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With unique advantages, such as high energy density, long lifespan and environmental
friendliness, lithium-ion batteries (LIBs) have been widely used in various portable
electronics, and placed great expectations on the application in electric vehicles. To
meet the ever-increasing high-energy-density demand of the next-generation LIBs, silicon
suboxide SiOx(0 < x < 2) has been considered as one of the most promising anode
materials, due to its high mass specific capacity, good cycling performance, proper
working potential, low cost, and environmental friendliness. However, there are still several
drawbacks before the application of SiOx, such as low intrinsic electronic conductivity and
high irreversible capacity in the first cycle, which lead to low electrochemical activity and
low initial coulombic efficiency (ICE). To tackle these issues, extensive efforts have been
made and remarkable progresses have achieved in recent years. Here, latest
developments of SiOx-based anodes are briefly reviewed, especially on the subject of
metal/metal oxide doping on SiOx-based electrode materials, and the future application of
SiOx anodes in rechargeable LIBs is also prospected.
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INTRODUCTION

With unique advantages of high operating voltage, large energy density and long lifespan, LIBs have
been widely used in various portable electronics, and placed great expectations on the application in
electric vehicles (Li et al., 2020b; Liu et al., 2021). Graphite, which is relatively cheap, reliable and easy
to manufacture into large electrodes by slurry coating process, has been extensively used as an active
anode material for commercial LIBs. However, due to its low theoretical capacity of 372 mAh·g−1,
graphite cannot meet the increasing actual requirements of the high-quality and fast-paced life for
energy density, safety and service life in energy storage and supply devices (Yu et al., 2020a; Yu et al.,
2020b; Zhou et al., 2020; Li et al., 2021), it is urgent to develop new anode materials with higher
specific capacity (Etacheri et al., 2011; Zhou et al., 2019; Qu et al., 2020).With a theoretical capacity of
4,200 mAh·g−1, Si is expected as an ideal candidate anode material for the next-generation LIBs with
high energy density. However, the drastic volume fluctuation (∼300%) and the formation of unstable
solid electrolyte interface (SEI) during lithiation/de-lithiation process always result in indisposed
cycling efficiencies and capacity retention, which hinders the widespread application of Si-based
electrodes (Bruce et al., 2008; An et al., 2019; Weng et al., 2020; Xiang et al., 2020). As a derivative of
Si, SiOx (0 < x < 2) has attracted more andmore attentions because of its abundant reserves, low cost,
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easy synthesis, ideal gravimetric capacity and relatively small
volume expansion compared with pure Si (Pan et al., 2019).

However, several crucial issues still need to be solved before the
practical application of SiOx-based anode materials. Its relatively
low conductivity (6.7 × 10−4 S·cm−1) (Kim et al., 2007) and large
volume change (∼200%) during cycling always results in poor rate
performance and rapid capacity decline, respectively. Moreover, the
large initial irreversible capacity of SiOx hinders its practical
application (Temkin, 1975). To tackle these issues, significant
efforts have been devoted. Composing SiOx with conductive
carbonaceous materials, such as carbon layer, graphite and
graphene sheets, can largely improve the charge transfer
capability (Doh et al., 2008; Ren et al., 2011; Nguyen et al., 2013;
Back et al., 2014; Yuan et al., 2015). Recently, researchers focused on
creating nanostructures and limiting the size of the active material
into the nanoscale range, which not only reduces the diffusion
distance of Li+, but also effectively adapts to the accommodation of
volume change during cycling, resulting in the improvement of the
high-rate and long-term-stability performance (Zhang et al., 2017a).
Designing and constructing rational structures of SiOx, such as
porous structure, layered structure and so on, plays a very important
role in the mitigation of the volume change during cycling and the
improvement of the lithium-storage performance (Liu et al., 2009;
Lee and Park, 2013; Chen et al., 2020). Up to now, there have been
several reviews on SiOx-based anode materials (Chen et al., 2017;
Liu et al., 2019; Jiao et al., 2020), which mainly focus on reviewing
the compositing SiOx with carbon materials, and the selections and
optimizations on electrolytes, additives or binders for the
improvements of electrochemical properties for SiOx-based
electrodes. However few reviews have been published specifically
on the subject of metal/metal oxide doping on SiOx-based electrode
materials, which is an easy industrialization of the research direction
and of great significance for the development of SiOx-based anode
materials. In this review, the recent advances of SiOx anode
materials in lithium-storage mechanisms, modifications and
electrochemical properties are also summarizes. At the end of
this review, a general outlook is given for the application of
SiOx-based electrodes in LIBs.

