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The search and investigation of resistive switching materials, the most consolidated

form of solid-state memristors, has become one of the fastest growing areas in the

field of electronics. This is not only due to the huge commercial interest in developing

the so-called Resistive Random-Access Memories (ReRAMs) but also because resistive

switching materials are gathering way to new forms of analog computation. Unlike in

the field of traditional electronics technologies, where Silicon has monopolized most

of the applications, the area of solid-state memristors is opened to a broad set of

candidates that may contribute to unprecedented applications. In particular, the use

of organic-based resistive switching materials can provide additional functionalities

as structural flexibility for conformal integration or introduce new and cost-effective

fabrication technologies. Following this new wave of organic memristive materials, this

work aims at reviewing the existing models explaining the origins of resistive switching in

Graphene Oxide, one of the most promising contenders on the battlefield of emerging

memristive materials due to its low cost and easy processing methods. Within this

manuscript, we will revisit the different theories supporting the phenomenology of

resistive switching in this material nourishing the discussion with experimental results

supporting the three main existing theories.
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INTRODUCTION

Resistive switching materials are opening a completely new device paradigm in the field of
electronics. On the one side, their intrinsic non-volatile memory effect associated with two different
high and low resistance states (HRS and LRS, respectively) has suited them for application in the
digital domain (Lee et al., 2007; Hong et al., 2010; Zhuge et al., 2010). On the other side, and
not less important, they are the right support to develop neuromorphic circuits which can leave
out the CMOS-based emulation (Wang et al., 2016; Zu et al., 2019). Resistive switching materials
constitute the technology that enables the simple implementation of solid-state memristors, the
fourth electrical element that completes the fundamental relations between voltage, charge, current,
and flux (Chua, 1971). Their operation is based on the modulation of their resistance according to
the bias history of the device. This property allows mimicking biological synapses in a coherent
and natural manner (Jo et al., 2010; Zhou et al., 2019). Consequently, resistive switching materials
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are of most interest for the implementation of artificial neural
networks (Yu et al., 2011; Yu, 2017; Lanza et al., 2018) able
to surpass the computation schemes based on the classical von
Neumann paradigm.

Inside all the existingmemristive solid-sate materials portfolio
this short review is focused on one of the most anticipated
and promising contenders, Graphene Oxide (GO). Graphene
Oxide is a highly functionalized (mainly hydroxyl and epoxide
groups) form of graphene that is usually stacked in platelets
(Dreyer et al., 2010; Coroş et al., 2019). Its main advantage
with respect to its pristine graphene counterpart, comes from
its inexpensive and simple processing (Yu et al., 2016). Actually,
its defective nature is believed to be the source of its memristive
properties (Porro et al., 2015).

GO based memristors have been demonstrated both with
planar and vertical structures showing reliable and repeatable
resistive switching properties (Khurana et al., 2013; Porro et al.,
2015; Hui et al., 2017). Despite the rapid increase in the number
of publications related with GO-based memristors, there is not
a unique explanation for the origins of the resistive switching,
but rather it seems that fabrication parameters such as the
choice of deposition technique for GO and electrodes, electrode
materials, level of reduction etc., originate different switching
behavior and therefore a diversity of explanations of the origins
of the switching mechanisms. The different theories to explain
the phenomenon can be grouped in three major models that will
be rounded up in this short review: (i) metallic-based filamentary
conduction, (ii) contact-resistance modification induced by ion
drift, (iii) oxidation-reduction mechanisms in the bulk GO.

METALLIC FILAMENTARY CONDUCTION

Metal filament formation has been the preferred mechanism
to explain resistance switching in inorganic memristors (Van
den Hurk et al., 2015; Mohammad et al., 2016; Li et al., 2017;
Wang et al., 2018), but also in organic ones (He et al., 2009;
Sparvoli et al., 2019). According to this model, when a positive
voltage is applied to the active electrode, the material is oxidized
electrochemically and the resulting cations migrate through
the insulating layer up to reach the cathode. A filament is
originated thanks to this movement of metallic ions, resulting
from the oxidation of one of the electrodes that conform the
memristor stack (Figure 1A). This is particularly observable
when using Al electrodes since this is one easily oxidizable
metal (Pradhan et al., 2016).

