019 is
shown in Figure 1. As shown in Figure 1, the value of TQIp drops
obviously after maintenance activities. Denoting the first order
difference of y � (y1, y2,/, yn) as d � (d1, d2,/, dn) where d1 �
0 and di � yi − yi−1. di is much greater/smaller than the
neighboring values if maintenance activities were carried out
at ti. The outliers caused by contaminated measurement data
display the same characteristics. The difference between the
maintenance-points and outliers is their different impact on
the current deterioration process. The maintenance-points
terminate the current deterioration cycle, reduce the value of
TQIp to a specified scope, and start a new deterioration cycle.
Outliers show significant deviations from the current
deterioration process but have no impact on the current
deterioration rate.

Candidate Breakpoints Identified by
Adaptive Thresholding Method
The maintenance-points and outliers in the deterioration process
are collectively referred to as “candidate breakpoints”.
Distinguishing the maintenance-points from outliers within
candidate breakpoints will greatly reduce computation load.
Accordingly, we develop a method for identifying candidate
breakpoints in the deterioration process based on the
aforementioned characteristics of maintenance-points and
outliers. Constant thresholding is not feasible since track

FIGURE 4 | Location of the Nanchang-Fuzhou rail line.

TABLE 1 | The statistic results for different values of weight coefficient.

ζ PRC = 100 (%) RCL = 100 (%) F1

0.05 6.06 75.76 0.112
0.1 9.09 75.76 0.162
0.15 9.09 72.73 0.162
0.2 18.18 72.73 0.291
0.25 24.24 72.73 0.364
0.3 33.33 66.67 0.444
0.35 51.52 63.64 0.569
0.4 60.61 63.64 0.621
0.45 69.70 60.61 0.648
0.5 81.82 57.58 0.676
0.55 81.82 57.58 0.676
0.6 87.88 63.64 0.738
0.65 87.88 66.67 0.758
0.7 90.91 48.48 0.632
0.75 93.94 48.48 0.640
0.8 93.94 42.42 0.584
0.85 93.94 42.42 0.584
0.9 93.94 42.42 0.584
0.95 93.94 39.39 0.555
1 93.94 39.39 0.555
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irregularity recovers at different degrees after maintenance
among track sections. What is more, outliers cannot be
within a predetermined range. Adaptive thresholding
provides a solution to this problem (Breier and Branišová,
2015; Wang, 2015). On the basis of adaptive thresholding, we
develop a method combining the autoregressive model (referred
to as AR) to identify candidate breakpoints in the deterioration
process.

Candidate breakpoints are localized by applying this method
to the first order difference d � (d1, d2,/, dn) of TQIp. The
values of (d1, d2,/, dn) are dynamically stable within a small
range if there is no candidate breakpoint, while the similarity in
the distribution of (d1, d2,/, dn) is destroyed if there is a
candidate breakpoint. Thus, we define a sliding window, and

the value at the current moment is predicated based on the
historical values which are selected into the sliding window. AR is
applied to predicate the value at the current moment based on the
historical values. The values of the upper threshold and lower
threshold are adjusted via the predicated value and variance of
historical values in the sliding window. The difference between
predicated value and actual value at the current moment decides
whether there is a candidate breakpoint or not.We consider ti as a
candidate breakpoint if di exceeds the preset thresholds. The
method is divided into five steps as follows.

Step one: calculate the first order difference d � (d1, d2,/, dn)
of TQIp.

Step two: denote the sliding window as w � (w1,w2,/,wl)
where l is the window size and the absolute value of every
element in d as dabs � (|d1|, |d2|,/, |dn|). q90 is defined as the
90%-quantile of dabs. Starting with the first element in dabs, di is
added into w if |di|≤ q90 while ti is tagged as a candidate
breakpoint if |di|> q90, then the remaining elements are
recursively checked in sequence until the sliding window
is full.

Step three: fit w with AR(p) through the Yule-Walker method
(Brockwell et al., 1987), where p is the order of the AR model.
Denote the predicated value at the current moment by AR(p)
as ~di.

Step four: according to the Pauta criterion (3σ criterion), the
proportion of outliers in a series is less than 0.3% under the
constraint of 3σ (Li et al., 2016). We denote the upper threshold as
Tupper and the lower threshold as Tlower , then

Tupper � ~di + 3 × Sd (11)

Tlower � ~di − 3 × Sd (12)

where Sd is the standard deviation of historical values in w.
Step five: if di ∉ [Tlower ,Tupper], ti is tagged as a candidate

breakpoint, and w is not changed. Otherwise, di is added into w
while the earliest element in w is removed. Return to Step three
until all of the elements in d have been detected.