LITHIATION PROCESS OF SILION
SUBOXIDE

SiOx (0 < x < 2) is a kind of amorphous material with
relatively complex structure. Among the various silicon
suboxide, SiO (x ≈ 1), owning a relatively simple structure, has
attracted most attentions as one of the most promising anode
material for commercial use in next-generation LIBs. The atomic
structure of SiO has been a subject of controversy since its
discovery, where two main models were preferred. Philipp
proposed a random-bonding model, which described that the
Si-Si and Si-O bonds were statistically and randomly distributed
throughout a continuous random network of single-phase SiO,
hence implying a single-phase material (Philipp, 1971). Temkin
suggested a random-mixture model, which assumed that SiO
contained mixtures of small domains of Si and SiO2,
corresponding to a multi-phase mixture (Temkin, 1975).

Even so, it is very important to understand the lithiation/de-
lithiation process of SiOx materials in order to solve the inherent
defects of materials in practical application. Considering the
complex and indeterminate structure of SiOx, the lithium-storage
mechanism of SiOx and the composition of its lithiated products are
complex. For instance, the lithium-storage mechanism of SiO can
be proposed as follows (Liu et al., 2019):

SiO + 2Li+ + 2e− → Si + Li2O (1)

4SiO + 4Li+ + 4e− → 3Si + Li4SiO4 (2)

5SiO + 2Li+ + 2e− → 3Si + Li2Si2O5 (3)

7SiO + 6Li+ + 6e− → 5Si + Li6Si2O7 (4)

3SiO + 2Li+ + 2e− → 2Si + Li2SiO3 (5)

Si + xLi+ + xe−↔ LixSi (6)

At the initial stage during lithiation process, Si, lithium
silicates and Li2O are formed by the irreversible reaction of
SiO with Li. And then, the lithiation/de-lithiation reactions
between the formed Si and Li can proceed reversibly. When
the formed Si from SiO is fully lithiated to form Li4.4Si, a
theoretical reversible capacity of 2,680 mAh·g−1 can be
delivered for SiO (Pan et al., 2019). In a similar way, Li2O and
Li4SiO4 are produced during the lithiation of nonstoichiometric
SiOx, which can act efficiently as volume buffer zones, which is
beneficial to the full lithiation and de-lithiation of the formed Si.
However, the formed Li2O and Li4SiO4 are both inert phases,
which consume the Li irreversibly and further results in low initial
coulombic efficiency (Kim et al., 2013).

IMPROVEMENTS IN LITHIUM-STORAGE
ELECTROCHEMICAL PERFORMANCE OF
SILION SUBOXIDE-BASED ANODES
The low intrinsic conductivity of SiOx, large volume change
during the lithiation/de-lithiation process, and the partially
irreversible reaction of SiOx with Li are the major stumbling
blocks of SiOx-based anodes for practical application. To tackle
these issues, extensive efforts have been made. Reducing the
particle sizes (Zhang et al., 2017a), constructing porous
structures (Yu et al., 2014), combining with conductive
carbonaceous materials, and/or composing with other
heterogeneous metals or components can be taken to
effectively improve lithium-storage electrochemical
performance of SiOx-based anodes.

Silion Suboxide/C Composite Materials
To improve electrical conductivity of SiOx-based electrodes,
combining SiOx with conductive carbonaceous materials is an
effective strategy. Owing to their unique properties of high
conductivity, good ductility, readily accessibility, and ability to
form stable SEI layers, carbonaceous materials are ideal additives
for electrode materials (Choi et al., 2012; McDowell et al., 2013).
Guo et al. developed a graphite-like SiOx/C composite, in which
the nano-sized SiOx particles uniformly anchored in the carbon
matrix (Xu et al., 2018a). Benefiting from the unique structure,
when used as anode for LIBs, the obtained graphite-like SiOx/C
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derived high reversible capacity of 645 mAh·g−1 with a high
capacity retention of 90% for 500 cycles. Wu and his co-
workers designed a two-step manufacturing process to prepare
SiOx-C composite with a hierarchical structure (Wu et al., 2015).
After 100 cycles, the SiOx-C anode delivered a reversible specific
capacity of 674.8 mAh·g−1 and 83.5% capacity retention at
100 mA·g−1. Direct growth of vertical graphene nanosheets on
SiO microparticles can remarkably improve the lithium-storage
performance, which showed a high capacity retention up to 93%
after 100 cycles (Shi et al., 2017). More recently, an integral
interface containing Li polyacrylate (Li-PAA) and carbon
nanotubes (CNTs) was constructed on the carbon-coated SiOx