When the ions reach the opposite electrode they gather
together and the reduction reaction yields the growth of a
metallic strand back to the ion reservoir electrode. When the
filament is close enough to the anode, the resistance between the
electrodes drops suddenly turning the HRS into the LRS of the
device. This mechanism is typically characterized by very abrupt
transitions between the current levels. Reversing the bias polarity,
and therefore the electric field, causes a reverse diffusion of the
metal ions that induce the rupture of the metallic filament.

The metallic filamentary model has been used to explain
the resistance switching in thin GO memristors typically in

stacked structures in-between to reactive metallic electrodes
(Waser and Aono, 2007; He et al., 2009; Porro et al., 2015).

CONTACT RESISTANCE MODIFICATION
BY OXYGEN ION DRIFT

Jeong et al. pioneered a work (Jeong et al., 2010) where thin
GO films were embedded in-between two Al electrodes showing
potential for flexible non-volatile storage on a polyethersulfone
substrate. Several experiments supported by X-ray diffraction,
High Resolution Transmission Electron Microscopy, and also
including the absence of an ohmic behavior, made the authors
exclude the existence of a conducting filament in the bulk
GO. In this case, the resistive switching is attributed to the
formation/destruction of local filaments in the thin insulating
layer at the interface between the top Al electrode and the
bulk GO film. The authors hypothesized that those filaments
were produced by the oxygen ion transfer between an insulating
barrier (AlOx) at the interface of the top electrode in Figure 1B

and the GO domain. Initially, the Al/GO electrode is expected
to be amorphous and non-homogeneous due to the overlap of
multiple GO platelets produced by the spin-casting deposition
and redox reactions triggered at the interface. This region is
expected to be rich in sp3 insulating domains constituting an
insulating barrier that gives rise to the HRS. Under reverse bias
polarity, local conductive filaments are grown by field-induced
oxygen diffusion into the GO; thus the oxygen returns back to
the bulk GO decreasing the insulating barrier and giving rise
to the LRS. This model was further confirmed by replacing the
electrode with an inert metal (Au) resulting in lack of resistive
switching effect.

Several authors have postulated variations of this mechanism,
i.e., oxygen ions drift leading to changes on the energy barrier
at the interface GO-electrode, as the source of resistive switching
in their GO experiments (Wang et al., 2012; Porro and Ricciardi,
2015), and despite the fact that in some cases the model described
in Jeong et al. (2010) is not explicitly described (Kim et al.,
2019), the resistive switching arguments provided are aligned
with this approach.

OXIDATION-REDUCTION MECHANISMS IN
THE BULK GO

The third model explaining resistive switching in GO is
connected to the drift of functional groups and its impact on the
resulting different sp3 and sp2 domains on the bulk substrates
(Khurana et al., 2013). This is particularly relevant to describe
memristance in planar structures or to explain different set, and
reset speeds. In this way, resistive switching is connected to a
reversible filamentary phenomenon (Wei et al., 2012) in which
the conductive path or paths are formed by turning insulating
sp3 domains into conducting sp2 bonds (oxygen vacancies)
based on the detachment of oxygen containing-groups under
the action of an electric field, especially in those regions of
low conductivity (Qi et al., 2018). This theory finds grounds
in different first principles numerical simulation studies that
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FIGURE 1 | (A) Conceptual representation of the formation and annihilation of a metallic filament responsible for the resistive switching according to the metallic

filamentary. (B) Model of the resistive switching in graphene oxide [adapted with permissions from Jeong et al. (2010)]. Copyright 2010 American Chemical Society.