The candidate breakpoints identified by the aforementioned
method are denoted by τc � (τ1, τ2,/, τ ~m) where ~m is the
number of candidate breakpoints. The composite diagram of
a typical realization is shown in Figure 2, in which dots
represent the first order difference of TQIp, the shaded part
represents the limitation range of thresholds, and red crosses
represent the identified candidate breakpoints. Moreover, the
pseudocode of the adaptive thresholding method is provided in
Figure 3.

Dynamic Programming for Finding Optimal
Fitting Model
Dynamic programming is a multi-stage optimization method and is
applicable to various practical problems (Bellman and Dreyfus,
1962). We now consider a method based on the principle of
dynamic programming to find an optimal fitting model that
achieves the minimum of Eq. 10. Suppose that r(1≤ r ≤ ~m)
breakpoints are selected from all the candidate breakpoints τc �
(τ1, τ2,/, τ ~m) and then the series y � (y1, y2,/, yn) is divided

TABLE 2 | The evaluation for the identification results of different rail track sections.

No Starting mileage
of

a 200 m-long
section

Mman Test Fest RCL
(%)

PRC
(%)

Noutlier

1 K49.849 5 5 0 100.00 100.00 3
2 K50.555 4 4 0 100.00 100.00 5
3 K50.815 3 3 0 100.00 100.00 5
4 K50.976 4 2 0 50.00 100.00 1
5 K51.367 3 3 2 100.00 60.00 4
6 K53.996 1 1 0 100.00 100.00 5
7 K57.509 2 1 0 50.00 100.00 6
8 K59.081 2 2 0 100.00 100.00 1
9 K59.357 3 2 0 66.67 100.00 1
10 K71.482 3 1 1 33.33 50.00 3
11 K72.609 2 2 0 100.00 100.00 1
12 K73.598 4 2 0 50.00 100.00 2
13 K79.195 3 2 1 66.67 66.67 1
14 K79.747 2 2 0 100.00 100.00 0
15 K82.812 3 3 0 100.00 100.00 0
16 K84.601 2 2 0 100.00 100.00 2
17 K85.881 3 2 0 66.67 100.00 0
18 K89.275 2 1 0 50.00 100.00 4
19 K89.696 3 2 0 66.67 100.00 2
20 K90.194 3 1 0 33.33 100.00 5
21 K100.927 3 3 0 100.00 100.00 1
22 K102.077 3 3 0 100.00 100.00 2
23 K103.334 3 2 0 66.67 100.00 0
24 K106.551 3 3 0 100.00 100.00 1
25 K111.410 2 2 0 100.00 100.00 2
26 K111.778 2 2 0 100.00 100.00 2
27 K112.791 3 3 1 100.00 75.00 1
28 K116.079 2 2 0 100.00 100.00 3
29 K117.137 2 2 0 100.00 100.00 6
30 K139.513 2 2 0 100.00 100.00 0
31 K156.778 1 1 0 100.00 100.00 1
32 K157.582 1 1 0 100.00 100.00 2
33 K162.900 3 3 0 100.00 100.00 5

TABLE 3 | The distributions of PRC and RCL.

RCL RCL = 100% 50% ≤ RCL < 100% RCL < 50%

Count 22 9 2
PRC PRC � 100% 50% ≤ PRC < 100% PRC < 50%
Count 29 4 0

Frontiers in Materials | www.frontiersin.org February 2021 | Volume 8 | Article 6204846

Yang et al. BIC-Based Track Deterioration Modeling

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


into r + 1 subsequences. To find the optimal fitting model, LR is
employed to fit each subsequence by the least-square method,
independently. Then, BIC(M̂) is calculated according to Eq. 10.
Finally, the optimal fitting model is acquired by iterating to the
minimum. Let Min(z) be the minimum of object z. When the
number of the selected breakpoints is r, Min[BIC(M̂∣∣∣∣r)] is equal to
Min[S(τ1, τ2,/, τr)] where

S(τ1, τ2,/, τr) � In(σ2) � ∑r+1
k�1

[τk − τk−1
2

In(σ2
k)] (13)

c(τk−1, τk) is defined as the sum of squared residuals for the
subsequence, which is constrained in (τk−1, τk). We obtain

c(τk−1, τk) � τk − τk−1
2

In(σ2
k) (14)