by Guo et al. (Li et al., 2020). The flexible Li-PAA protective layer
can not only adjust the volume change of SiOx due to its high
stretchability (up to 582%), but also provide uniform Li+

transmission interface during charging and discharging. The
embedded CNTs can provide fast electronic pathways in the
Li-PAA layer, which ensures the superior electronic conductivity.
Attributing to the dynamically stable interface (Figure 1), the
obtained C-SiOx/C anode showed a remarkably improved cycling
ability for 500 cycles, and a high reversible specific capacity of
836 mAh·g−1 can be delivered. The pea-pod structure of SiOx/C
composite via combining electrospinning and high-temperature
carbonization also showed the enhanced cycling stability and rate
performance, attributing to its unique structure with carbon
conductive network (Zheng et al., 2020).

Silion Suboxide/Metal or Silion
Suboxide/Alloys Composite Materials
On account of favorable electrical conductivity and good
flexibility, metals or alloys can be used to improve the
lithium-storage electrochemical performance of SiOx anode.
The lithium-inactive metal of Fe, Ni or Ti was doped into
SiOx, respectively, via a co-deposition technique, which was
conducive to the diffusion of Li+ (Miyachi et al., 2007). The
obtained Ni-doped SiOx anode delivered a high ICE of 84% and a
capacity retention rate of 82% after 400 cycles whenmatched with
an manganese oxide cathode. Similarly, a mixture of SiO, Ni, and

reduced graphene oxide was prepared by a hydrothermal mixing
and sintering process, and showed an improved cycle
performance (Liu et al., 2018). A SiO/Cu/expanded graphite
composite was fabricated by a simple electroless plating
combined with ultrasonication method, and delivered a
markedly improved reversible capacity and cycling stability
(Zhang et al., 2017b). In addition, Xu et al. developed a
carbon-coated SiO/Cu composites via Cu deposition combined
with carbon coating, which also demonstrated a good cycling
performance with capacity retention of 88.3% (Xu et al., 2018b).
More recently, by conducting a selective alcoholysis method,
Kwon et al. synthesized a vanadium-doped SiOx composites,
which exhibited an excellent reversible capacity of
1,305 mAh·g−1 at 100 mA·g−1, attributing that the sluggish
kinetics of the electrochemical reactions between SiOx and
lithium has been accelerated by metal doping (Kwon et al.,
2020). The pre-lithiation strategy of SiOx can also greatly
improve its ICE (Kim et al., 2016).

The SiO2 phase in SiO can be partially converted into other
lithium inactive metal oxides and additional silicon through
chemical reduction of SiO2 with elemental metals, which
would reduce the irreversible lithiation and improve the
reversible specific capacities and ICEs of the electrodes. Based
on this, Jeong and his colleagues converted the SiO2 phases in SiO
into lithium-inactive alumina and new formed nano-silicon
through a mechanochemical process, during which the
nanostructured SiAl0.2O material was in situ formed. The new
formed silicon nanocrystallites in the matrix enhanced the ICE,
while the lithium-inactive alumina improved the cycling
performance (Jeong et al., 2010).