The as-fabricated device is in the HRS due to the insulating top interface layer formed by a redox reaction between Al and the GO film; The LRS state is induced by

formation of filaments at the top interface layer due to oxygen ions diffusion by an external negative bias on the top electrode. (C) The GO surface is characterized by

the combination of sp2 (green dashed areas) and sp3 domains. At a nanoscale level, the sp2 regions present high-conductivity but they are interrupted by

low-conductivity sp3 domains rich in functional groups. When a current is flowing, the high resistivity of the sp3 domains creates local large gradients of electrostatic

potential resulting in strong local electric fields. Joule heating of the high resistivity region triggers the drift of the oxygen containing groups (migration of functional

groups), creating eventually a conductive filament.

demonstrate the formation of domains of highly functionalized
Carbon interrupted by low oxidized domains (Kim et al., 2012;
Zhou and Bongiorno, 2013); the stoichiometry of those domains
is prone to bemodified due to the lowmigration barrier of oxygen
in GO (Dai et al., 2013; Zhou and Bongiorno, 2013). Figure 1C
illustrates this process of resistive switching. The non-uniformity
in the number and location of the functional groups of the
partially reduced graphene oxide is responsible for the creation
of regions of different conductance (or conductive domains). The
sp2 regions present high-conductivity but they are interrupted
by low-conductivity sp3 domains at a nanoscale level. When
a current is flowing, the high resistivity of the sp3 domains
create large gradients of electrostatic potential at a local level
resulting in strong local electric fields. In this way, and assisted
by the action of Joule heating in the switching material, there
is a drift of oxygen containing groups that generate changes
on the reduction level and therefore on the conductance. A
recent experimental work (Romero et al., 2019) further supports

this approach relating the memristance of GO with a bulk
phenomenon involving the drift of oxygen ions and oxygen-
containing groups inducing local changes in the stoichiometry
level of the GO. The authors fabricated macroscopic size (∼mm)
laser-reduced graphene oxide based memristors concluding that
due to the considerable distance between the electrodes and to
the fact that under different contact approaches (including also
organic electrodes) the resistive switching was present, it was
necessary to rule out the creation of metallic filaments or the
participation of the contacts in the process. Despite this model
may be only appropriate for partially reduced GO, this work
commits memristance in GO to the creation of a percolation
path of highly reduced GO by the energy accumulated in the
device. This theory agrees with the prospective estimation of
the energy scale of the phenomenon given in Romero et al.
(2019), and it is also supported by Times series Statistical Analysis
(Rodriguez et al., 2019): the results thrown from the analysis of
successive set and reset processes show that the autocorrelation
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and partial autocorrelation levels match those typically found
in resistive switching due to a well-defined conductive path
between the electrodes that it is interrupted at a Quantum Point
Contact (Roldan et al., 2018).

CONCLUSION

The future of memristive devices relies on the development of
adequate technologies able to outperform and provide additional
value over the existing CMOS mainstream line. Among a
plethora of material alternatives, GO based memristors have
been pointed by many recent publications as one of the more
interesting contenders due to promising switching properties,
ultrathin thickness, easy processing approaches and intrinsic
structural flexibility. However, there is still a long way to
go to become a competitive technology, starting with an in-
depth understanding and analytical description of the physical
origins of its resistive switching features. There are three main
sources of memristance acknowledged in the bibliography: first,
considering the formation of a metallic filament due to the
electrodes; second, attributing it to the change in the contact
resistance, due to oxygen ions diffusion, as the main cause of the
resistance changes; and finally, the third model, considering the
evolution of the bulk GO conductance due to functional groups
migration and the formation of a conductive path (formation
of sp2 conductive domains). Those models share in common
that the existence of functional groups in GO is responsible for
the resistive switching. However, the ultimate impact of these
functional groups on the physics and chemistry of the process
is different in each case: metallic filament formation/destruction
in the first model, contact resistance variation in the second, and

formation of sp2 conductive paths according to the third model.
The existing investigations have not excluded, or considered,
the possibility of a combination of the former mechanisms
as the source of memristance. In particular, the combination
of a metallic filamentary mechanism in conjunction with
the contact resistance modification is certainly a possibility
whenever metallic electrodes are present. However, the case of
an oxidation-reduction in the bulk is rather different, since,
as demonstrated experimentally, resistive switching is present
in the absence of metallic electrodes. Nevertheless, this model
can be considered as another form of filamentary mechanisms,
where the filament, in this case, is of an organic nature. For the
time being, it is unclear though which one is the predominant
mechanism causing the memristance in GO, but rather the
experiments show that the particular device configuration (size
of the active material, electrodes, and reduction level) determines
the ultimate cause for the resistive switching.
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