S(τ1, τ2,/, τr) � ∑r+1
k�1

c(τk−1, τk) (15)

For 0≤ j≤ r, defining br−j(τj) as the minimum of
S(τ1, τ2,/, τr) on the basis that the first j breakpoints are
confirmed, we obtain

br−j(τ j) � Min
τj+1 ,/,τr

⎡⎢⎢⎣ ∑r+1
k�j+1

c(τk−1, τk)⎤⎥⎥⎦ (16)

Considering the tamping will not be operated for a rail track
section twice in a month, we set the constraint that τj+1 − τj > 30
and suppose that τ0 � t0, τr+1 � tn. Searching the optimal
combination of candidate breakpoints is equivalent to solving
the following recursive problem:

br−j(τ j) � Min
τj+30< τj+1 < τj+1−30×(r−j−1)

⎧⎪⎨⎪⎩c(τj, τj+1) + Min
τj+2 ,/,τr

⎡⎢⎢⎣ ∑r+1
k�j+2

c(τk−1, τk)⎤⎥⎥⎦⎫⎪⎬⎪⎭
� Min

τj+30< τj+1 < τj+1−30×(r−j−1){c(τj, τj+1) + br−j−1(τj+1)}
(17)

To sum up, the recurrence formulas are

⎧⎪⎨⎪⎩
b0(τr) � c(τr , τr+1)

br−j(τj) � Min
τj+30< τj+1 < τj+1−30×(r−j−1){c(τ j, τ j+1) + br−j−1(τ j+1)}(0≤ j< r)

(18)

From the previous, it is concluded that
Min[BIC(M̂∣∣∣∣r)] � br(τ0). What is more, Min[BIC(M̂∣∣∣∣r + 1)]
can be calculated based on the intermediate results for
computing br(τ0). Denoting fr(τz) as the optimal results for
the subsequence which begins at τz under the circumstance that
the number of selected candidate breakpoints is r, then the
recurrence formulas of fr(τz) are

⎧⎨⎩ f0(τz) � c(τz , τr+1)
fr(τz) � Min

τz+30< τ1 < τr+1−30×(r−1)
{c(τz , τ1) + fr−1(τ1)}(1≤ r ≤ ~m)

(19)

Searching the optimal results under the assumption that there are
r maintenance-points in the deterioration process of TQIp is
equivalent to calculating fr(τ0). The iteration is terminated if the
aforementioned constraint cannot be satisfied. For 1≤ r ≤ ~m, the set
of optimal results with a different number of selected candidate
breakpoints is denoted by f (τ0) � [f1(τ0), f2(τ0),/f~m(τ0)] and

TABLE 4 | The comparison results among different values of FSd .

Starting mileage of
a 200 m-long section

FSd Time(s) Number of candidate
breakpoints

Estimation results of maintenance-points

K49.849 2.5 3 20 2015/06/12 2015/10/18 2017/08/12 2018/06/26 2018/09/11
3 1 15 2015/06/12 2015/10/18 2017/08/12 2018/06/26 2018/09/11
4 1 10 2015/06/12 2015/10/18 2017/08/12 2018/06/26 2018/09/11

K50.555 2.5 4 25 2015/06/24 2015/10/18 2017/07/26 2018/12/11
3 2 21 2015/06/24 2015/10/18 2017/07/26 2018/12/11
4 1 13 2015/06/24 2015/10/18 2017/07/26 2018/12/11

K50.815 2.5 3 26 2015/09/08 2015/10/18 2017/08/26
3 1 13 2015/09/08 2015/10/18 2017/08/26
4 1 8 2015/09/08 2015/10/18 2017/08/26

K51.367 2.5 5 30 2015/10/18 2017/09/12 2018/12/11
3 2 13 2015/10/18 2017/09/12 2018/12/11
4 0 11 2015/10/18 2017/09/12

K84.601 2.5 5 27 2015/07/24 2017/12/12
3 2 21 2015/07/24 2017/12/12
4 1 7 2017/12/12

K100.927 2.5 1 13 2016/06/14 2017/08/12 2018/01/12
3 1 7 2016/06/14 2017/08/12 2018/01/12
4 1 3 2016/06/14 2017/08/12 2018/01/12

K106.551 2.5 3 24 2016/07/14 2017/09/12 2018/01/26
3 1 15 2016/07/14 2017/09/12 2018/01/26
4 1 13 2016/07/14 2017/09/12 2018/01/26

K112.791 2.5 52 52 2016/06/26 2017/09/12 2018/01/26
3 20 39 2016/06/26 2017/09/12 2018/01/26
4 1 16 2016/06/26 2016/05/26
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the optimal piecewise fitting model is the one that achieves
Min[f (τ0)]. The change-points of this model which are selected
from the set of candidate breakpoints, are the maintenance-points,
while others are outliers.