Beyond that, the electrochemically active metal can be also
added into SiOx for enhancing lithium-storage performance.
For example, nanoscale Sn particles were mixed with SiO
through a mechanical milling process, and the obtained
hybrid delivered a significant improvement of both specific
capacity by 50% and ICE from 66.5 to 85.5% (Fu et al., 2019).
During the lithiation/de-lithiation process, Sn nanoparticles
not only can boost reaction kinetics due to their excellent
conductivity, but also play as a reagent revive intermediate

FIGURE 1 | Schematic illustration of the lithiation and delithiation of (A) SiOx/C and (B) C-SiOx/C (Li et al., 2020). Reproduced with permission from ref. (Li et al.,
2020). Copyright 2020, Elsevier.
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Li2O interphase by the reaction of Sn + xLi2O→ SnOx + xLi+ +
xe−, which benefits to the improvement of the lithium-storage
performance. A submicron-sized hybrid SiOx/Sn/C anode was
prepared by Li et al., in which the 0D-Sn nanoparticles were
reduced in situ in 2D-SiOx inner layer and closely coated by
carbon outer layer. With the introduction of Sn, the as-obtained
SiOx/Sn/C anode demonstrated a remarkable tap density of
0.74 g·cm−3 and an excellent long-cycle performance of
654 mAh·g−1 at a current density of 1 A·g−1 even after 500
cycles (Li et al., 2019).

In addition, alloys are also used as boosters for the
electrochemical properties of SiOx-based anodes. For
instance, Abouimrane et al. prepared a SiO-SnxCoyCz

composite by high-energy mechanical milling using 50 wt%
SiO and 50wt% Sn30Co30C40 as raw materials. The as-
obtained hybrid exhibited a remarkable improved specific
capacity of 900 mAh·g−1 at 300 mA·g−1 (Liu et al., 2012) . A
nanocrystal-FeSi-embedded Si/SiOx anode was synthesized
using Fe-Si alloy as the raw material (He et al., 2017). Using
the amorphous SiOx as a buffer layer and the self-conductive
nanocrystal-FeSi as a robust skeleton, the as-prepared sample
showed a reversible capacity of 616.6 mAh·g−1 even at a high
current density of 500 mA·g−1. The retractable three-
dimensional porous residual Al-doped Si/SiOx composite was
also prepared from 6-μm Al-Si alloy particles (Wang et al.,
2020), which displayed an attractive application prospects with
specific capacity of 899.7 mAh·g−1 even after 300 cycles.
Recently, MXene/Si@SiOx@C layer-by-layer superstructure
with auto-adjustable function was successfully prepared by
magnsiothermic reduction and pyrolytic carbon coating using
two-dimensional MXene Ti3C2Tx (Zhang et al., 2019b). The as-
obtained nanohybrids provided a reversible specific capacity of
1,674 mAh·g−1 at 0.2 C with an initial coulombic efficiency of
81.3%, and superior stable lithium storage with 76.4% capacity
retention even after 1,000 cycles. The superior lithium-storage
performance can be attributed to the advantages of mechanical
stability by the synergistic effect of SiOx, MXene, and N-doped
carbon coating, and excellent structural stability by the forming
a strong Ti-N bond among the layers.

Silion Suboxide/Metal Oxides
Composite Materials
In recent years, the strategy of combining SiOx with metal oxides
has been adopted to improve the electrochemical lithium-storage
performance of SiOx-based anodes. Among them, TiO2 is usually
considered as one of the best composition of electrode materials
due to the high reversibility and conductivity of the lithiated
product LixTiO2 (TiO2 + nLi+ + ne− ↔ LinTiO2). Furthermore,
the insertion/extraction process of lithium ions in TiO2 layer is
very rapid along (001) plane. A nano-scale and thin TiO2 surface
coating on SiO has been obtained by a facile sol–gel process
(Jeong et al., 2012). According to the unique role of the TiO2

coating, the obtained anode delivered significantly improved
specific capacity, coulombic efficiency, rate capability and
cycling performance, which are much higher than these of
bare SiO electrode. Li et al. embedded ultrafine TiO2