The Optimal Value of the Weight Coefficient
The value of the weight coefficient ζ in Eq. 10 has a significant
impact on the accuracy and reliability of the results identified by
the aforementioned framework. Relying on the historical
measurement data from 2014 to 2019 for the nearly 200 km-
long track sections of the Nanchang-Fuzhou rail line (as shown
in Figure 4), we obtain the optimal value of ζ which enables the
identified maintenance-points to almost correspond with the
actual ones. The measurement data are acquired from CIT,
which inspects the railways twice a month on average in China.
In particular, the preprocessing and transforming of measurement
data, which include mileage correction, historical waveform data
alignment, and the TQI calculation of each geometric parameter,
have been completed relying on the system developed by our team
(Xu et al., 2015). Thus, we consider that the data are complete and
reliable. Meanwhile, we obtain a set of actual maintenance-points
of each track section via manual analysis. They were considered as
correctly identified maintenance-points if they were also included
in the set of the actual ones.

To assess the performance of the proposed framework with
different values of ζ , we employ the precision (referred to as PRC)
and recall rates (referred to as RCL) given by:

PRC � Test

Test + Fest
× 100% (20)

RCL � Test

Mman
× 100% (21)

where Test denotes the number of correctly identified maintenance-
points from candidate breakpoints , Fest is the number of erroneous
ones, and Mman is the number of actual maintenance-points from
manual analysis. F1 defined by Eq. 22 is also considered. The higher
the value of F1, better performance is obtained.

F1 � 2 × PRC × RCL
PRC + RCL

(22)

To find the optimal value of ζ , the maintenance-points of each
rail track section are estimated by the proposed framework,
whose ζ gradually increases by 0.05. By contrast, using the
estimated maintenance-points to the actual ones, we obtain
the PRC and RCL of each section. For each ζ , the proportion
of sections whose PRC � 100% and sections whose RCL � 100%
are counted separately, while the results are tabulated in Table 1.

FIGURE 5 | The identified maintenance-points and piecewise fitting model of section one: (A) the candidate breakpoints identified by the adaptive thresholding
method; (B) the value of BIC for a different number of selected candidate breakpoints; (C) the piecewise fitting model.
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From Table 1, it is concluded that RCL is getting smaller while
PRC is getting larger with the increase of ζ . Based on F1, the
optimal value of ζ is determined as 0.65.

EMPIRICAL ANALYSIS

In this section, 33 track sections of 200 m in length are further
analyzed to demonstrate the performance of the presented
framework with ζ � 0.65. Then, the calculation procedure of
this framework is displayed through two track sections in
detail.

Performance Analysis
PRC and RCL for each track section are calculated based on the
comparison between the estimated maintenance-points and the
actual ones. To evaluate the accuracy of the presented framework
with the interference of contaminated measurement data, we
have investigated the outliers due to the contaminated
measurement data of each track section. Noutlier is denoted as
the number of outliers. The results of the metrics are tabulated in
Table 2. Based on that, we obtain the distributions of PRC and
RCL, which are tabulated in Table 3.

From Table 3, we obtain that the proposed framework owns a
high PRC and RCL for most rail track sections. It indicates that
this framework is capable of overcoming the disturbance of
contaminated measurement data and accurately distinguishing
the maintenance-points from outliers within candidate
breakpoints. Meanwhile, the RCL of a few sections are not
satisfactory. Through analyzing further, we find that it has
resulted from the fact that not all maintenance-points are
included in the set of candidate breakpoints.

Sensitivity Analysis
A large range of thresholds in Candidate Breakpoints Identified by
the Adaptive Thresholding Method Section leads to an excessive
number of candidate breakpoints, requiring more time to obtain
the minimum of Eq. 10. However, the actual maintenance-points
might be left out if the range of thresholds is too small.
Accordingly, the sensitivity of this framework to the range of
thresholds is discussed in this section. According to Eqs 11, 12,
we find that the range of thresholds is significantly affected by the
times of Sd (the standard deviation of historical values selected
into the sliding window), which is denoted by FSd . To access the
sensitivity, we apply this framework to some of the sections in
Table 2 for each FSd ∈ {2.5, 3, 4}. The other values of parameters

FIGURE 6 | The identified maintenance-points and piecewise fitting model of section two: (A) the candidate breakpoints identified by adaptive thresholding
method; (B) the value of BIC for a different number of selected candidate breakpoints; (C) the piecewise fitting model.
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in the implementation of this framework are kept consistent with
those in Performance Analysis Section. The comparison results
among different values of FSd are tabulated in Table 4. The
computation time in seconds and the number of candidate
breakpoints are given in column 3, 4, while the estimated
maintenance-points of each section with different values of FSd
are given in column 5.

From Table 4, we obtain that compared with FSd � 3, the
computation time is increased by 145% on average for FSd � 2.5.
What is more, the estimated maintenance-points are the same
between FSd � 3 and FSd � 2.5. Although it requires less
computation time when FSd � 4, some of the actual
maintenance-points are left out as the estimation results of the
sections starting at K51.367, K84.601, and K112.791 indicate.
Thus, it is reasonable that FSd � 3 in Candidate Breakpoints
Identified by the Adaptive Thresholding Method Section.

Section One: K117 + 137–K117 + 337
This section is on a tangent track. The candidate breakpoints identified
by the adaptive thresholding method are shown in Figure 5A. The
value of Min[BIC(M̂∣∣∣∣r)] for a different number of selected candidate
breakpoints are shown in Figure 5B and BIC(M̂) obtains the
minimum when the number is 2. The identified maintenance-
points are 2016-05-26 and 2018-04-13. The estimated
maintenance-points and piecewise fitting model are shown in
Figure 5C. The maintenance-points estimated by the proposed
framework are exactly as the actual ones. The deterioration process
is divided into three subprocesses. Although there are lots of outliers
caused by contaminatedmeasurement data in the first subprocess, the
maintenance-points are accurately identified.

Section Two: K162 + 900–K163 + 100
This section is on a curved track. The candidate breakpoints identified
by the adaptive thresholdingmethod are shown in Figure 6A, and the
value ofMin[BIC(M̂∣∣∣∣r)] for this section are shown in Figure 6B. The
number of selected candidate breakpoints corresponding to the
optimal result is 3. The estimated maintenance-points and
piecewise fitting model are shown in Figure 6C. The identified
maintenance-points are 2016-3-14, 2018-01-12, and 2018-06-26.
The outliers caused by contaminated measurement data are mainly
located in the first subprocess. The slope of the fitting model for each
subprocess reflects its deterioration rate. It is obvious that the
deterioration rates are different before and after maintenance
activities. Thus, we believe that the deterioration rates might be
affected by maintenance activities.

CONCLUSION

In this paper, a rail track deterioration modeling framework
driven by historical measurement data from CIT is proposed.

The modeling framework requires no historical maintenance
records and does not assume the quality of track measurement
data. The proposed framework formulates the identification of
maintenance activities with a model selection optimization
problem, based on a modified Bayesian Information Criterion
by incorporating an optimized weight for the model complexity
component into the objective function. An efficient solution
algorithm utilizing adaptive thresholding and dynamic
programming is proposed for the model selection problem,
taking the characteristics of the effect of maintenance on track
deterioration trend.

The proposed track deterioration modeling framework is
applied to the historical measurement data from 2014 to 2019
for the nearly 200 km-long track sections of the Nanchang-
Fuzhou rail line. Based on that application, the optimal value
of the weight coefficient which is incorporated for the model
complexity is discussed in The Optimal Value of the Weight
Coefficient Section. Moreover, the assessment indicators are
calculated based on 33 200 m-long track sections. As the
assessment indicators indicate, the proposed framework is
capable of accurately identifying the maintenance-points and
creating an adaptive piecewise model of the deterioration process.

However, for a few track sections, the estimated maintenance-
points are less than the actual ones, which resulted from the fact
that not all maintenance-points were included in the set of
candidate breakpoints. Therefore, one of the emphases for the
next step will be on improving the algorithm to ensure that the
set of candidate breakpoints contains all of the maintenance-
points.
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