nanocrystals in SiOx particles to form SiOx-TiO2 dual-phase
core and then coated them with carbon shells (Li et al., 2018).
The initial lithiation process of the as-obtained watermelon-like
SiOx-TiO2@C nanoparticle is shown in Figure 2. The
incorporation of TiO2 effectively enhanced the lithium ionic
and electrical conductivities, and released the structure stress
during cycling. As a result, the as-obtained watermelon-like
structured SiOx-TiO2@C nanocomposite could exhibit a high
capacity of 910 mAh·g−1 for 200 cycles at a current density of
100 mA·g−1. Hu and his co-workers designed a nitrogen plasma-
treated core-bishell structure, in which Si nanoparticles were
encapsulated in SiOx shell and N-doped TiO2-δ shell (Hu
et al., 2019). Both the SiOx shell and N-doped TiO2-δ shell
acted as buffer components to adapt the volume change and
stabilize the SEI films. In addition, increased oxygen vacancies
and Ti3+ species can be obtained after the nitrogen plasma
treatment, resulting in the improved diffusion kinetics and
conductivity of Li+. After 300 cycles in the half-cell, the Si@
SiOx@TiO2−δ electrode showed excellent cycling stability with a
reversible specific capacity of 650 mAh·g−1 at 200 mA·g−1.

Meanwhile, during the charge/discharge processes,
corresponding metal nanoparticles can be in situ transformed
from the added transition metal oxides, which are helpful to

FIGURE 2 | Schematic illustration for first lithiation process of watermelon-like structured SiOx-TiO2@C nanoparticle (Li et al., 2018). Reproduced with permission
from ref. (Li et al., 2018). Copyright 2018, Wiley Online Library.
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increase the electrical conductivity of the composite materials.
Zhou et al. successfully prepared a SiO/Fe2O3 composite via a
mechanical grinding process (Zhou et al., 2013). The additional
Fe2O3 phase can be lithiated to form metallic Fe during the
discharge processes, which can improve the electrical
conductivity, resulting to the enhanced reversible specific
capacity and ICE from 59 to 68%. An egg-like few-layered
graphene-wrapped and Fe3O4-pillared SiOx anodes was
established by Liao et al., which delivered a reversible specific
capacity of 833.4 mAh·g−1 with a high ICE of 84.9% and capacity
retention ratio of 81.8% even after 500 cycles at a current density
of 500 mA·g−1 (Liao and Wu, 2019). The excellent performance
was benefited from the comprehensive effects of integrated
structure, enhanced Li+-diffusion kinetics, and improved
pseudocapacitance behavior.

Morover, metal oxides can react with SiOx to form metal
silicate compound at high temperature, which can increase the
crystallinity of SiOx, resulting in the improvement on the ICEs of
SiOx-based anodes. For instance, SiO was coated with a olivine
structure Fe2SiO4 layer by heating Fe2O3 and SiO at a molar ratio
of 1:0.2, which significantly improved ICE from 70 to 90%
(Yamamura et al., 2013). Zhang et al. prepared carbon-coated
C-SiO-MgSiO3-Si composites by heating the mixture of SiO,
MgO and Si (Zhang et al., 2019a). The in situ formation of
the MgSiO3 phase can consume the deleterious SiO2 phase
resulting from the disproportionation reaction of SiO at high
temperatures, which helps to improve the ICE to 78.3% for
lithium storage. Meanwhile, as an electrochemically inert
phase, MgSiO3 can also effectively buffer the volume change
during cycling, which is beneficial to enhanceing the cycling
stability.

DISCUSSION

Because of its high capacity, good cycling stability and
appropriate operating voltage, silicon suboxide (SiOx) has been
regarded as one of the most promising anode materials for the
next-generation LIBs. It is accepted that Li2O and a series of
lithium silicates are formed in situ during the initial lithiation of

SiOx, which not only insulates the inner active material from
electrolyte, but also acts as a buffer for volume expansion.
Therefore, SiOx possesses high capacity and excellent cycling
performance, but it suffers from unsatisfied initial coulombic
efficiency and low intrinsic conductivity, which limit the practical
application of SiOx-based materials. In this mini review, the
lithium-storage mechanism, modifications and electrochemical
properties of SiOx-based anode materials are reviewed briefly.
Only by fully understanding the lithiation/de-lithiation
mechanisms of materials, can they be targeted to solve their
own drawbacks. In addition, this review emphasizes that metal/
metal oxide doping into SiOx electrode materials is effective to
solve the issues before practical applications. Other strategies for
improving electrochemical performance, such as pre-lithium
technology through the in-situ formation of silicates, are also
covered. Although some strategies have been proposed, large-
scale practical applications of SiOx-based anode still have a long
way to go. As for future’s research, more consideration should be
given to the feasibility and cost of the batch production process,
we look forward to seeing a breakthrough of SiOx-based anode
materials in the field of LIBs.
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